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ABSTRACT

We investigate the existence of solutions of the steady forced modified KdV equation
with forcing term (SFMKdAV) 7., =— An? n.+Bn,+Ch,. This type of equation appears in
the context of two-dimensional steady capillary-gravity waves on the interface of two immiscible
fluids over a small obstruction. It is shown that there exist both symmetric and unsymmetric
solutions to this equation if B > 0, i.e. when the flow is in the subcritical regime.

1. INTRODUCTION

In the study of symmetric waves of a two-layer fluid over a small obstruction of compact
support at the rigid bottom, Choi and Asavanant [1] derived the steady forced modified KdV
equation (SEMKdV), using a unified asymptotic method, in the following form

nxxxz—Anz nx+an+Cbx1 (1)
Here n(x) denotes vertical position of the interface between the two fluids, A, B, and C are
constants. In particular, A and C are always positive. The function 4(x) represents the shape
of the bottom obstuction with compact support. All the subscripts denote derivatives with
respect to x. Existence theorem for symmetric solutions was given and this was confirmed by,
the numerical calculations. Mielke [2], Shen [3], and Sun and Shen [4] proved the validity of
the asymptotic theory and justified its use for this type of fluid-flow problems.

For the two-layer fluid system, it was shown that the signature of B distinguishes the
characteristics of the fluid flow. That is the flow is subcritical when B > 0 and is supercritical
when B < 0. We shall restrict the analysis to subcritical flow regime (B > 0 ). In this paper
we give detail proofs of existence theorems of both symmetric and unsymmetric solutions of (1).

2. SYMMETRIC SOLUIONS
Following Choi and Asavanant [1], we look for a solution n(x) such that B > 0 and

lim (d/dx) n(x)=0  j=0,1,2.
x| — 00
Integrating (1) from -eo to x, it follows that

Bn- =20+ (x) ©)
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where 4, (x)=-Ch(x). It can easily be shown that (2) is equivalent to an integral equation
_ jK(x,g)(g na(é)+bl(§))d§.
Here K(x,¢)= P VON is the Green’s function which is a solution of
BK(x,&) = K, (x,&)=6(x— &), —oco<x,E< o0,

We now define

j K(x ( +b1(§))d§

||u|| .. = sugln(x)]
H= {u|ueC() ‘/—lxl }

Clearly, H is a metric space and is complete. We give another definition

BM={que H,||u||<M 0<M <oo}

Lemma 1. ||T ||<M for ne By, tf "/VI"<B

Proof.

Ir) = igg‘ TK(x,é)(gn%é)wl(«f)]d:

A T 1

< "?3_ n®+b, sup _jmexp(—\/l-ﬂx - él)dé
AM®

< ( 3" |4 ||J/B

< M

as required.

Next we want to prove that T(n) decays rapidly so that we may consider the behavior

of e\/“x] T(n )(x)] when |« is large.
Lemma 2. Sungp(\/— |x|)|T |< e for neBy.
Proof. It suffices to prove the case when x > 0.

e BHIT(n)(x)| = lexp(@x—ﬁ |x_§|)(§ n3(5)+b,(.§))daj 2B
= lieXp(\/Eé)[gna(§)+171(§))d§
" Iex —5))(§n3(5)+b1(5))d§ 2B

[ & exp(BE -3 Bl n(&)exp(VE) &) - exp(VBE s (£)
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+ Iéexp(\/ﬁ(lx -&)- 3\/—E|§|)(n(§)exp(\/—l§|§|))3

+ by(&)exp(VB(2x - €))a¢| 2B

sug{n(e)exp( Bl oxp(-~BIE)

@(zx-sg))dgla%

N

% Sy 8
o
%

+16)(?(\/55)174(5)45+Ib4(§)exp(\/ﬁ(2x_g))déi B

exp(—x/Ex))s{gg(n(x)exP(\/—B_lfo/63
+ j Nexp \/_6 dé/z«/_

SLlpP )

IA

< oo
Since ne H,where N = rgla%(lbi (é)l Hence,

sup exp(\/Ex)lT(n)(x)|< -
sup exp(-«/Ex)l T( n)(x)|< oo

This completes the proof. Now we shall state the existence theorem for symmetric solutions
of (2).

Similarly, one can easily show that

Theorem 1. Bn-1n,,.= n +171( ) —oo<x<eo has a solution which decays exponentially at
lx|—°° if Bis suff1c1en3y large.

Proof.

IN

[7(m)-7(n.)

su % IOK(X,E)(nls(é)‘ ng(ﬁ))d‘s

< )s{gg% JK(x,{:')\nf+mnz+n§\lm—nzld€
< AM*|m - m,|/B

AM?

=—B”||771'772“-

Hence we can see from Lemmas 1 and 2 that T is a contraction mapping if

3 M

in By. Now

2 2/3
B> max{[ﬂ— + M ) (AM 2 )2/3 }, and the integral equation 1= T( 17) has the unique solution
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= Bnx)- A7) (),

where BK(x,é)—Kxx(x,§)= 8(x - ). Hence neC*(R), and it follows from the right hand
side of the above equation that neCS("R).

3. UNSYMMETRIC SOLUTIONS

Next we attempt to find periodic solutions of (2) when b(x)=0. Assume that n(x) and
1,(x) are given at some point x = x, and n(xo) =aq, nx(xo) = 8. We multiply n, to (2) and
integrate the resulting equation from x, to x > x,. This yields

(m.(x))’ =—%n“ +Bn? +d=f(n),

A . . . . o
where d=p? +g()t4 —Ba?. To find the solution of this equation, we consider the cases

d>0,d =0andd <0 separately. If 4>0,f(n) can be factored as (——4)(1)2 - 50)(172 -& )

Here & <0< &, and ‘ 6
1/2
_ 2, 2Ad
&= [B (52 284) ]

1/2
3 2 2Ad
= B-| B+ .
6=3o-(a o224
The solution is then n=E£Y2cos ¢, where

y(x=x0)= j(l — k?sin’ 9)_1/249,
%o

¢g=cos” (aé,‘o 172 ),
(&-&))"
y ( 6 7

Pt o1
-5

x
It is clear that % >0. Hence n(x) intersects the x - axis repeatedly. Suppose {x,-} is the set

:>L~

of points where n(xi) =0foralliand xy < x; <xy <x3<.... Then by assuming x; as the
corresponding point of 2a7m+ % for someneZ,

S
2ng+——
nIT 2

n(x)dx = J. 51/2 cos ¢(j—;)d¢ for someneZ
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2nn'+—5£
2 12
= J 2y cos ¢(1 k? sin ¢) de
2na+Z
2
2 -1/2
= &Py J sin ¢(1 — k? cos? ¢) d¢
0

= &Py T sin ¢(1 - Ieu2 cos? ¢)—1/2d¢
0. o

This implies that the mean value of this solution n(x) over one period is zero. If 4 = 0, (2)

has a solitary wave solution. If 4 <0, B+ 24d >0and (1) =0 has two distinct roots. In this
case, we multiply 4p? to (2). This yields

()} = - 220 4482 4 4dv = g(1) @)

with v=n?
The condition f(n) =0 gives three different roots

=3B+ 3,/32 244
3
§1=33-31/32+2—‘§ﬁ

62 = 07
where &, > &, > &,. We can now express solution of (3) as

v=2E&, cos? ¢+ & sin? ¢,

where
[}
2 -1/2
alx = J‘ 1 B2 sin? 9 46,
0
a=§ -& >0,
S0~ &1
e
So— 52
It follows that n= i(éo cos? ¢ + &, sin? ¢) JIE B+ 24d _ 0, we have

@Q2=—A{v—%§f.

172

Therefore the only possibilities are v=0o0rv=3B/ A, i.e., n(x) =0 orn= _+_(_B) CIf

2 2Ad A

B +—<0,
3 (v, )2 = —Av(y2 +(v- 5)2) for some 7, 8.

Hence only 5 =0 is possible. These show that we can find all solutions analytically for (2)

with b(x) =0. When x — —oo, we assume that 7 tends to 0. Thus only 5 =0 or 4 =0, which

corresponds to solitary wave, is possible.
Now we need to know the existence of the solution of (2) in x_ < x < x, when b(x) # 0.

In the following, we show that for some initial values of a solution at x =x_, the solution
always exists in [x_,x +] and is a 2 — function.
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Theorem 2. 1,, = —% n® +Bn- 171(x), A,B>0 with initial data n(x_) =q and nx(x_) =8
has a (2 - solution for x_<x<x,.

Proof. It suffices to show that n is bounded. Without loss of generality, we can assume

x_=-1and x, = 1. Multiplying 7, to the given equation and integrating it from -1 to x, yields
A A
(n.f = —2n'(x)+ B () + (m (1)) + Z(n(-0)’

B{n(-1)f -2 [ (e

;
= —%(nz—%) +B2+?a4—-3a2

382 T
o 2 :[bl (1)’ (¢)dr.
Hence
(Y = N+2 [ (o)
-1
X ' 2
< N+2 J.8|l¢1(t)|2+b——(8tldt (4)

-1
A 3 '
by Young's inequality, when N = p? +ga4 ~Ba? +ﬁ32 and () = 5; Suppose that 7 is
not bounded in [-—1,1], then there exists a point x e[—l,l] such that |17| —> o0 asx —> xg. Then
xo >-1+§ for some ¢>( by the existence theorem in ordinary differential equation.

Let %o = inf{ & e[-1,1] | )}E? 1(x) = . We choose & so that —1< & < x,. Then the solution of
the given differential equation exists in

[-1,8], and by (4),(n, )2 < %(6 +1) sup (

—1<t<8

nx(z‘)i2 +16M2)+ N for some xe[-1,8]

Hence sup |71x(x)|2S16M2 +_];]:T<16M2+§17V— for every 8§ with—1< 8 <x,. Thus

-2+l N
8
n'(x) is bounded when x €[~1,x,], and nfx)=a+ J n'(1)dt is bounded which contradicts to

|n(x)| T oo as x = x,. Therefore, we can conclude that-h(x) is bounded in [-1,1] and the solution
of the given equation exists.

We have shown that the solutions of (2) always exist for x € ® and these solutions are
bounded. Since we assume that n(—oo) =0, only two types of solutions, n(x) =0 and the
solitary wave solutions, can appear for x <x_.
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