J.Sci.Soc. Thailand, 24(1998) 11-20

FAULT IMMUNIZATION MODEL FOR ARTIFICIAL NEURAL
NETWORKS

CHIDCHANOK LURSINSAP
Department of Mathematics and Computer Science, Chulalongkorn University, Bangkok 10330, Thailand.

(Received August 9, 1997)

ABSTRACT

By infecting some chemical substances to a cell, it is able to enhance the ability of the cell to fight
against the intruder. This immunization concept in biological cells has been applied to enhance the fault
tolerance capability in a perceptron-like neuron. In this paper, we consider only the case where each
neuron separates its fnput vectors into two classes. We mathematically model the cell immunization in
terms of weight vector relocation and propose a polynomial time weight relocating algorithm. This
algorithm can be generalized to the case where each neuron separating the input vectors into more than
two classes.

1. INTRODUCTION

Artificial neuron networks have been extensively used in various applications. The
reliability of the network depends upon how the network is implemented or used. If the
network is implemented as a program running on a general computerthe reliability obviously
depends upon the design of that computer. On the other hand if the network is directly
implemented on a VLSI circuit the reliability strongly depends upon the design of the network.
It has been believed that artificial neural networks have an intrinsic capability of fault tolerance
on the synaptic links and neurons due to the redundancy. However this belief is gradually
diminished as directly and indirectly reported in these papers in the reference list. Currently,
designing a reliable neural network to tolerate faults has been an emerging essential issue.

The problem of designing such a network is categorized into three directions based on
the solution and the constraints of the problems.These directions are (1) design of a self-
detection of faulty network by applying the techniques used in digital circuit design,3 (2)
design of a self-recovery network when there are faulty links and faulty neurons,” and (3)
design of a fault tolerant network by injecting noise into input vectors, perturbing weight, and
pruning some links during retraining 26101413 The first and the third directions gain the most
interest from the researchers because of the well-established techniques in digital design and
optimization. Faults are assumed to be stuck-at-0, stuck-at-1, and stuck-at-random. The stuck-
at-0 and stuck-at-1 are mostly and widely assumed due to their simplicity and easiness. Although
these proposed techniques work well in most situationsthere are still some possible improvements
to enhance the robustness and reliability of the network. :

Our direction is based on the concept of biological immunization against any decease
prior to its illness. By injecting some chemical substances to a cell, it is able to enhance
theability of the cell to fight against the intruder. In case of an artificial neural network, we
inject some constants to the elements of each weight vector so that the weight vector is
relocated to the appropriate location. A similar concept was reported by Chun and McNamee.*
Their technique is based on a trail-and-error process. Some small signal perturbations are

12 J.Sci.Soc. Thailand, 24(1998)

repeatedly injected into the links until the network is non-operational. They also injected
noise into the input vectors. Our approach differs from this approach. We directly analyze
the input space and compute the new appropriate location for the weight vector. In this
paper, we focus our problem and solution on a multi-layer perceptron type network.

A neuron having perceptron-liked function classifies its input data space into two classes
by using an activation function such as sigmoid function.® This function acts as a threshold
decision function. The advantage of this type of classification is the function provides a
tolerant range for the output value as long as the threshold rule is not violated. Another
advantage is this type of network can be used to emulate other networks used to perform
afunctional approximation. We will not discuss this emulation issue in this paper. For any
neural network, there aretwo possible failures. The first failure is due to the the deviation
ofsynaptic weight of each dendrite or link. The second failure is due to the malfunction of a
neuron. In this paper we concentrate on failure at each link.

The paper is organized as follows. Section 2 discusses the fault immunization concept.
Section 3 illustrates how the immunization algorithm works with some real examples. Section
4 provides some discussion to the related issues of hardware implementation. Section 5 concludes
the paper.

2. FAULT TOLERANCE IMMUNIZATION CONCEPT

2.1 General Concept and Algorithms

Let W, =(w,,, w,,,...,w,,) be the weight vector of neuron i, X3 =(xj,, wy,,...,w},) and
X% = (x2,,wh,,...,ws), where o and B are input pattern indicies. We first consider the problem
of how to immunize a fault tolerance capability of a single neuron with two-class separation
and the solution to the problem. Then we discuss how to generalize the solution to the
neuron with multiple-class separation. Basically, a neuron 7 separating its input vectors into
two classes, say A and B, acts as a hyperplane locating in between two input vector groups.
The location of the hyperplane is captured by the weight vector W, of the neuron and the
classifying decision is based on the value of the dot product between W, and X*, where X*-
possibly means X¢ or X£. If W,- X" is greater than a threshold value T then X* is in class
A otherwiseit is in class B. Without loss of generality, we let T equal zero.

When the training is successful or converged the weight vector representing a hyperplane
must be located in the empty space between input vectors in class A and class B. All the
vectors in class A are on one side of thehyperplane while all vectors in class B are on the other
side. Figure 1 illustrates an example in a 2-dimensional space. In this case, there are three
separating lines, /1,/2,/3. These lines have the same separating ability but different fault
tolerance capability. When some elements of the weight vector of a line, say line 1, change
their values, the line will be swung or relocated to a new position. It may cause a
misclassification to some vectors in either class A or class B. It is obvious from Figure 1 that
line 3 has more freedom to swing than lines 1 and 2 while preserving its correct classification.
We say that line 3 is more fault tolerant than lines 1 and 2. The interesting problem is how
to find the location of line 3 when the locations of classes A and B are already known. The
problem of fault tolerant immunization can be definedas follows. To formally define the fault
immunization problem, we denote the following symbols and their meanings.

J.S¢i.Soc. Thailand, 24(1998) 13

vector in class A

o

O

class A

line 1

line 3
line 2

vector in class

Fig. 1. An example of weight relocation.

The trained weight vector of neuron i:W, =(w,,,w,,,...,w,),
The relocated weight vector of neuron i: W', =(w', ,w',,,...,w',),
Input vectors in class A: X§ = (x5, x5,,...,%3,), 1sa<p.

Input vectors in class B: X} =(x},, x5,,..., x5,), 1< B <q.

Trained upper bound constant for w, : 4, .

Trained lower bound constant for w,:/, .

Relocated upper bound constant for w', : ',

O N SN G WD

Relocated lower bound constant for w', : /'

hf

The value of 4,1, 4, ,and ', are computedby gradually increasing or decreasing
w, and w',;, respectively, until a misclassification occurs. Since we focus our pro
blem on a 2-classclassification problem then the misclassification is defined as an event when
the value of the output of a neuron is less than 0.5 for class B and greater orequal to 0.5

for class A. Therefore, the objective of fault immunization is to find W', to minimize

‘1 - L‘?’_/ A<j<nand1<i<m,to satisfy these conditions:
W' _ I‘.
L Hy
L (W, +dy),.., (W, +d, (X515, %4,) 20, forl< a<pand
2. (W, +0),., ', + 1) (x5, x3,)20,forl<a<p and
3. (W +u'y), (W, +d,).(x5,,...,x5,)<0,for 1< B < qand
4 (W 41, (W,) (8, %5,) <0, for 1< B <q.

u. - w

To achieve the minimum {{ - & " i first we mustknow the value of each element
!]

of W, and then relocate W, to btai%“’“’/'{ Thus the following two consequent procedures
are needed.

1. Train the network until it converges to a specified limit and obtainthe weight vector
W, for each neuron i

2. Find W, satisfying the above conditions and the objective.

The network can be trained by using any existing learning rule such as Backpropaga-
tion 812 The location of W', is defined by the shape of the empty space channel lying in
between vectors in class A and vectors in class B. The channel is formed by all boundary

14 J.Sci.Soc. Thailand, 24(1998)

vectors in both classes. The problem is how to find these boundary vectors. When the values
ofsome w, ’s are forced to either increase or decrease beyond u,, or /. the corresponding
neuron will, eventually, misclassify some vectors in both classes. Obviously, these misclassified
vectors must lie on the boundary of the channel.

2.2 Finding Boundary Vector Algorithm

In this section, we only focus our discussion on the algorithm of finding boundary
vectors based on a single faulty link which may occur to one of w, ’s. Later, we will discuss
the reason that this algorithm is still correct when apply to multiple faulty links. Since the
size of W', therefore we need at least # boundary vectors from either class A or class B to
compute the value of each w',.. The simplest solution to finding these boundary vectors is to
gradually increase and decrease each w,, until a misclassification occurs. The misclassified
vectors will be the boundary vectors. Notice that the process of increasing and decreasing the
value of w,, can generate at least one misclassified vector in class A and another misclassified
vector in class B. For each neuron i, we find the boundary vectorswith respect to each w,, as
follows. Let X be the input vector o of class A, X? the input vector B of class B, and W,
the weight vector of neuron i.

Algorithm 1
w1

X

1. Lleta) = Ji<a<y.

2 Letla":M 1<B<yq
. if xﬂ 1t = =9

B,

3. Find min, (a?) and min, (¥’).

Theorem 1 With respect to w,, an input vector corresponding to min,, (a7) is the boundary vector
in class A and an input vectorcorresponding to min, (b7)) is boundary vector in class B.

Proof Each w,, can be rewritten in this form (w,, + §,),where &, is a constant and is equal
to zero in normal situation. Without loss of generality, we only consider the boundary vectors
in class A andprove only when-w,; is increased. The proof for the boundary vectors in class
B and decreasing w,, have the similar argument. Therefore the dot product W, . X¢ becomes

a _ a a o a

W, X3=w, x5 +w, x5 +.+ (wi'1+5/)xA,i+...+ W, X5,
_ o
=P+ 5I.xM

where P=w, x;, +w, x5 +..+w x5+ . .+w xi If we map the value of the dot
product as a point to a real line we can see that the value of P represents the distance of this
point from the threshold, which is equal to zero. From the above equation, it can be seen that
increasing or decreasing &, is equivalent to constantly adding or subtracting & x5, from w,,.
Therefore, the number of times to increase or decrease &, until a misclassification occurs can
be easily computed by dividing W, « X with x},. Hence, those vectors having min,(47) will
be the boundary vectors.

J.Sci.Soc. Thailand, 24(1998) 15

Theorem 1 tells us how to find the boundary vectors in classes A and B. These boundary
vectors may not be unique with respect to its w,,. This means that different w,;, and w,, may
generate the same set of boundary vectors. The followmg collorary states the condition of the
uniqueness of the boundary vectors with respect to any w,, and w,,.

Collorary 1 Vector X¢ is a boundary vector with respect to w,, and w,, if x} =x;,.

Proof If X% is a boundary vector with respect to w,, and w,, then we must have
w.-xi| ex:

- = = This implies thatx}, = x5,.

A Ak

2.3 Weight Vector Relocating Algorithm

After all the boundary vectors are found, the next step is to relocate the weight vector
by using the boundary vectors as the reference points. The new location of the weight vector
must satisfy the conditions stated in Section 2.1. The problem of weight vector relocation in
this case can be formulated as anoptimization problem with the following cost function

X

E= z (f o+ Fus) (M)

(W/' XE+ W XY (2)

Il M?ﬁ

A

where f,, is the dot product of the new weight vector and the boundary vector pair
k in class A, f,, is the dot product of the new weight vector and the boundary vector pair &
in class B, and K is the number of boundary vector pairs. Here, we consider the bias term as
one element in the weight vector with its coefficient of one. Since the weight vector represents
a hyperplane in a space of #-1 dimensions and there are # unknown w,’s, it is impossible to
solve for all w 's. Hence we set the value of w, to one. This setting can be viewed as
normalizing the value of all w,’s by the value of w,. It will not effect the solution to this
problem. The minimization of the cost function is achieved by differentiating it with respect
to each element of W' and set the result to zero. Then we solve the following set of these
linear equations to find each w';;.

aff =0 3)
5‘2;- =0)

(5)
9‘97}7:=° ©)

in

The cost function, E, depends directly upon how we define the boundary vector pairs.
The boundary vector pair & consists of two nearest boundary vectors which one vector is from
class A and the other is from class B. This pair is used to define the distance of the channel
between classes A and B for relocating the weight vector. Let 4(V,,V,) be the Euclidean
distance between V, and V,. The boundary vector pair can be found by the following algorithm.

16 J.Sci.Soc. Thailand, 24(1998)

Algorithm 2

1. For each vector X/, find a vector X! such that 4(X/,X}) is minimum. Vectors X/,
and X! are boundary vector pair.

2. For each vector X}, find a vector X7 such that 4(X;,X7) is minimum. Vectors X,
and X7 are boundary vector pair.

An example of boundary vector pairs is shown in Figure 2. There are two vectors in
class A and three vectors in class B. The boundary vector pairs are {(1,3),(2,4),(5,2)}.

2.4 Tolerance Measure

We define the following measure to evaluate the tolerance of w,, and w',, computed
from the algorithm. All the symbols are already defined in Section 2.1.

w, -1[1‘
T, =’1————-uu’_w’A)
i 4
w =
U— if ij |
ry=it u. —w' ®)
& &

The minimum values of T,, and T',, are equal to 0. This implies that if the weight
vector is relocated at the best position in between the boundary of classes A and B then the
ratios between : _“;/’ and :__‘i will be equal to one. Weight w, achieves the maximum
tolerance when T, is zero. The value of w,; can swing towards either the lower bound or the
upper bound. The swinging direction and the distance can be easily captured by ignoring the
absolute operation from the measure of T, and T',. If T, (T')) is greater than zero it
indicates that the lower bound distance is less than the upper bound distance. On the other
hand, if T, (T',) is less than zero it indicates the lower bound distance is greater than the

upper bound distance.

3. EXAMPLES

To illustrate how the immunization technique works, we will apply it to two examples.
The first example concerns the data set in a 2-dimensional binary space. The second example
focuses the data set in a 2-dimensional real space. In both examples, only one neuron is used
to classify a given data set. We name each weight element w, ,w,, and w;,.

In the first example, the data set consists of four input vectors with their targets which
are {(0,0,0), (1,0,0), (1,1,1), (0,1,0)}. The first two elements are input elements while the last
element is the target. We assign class A to the data vector having target 1 and class B to the
data vectors having target 0. After training, we obtain the following weight vector w, =10.245,
w, = 10.245, and w, = -15.452. The boundary vector in classA is {(1,1)} and the boundary
vectors in class B are {(1,0),(0,1)}. These vectors are, then, used to find the boundary vector
pairs for relocating the weight vector. In class A, vector (1,1) forms boundary vector pairs with
boundary vectors in class B which are {(1,1),(1,0)} and {(1,1)(0,1)}. In class B, both vectors
(1,0) and (0,1) form boundary vector pairs with vector (1,1) in class A. Therefore, we only
consider these boundary vector pairs {(1,1),(1,0)} and {(1,1),(0,1)} to solve for each new w',,
and w',. The value of w' is set to one. The error function is defined as follows.

E = (14w, +w' +1+w")” + (14+w', +w',+w', +w',)’ 9)

J.5ci:Soc. Thailand, 24(1998) 17
Table 1. Tolerance measure of the original weight vector.
W' Lower Bound Value of w',, Upper Bound | Tolerance Measure
w', 5.094 10.245 - 15498 0.019
w', 5.094 10.245 15.498 0.019
W' -20.705 -15.452 -10.145 0.0102
Table 2. Tolerance measure of the relocated weight vector.
w, Lower Bound Value of w,, Upper Bound Tolerance Measure
w, 0.472 1.0 1.528 0.0
w, 0.472 1.0 1.528 0.0
w, -2.05 -1.5 -0.95 0.0
The value of w', and w', are computed by solving these two linear equations
JE
o, (10)
JE
w0 (11)
(12)

which give the new weight vector (1.0, 1.0, -1.5). A threshold value of 0.5 is used for finding
the lower and upper bounds of w, and w',,. Tables 1 and 2 summarize the tolerance measures
ofw,, w,,w,,w', w',and w',.

In the second example, the data set consists data in a 2-dimensional real space which
are {(0.02,0.06,0), (0.04,0.07,0), (0.05,0.05,0), (0.07,0.05,0), (0.08,0.04,0), (0.06,0.09,1),
(0.07,0.07,1), (0.08,0.09,1), (0.09,0.06,1), (0.1,0.05,1), (0.11,0.06,1)}. The vectors are distributed
in a zigzag shape. The first two elements are the input elements and the last element is the
target. After training we obtain weight vector (217.242,288.607,-32.561). The weight vector
obtained from the cost function is (1,1.5,-0.16). In class A (target 1), the boundary vectors are
(0.07,0.07) and (0.1,0.05). In class B (target 0), the boundary vectors are (0.04,0.07) and (0.07,
0.05). Tables 3 and 4 summarize the tolerance measures obtained from training and cost
function.

Table 3. Tolerance measure of the original weight vector.

w, Lower Bound Value of w,, Upper Bound | Tolerance Measure
w, 176.487 217.242 262.995 0.109

w, 216.597 288.607 347.26 0.228

w, -36.341 -32.561 -28.781 0.0

18 J.5ci.Soc. Thailand, 24(1998)

Table 4. Tolerance measure of the original weight vector.

w' Lower Bound Value of w', Upper Bound | Tolerance Measure
W', 0.769 1.0 1.25 0.076

w', 1.175 1.5 1.8 0.083

W', -0.19 -0.16 -0.13 0.0

4. DISCUSSIONS

Several related issues will be discussed in this section. These issues include (a) the
technique of how to further increase the tolerance interval based on the hardware
implementation and (b) set of boundary vectors obtained from Algorithm 1.

4.1 Tolerance Interval

The tolerance capability obtained from the technique previously discussed can be further
enhanced by carefully considering the tolerance measure of each w, . Before any further
discussion, we define the following terms.

Definition 1 An upper tolerance interval, U, , of w, is |u W, |

Definition 2 An lower tolerance interval, L, ,of w, is |w,,l.—1,.,.|.

The tolerance measure discussed in the previous section indicates how symmetrical each
w, can deviate either increasingly or decreasingly from this current location. Although this
measure does not provide us any information regarding the deviating distance from the current
location it gives us freedom to scale up the tolerance intervals U, and L, to a certain limit
as long as the tolerance ratio is constant. This means that the value of each w,; is also
increased by the same scaling factor without effecting the classification capability of the
neuron i. We prove this fact in the following theorem. Let f, be the dot product of weight
vector W, with input vector X and f, equal of,, where ¢ >0 is a scaling factor.

Theorem 2 Both f, and f correctly classify the input data into classes A and B.

Proof The classification is defined by the following rules. The data are in class A if f, 20 and
in class B if f, <0. Multiply both sides of the inequality by ¢ we still obtain f >0 for data
in class A and f, <0 for data in class B.

Generally, a neuron is always implemented by a digital circuit’. In this case, the limit
of tolerance interval is constrained by the size of register used to store the value of w,,. We
assume that for any neuron, every w,. uses register of the same size. Let r be the size of a
register. Hence, the maximum value to be stored in this register is 2" —1. There are two
possible cases. The first case is when 2" —1 is less than max;(#,,) and the second is when
max (4,) is larger than 2" —1.4,, is the upper bound of w,,.

For the first case, we scale the value of max (4,,) down until it is equal to 2" —1. Thus,
the scaling factor in this case is equal to 22 Slmxlarly, we scale max (u) upuntil it is equal
to 2" —1 for the second case. Hence the scahng factorin this case is The scaling factor
is then used to scale the value of w, . Tables 5 and 6 summarize the tblerance intervals in
both cases after scaling.

J.5c¢i.Soc. Thailand, 24(1998)

Table 5. Lower bound tolerance intervals in each case.

19

Cases Scaling Factor Original L, New L,
max,(4,.) max (4,) (w. —1)
2" —1<max(u,) 7 —1 w,, =1, o1 Wu T
2" -1 2" -1 (/)
r_ ——— - —_—w =
max;(4,) <2 -1 max,(4,,) w, =1, max (4,) " "
Table 6. Upper bound tolerance intervals in each case.
Cases Scaling Factor Original U, New U,
’ max,(4,,) max (4,) (
2" —1<max,(4,) T 1 U, —w, T _q T w,;)
2" -1 2" -1 ()
L —_— - —_—U.. - .
maxi (ul.’/.) <2 1 maX,(U,,,) LI,I W"-I' maxi (“,-,,-) if W,,/

4.2 Correctness of Algorithm 1

Algorithm 1 finds the boundary vectors by separately considering each individual w;,,.
The problem that we are interested in is whether these boundary vectors are different from
the boundary vectors obtained by either simultaneously increasing or decreasing all w, ’s. The
answer is no. The difference between considering each individual w,, and 31multaneously
considering all w,.’s is the first one is based on the assumption of a smgle fault while the
second one is based on multiple faults. The following theorem verifies the answer.

Theorem 3 The boundary vector sets in cases of single and multiple faults are the same.

Proof We prove only the case of increasing w,;. The case of decreasing w,, has the same
argument. Without loss of generality, suppose that w,; is the element that we consider and
the input vector is (x,,x,,...x,). Let d be a small dev1atxon constant for w,, in a single fault
case and §, a small deviation constant for w,, in a multiple fault case. If the boundary vectors
in the case of single fault are different from those in the case of multiple fault then the dot
product of the single faulty weightvector with the input vector is larger the dot product of the
multiple faulty weight vector with the input vector. Therefore we have

WX, +o ot (w, +8)x, +o v w x, 2(w, +8,)x, +.. +(w, +8,)x,
O0x, 26,x, +8,%,+...+8,x,
Under the same environment, 8 and §, must be monotonically either increased or

decreased. Since the smallest values of 8 and §, are the same, for every k, we divide both sides
by 3. So the inequality becomes

X, 2x +x,+.0+x,

20 J.5¢i.Soc. Thailand, 24(1998)

It can be seen that this inequality is not correct because each x,spositive. This means
that when gradually increasing or decreasing 8, of each w;, in case of multiple fault the weight
vector will eventually touch the same boundary vectors.

5. CONCLUSION

A new technique to further enhance the fault tolerance capability of a neural network
called fault immunization is proposed. The technique can well support the current fault tolerance
techniques. We have demonstrated that if a weight vector is appropriately relocated it will
obviously improve thefault tolerance of the network. We also show that it would be better
to make the value of each element of the weight vector as large as possible so that it can
tolerate the deviation due to faults. Although this paper discusses how to immunize a neuron
performing classification it is possible to extend it to a neuron performing functional
approximation.

ACKNOWLEDGEMENT

I gratefully thank Thailand Research Fund for kindly support this work under contract
RSA 11/2538 and Research Division of Chulalongkorn University for supporting the
computing tools.

REFERENCES

1. C. Chen, L. Chu, D. Saab, "Reconfiguration Fault Tolerant Neural Network", International Joint Conference on
Neural Networks, p.547-52, vol. 2, 1992.

2. C. Chiu, K. Mehrotra, C.K. Mohan, and S. Ranka, "Training Techniques to Obtain Fault-Tolerant Neural
Networks", The 24th International Symposium onFault Tolerant Computing, p.360-9, 1994.

3. L. Chu and B. Wah, "Fault Tolerant Neural Networks with Hybrid Redundancy”, International Joint Conference
on Neural Networks, 1990, pp. 11-639-11-649.

4. Chun and LP. McNamee, "Immunization of Neural Networks Against Hardware Faults", IEEE International
Symposium on Circuits and Systems, pp. 714-718,1990.

5. R.Clay and C. Sequin, "Limiting Fault-Induced Output Errors in ANN", Proceedings of International Joint Conference
on Neural Networks, 1991,Vol. 2, pp. II-A-965.

6. H. Elsimary, S. Mashali, A. Darwish, and S. Shaheen, "Performance Evaluation of Novel Fault Tolerance Training
Algorithm", IEEE International Conference on Neural Networks, p.856-61, vol. 2, 1994.

7. W. Fornaciari and F. Salice, "A New Architecture for the Automatic Design of Custom Digital Neural
Networks", IEEE on VLSI Systems, Dec. 1995, pp. 502-506.

8. J.Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of NeuralComputation, Addison-Wesley Publish Company,
1991.

9. C. Khunasaraphan, K. Vanapipat, and C. Lursinsap, "Weight Shifting Techniques for Self-Recovery Neural
Networks", IEEE Trans. on Neural Networks, Vol. 5, No. 4, July 1994.

10. C. Lin and I. Wu, "Maximizing Fault Tolerance in Multilayer Neural Networks", IEEE International Conference on
Neural Networks, p.419-24, vol. 1, 1994.

11. C. Neti, M.-H. Schneider, and E.D. Young, "Maximally Fault Tolerant Neural networks", IEEE Trans. on Neural
Networks, pp. 14-32, 1992.

12. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning Internal Representations by Error Propagation”, in
Parallel Distributed Processing, The MIT Press, 1986.

13. P. Ruzicka, "Learning Neural Networks with Respect to Tolerances to Weight Error", IEEE Trans. on Neural
Networks, vol. 40, May 1993.

