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ABSTRACT

In this paper we study steady two dimensional waves in a two-layer fluid bounded above by a
free surface and below by a horizontal rigid boundary with a small obstruction. Two critical speeds for
the waves are obtained. Near the smaller critical speed, the derivation of the usual forced KAV equation
(FKAV) fails when the coefficient of the nonlinear term in the FKAV vanishes. To overcome this
difficulty, a new equation called a Steady Modified KdV equation with forcing term (SFMKAV)
governing interfacial wave forms is obtained by a refined asymptotic method. By using SEMKAV we
find the traveling solition-like solutions and symmetric wave solutions for different choices of parameters.
Existence theorems are proved and numerical results of this equation are presented.

1. INTRODUCTION

This paper concerns the symmetric wave solutions between two immiscible, inviscid,
and imcompressible fluids of different but constant densities in the presence of small elliptic
obstruction of compact support at the rigid bottom when the effect of gravity is considered
(Fig. 1). We assume that the upper boundary is a free surface and the two dimensional
obstruction is moving along the lower rigid boundary at a constant speed. By choosing a
coordinate system moving with the object, the fluid motion becomes steady. Two critical
speeds are obtained, near either one of which an FKdV for steady flow can be derived and has
been studied extensively in [1] and [2]. Forbes [3], Belward and Forbes [4], Sha and Vanden-
Broeck [5], and Moni and King [6] studied numerically steady flow of a two layer fluid over
a bump or a step bounded by a free surface and a rigid boundary. An asymptotic approach
for the case of a rigid upper boundary was developed without surface tension by Shen [7] on
the basis of FKdV theory, and with surface tension by Choi et al. [8]. The case of free upper
boundary was studied with surface tension by Choi et al. [9] asymptotically on the basis of
EKdV theory. In the case considered here, when the wave speed is near the smaller critical
speed for internal wave, the nonlinear term in the FKdV may vanish and the derivation of
FKdV fails. To overcome this difficulty, a refined asymptotic method is used to derive the
Steady Modified KdV equation with forcing term (SEMKdV) in the following form:

(An®+Bmn +Cn +Db =0,
2 2x 2xxx x
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where A to D are constants depending on several parameters and b(x) is a function with
compact support due to the obstruction on the rigid lower boundary. We investigate solutions
of the SEMKdV, which represent possible interfacial wave forms.

In section 2, we formulate the problem and develop the asymptotic scheme to derive the
SFMKdV. In section 3, existence theorems are proved and numerical solutions of soliton-like
solutions and symmetric wave solutions are presented for different values of parameters. The
parameters are determined along density ratios of the two fluids, depth ratio of the two fluids, .
and perturbation of the horizontal velocity at far upstream.

2. FORMULATION AND SUCCESSIVE APPROXIMATE EQUATIONS

We consider steady internal gravity waves between two immiscible, inviscid and
incompressible fluids of constant but different densities bounded above by a free surface and
below by a horizontal rigid boundary with a small obstruction of compact support. The
domains of the upper fluid with a constant density p'* and the lower fluid with a constant
density p™ are denoted by Q"* and Q" respectively (Fig. 1). Assume that the small obstruction
is moving with a constant speed C. In reference to a coordinate system moving with the
obstruction, the flow is steady and moving with the speed C far upstream. The governing
equations and boundary conditions are given by the following Euler equations:

In Q%
*4 *+
U,x +1)y: = 0,
’Gi li Qi l-i - — l(-i_ l('i
Utue +vtug = —plE /pt,

= -pi/pt-g;
at the free surface, y* = h™+ + ny,

* * *
urn«—vt =0,

pr=0;
at the interface, y' =7,
pr-pt =0,

Uiy -0 = 0;
at the rigid bottom, y* = ~h"- + b*(x")
v -bu =0

where 4'* and v'* are horizontal and vertical velocities, p'* are pressures, g is the gravitational
acceleration constant. We define the following nondimensional variables:

€=H/L<<1, n, = &lny/h-, n,= e,/ p*= p*/ghp,
(xy) = (ex”y") /", (utot) = ()12t e 1y,
pr=p/p <1, pr=p/p-=1, U=C/(gh™)1/2,
h=h"*/h", b(x) = b (x")(h™ €)1,
where L is the horizontal scale, H is the vertical scale, b(x) = b (x")(h" e, h* and h™ are the

equilibrium depths of the upper and lower fluids at x* = -oo respectively, and y* = -4~ + p'(x")
is the equation of the obstruction. In terms of the nondimensional quantities, the above
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equations become in Q*,

ug+vy =0, (1)

utug + vtug = —pr/pt, (2)

gutvs + evtoy = —ps/pt-1; 3)
at y=h+e€n,,

p* =20 4)

eurn, —v* = 0; (5)
aty = €n,,

eun,-v =0; (6)

eutn, —vt = 0; (7)

pr—p = 0; (8)
aty =-1 + £b(x),

v-=¢&ub,, 9)

where b(x) has a compact support.

In the following, we use a unified asymptotic method to derive the equations for n,(x)
and 7,(x). We assume that 4=, v*, and p* are functions of x, y near the equilibrium state u*
w VS = 0, p* = -p*y + p*h and p = -py + p*h, where u is a constant, and possess
asymptotic expansions:

= u

(u*, v*,p*) = (ug 0, -p*y + p*h) + (uf, vf, p7)
+ e2(uf, vy, p3) + (ui, vy, p3) + O(e). (10)
By inserting (10) into (1) to (4) and (7) to (9) and arranging the resulting equations

according to the powers of ¢, it follows that (4, 0, -p*y + p*h) are the solutions of the zeroth
order system of equations and the equations of the order ¢ are as follows:

uilx +vily = O/ (11)

Ugty, = =P/ P, (12)

ri, = 0 (13)
at y="h,

Py +mpey, = 0 (14)
at y=0,

(Py-P1+mpoy—Poy) = 0 (15)

Uty — 04 = 0; (16)
aty=-1,

v; = 0. 17)

Hereafter for the sake of convenience we shall use p to denote p* and set p~ equal to 1.
From (13), p*, are functions of x only. p* = pn, by (14) and p', = pn, + n,(1 - p) by (15).
We can find v*, by using (11), (12), (15), and (17) so that
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oY = y(N,/ug) + Uyl (18)
vy = (¥ + D)(pm, + (1 = p)y,)/uy -
u*, are also derived from (11)
uty = -m/ug,
(19)
uy = €pny— (1 - p)my)/uy,

where we assume 7;(x = —0) = 1,(x = —o0) = 0, uF(x = —e0) = 0.

Similarly, we can find p=, , v*, , u*, , p*, , v*, , u*, in terms of 1, and n, without using
the kinematic conditions (5) and (6). From (5) and (6), and the asymptotic expansions of u~
and v-, we have

aty=nh,
UMy — VY +£(u+1n1x - rllv-fly - U+2)
+e2(uHn,, + MMty — v*lyynzl - v, — 04 + O = 0, (20)
and aty =0,

UgTlyy — 07 +E(UM, — Ty0U7, = U2)
+EX (UM, + MMy Uy, — Uy, M5 — MU, — U3) + O(€3) = 0. (1)

Then we make use of these equations to find the equations of the free surface n,(x) and the
interface n,(x). By substituting u,, u*, , v* , u*,, v*,, v*, into (20) and (21) and eliminating
n,, we obtain

(ug — pcy/ug — (1 = p)/ ug)ny, + &(ENyN,, + Ey1y,)
+ E(F1m5 1y, + Fyllye + Fallyyy + Fub))
+0() =0, (22)
where if we let ¢; = (2u3— (1 -p))/(p+u%—h), Dy =uy/(p+u3-h),
A = u%(-e), and R = pc; + 1 - p, then
E = —(R?+2Rud)uy®— pD;((hci — R?uy* + (2¢3 — 2R - 2¢)uy?),

F, = —pDug(3c3 - 3c% +R2/2)uy® + (3hc3/2 - 3R3/2)u7d
+3D,(puy! + pPRuGPH(3R/2 + ¢; — cRuy! + (R2/2 — he/2)ud)
- 3R%uy®/2 - 3R3%u%/2,

F, = M(-pDu)(2 + Rug?—c; — hejug®) + (1+ Rug?),

F; = (=pDyuy))(—ci(ph?/2 + p/3)upt = (ujph + (1 - p)/3)uy!
+(cy(ph3/3) /uyp) + ugh?/2)
— c\(ph?/2) + p/3)ugt — (udph + (1- p)/3)ugl,



6 J].5¢i.Soc. Thailand, 23 (1997)

E, = pD, —u,.

3. STEADY MODIFIED KdV EQUATION WITH FORCING (SFMKdV)
From the zeroth order term of (22), we obtain

Ug = (pcl/u()) - (1 _p)/uo =0,
and by the expression for ¢, in (22), it follows that
uy— (1 +hu3+h(l1-p) =0, (23)
and
uh = (L+h+x((1-h)2+4ph)t/2)/2.
We denote the two values of 4% by u%, and u%, respectively corresponding to the plus and
minus signs. Without loss of generality we assume g, and u, are both positive and call

them critical speeds, near each of which a nonlinear theory for the motion of the interface
has to be developed.

Next we consider the coefficients of 1,7, in the first order terms of the equation (22).
If E in (22) is not zero, an FKdV can be derived if we assume b(x) = b"(x")(h""€2)1 and x =
€Y2x’/h’"- in nondimensional variables and similar results as in [1] can be obtained. However,
E may vanish. First, let us simplify the expression of E,

E = —((pcy+1-p)2/u}) - 2((pcy + 1 - p)/uy)
= pDy[=2((pey + 1= p)/ug) = ((pey = p + 1)2/uB) + 2(c3/ uy)
+h(ch md) = 2(c,/ug)l/u,
= 3(up) Muf + p—h)(p(udh — ul —u? + 1) — ud + 2u3 - 1),
= Buy(1 -1d)(ph(ud + p— W) ud + (1 - 2h)ud + b2 ~1).

where (23) has been used. When u satisfies the equation (23), it is seen that u?, is neither 1
nor h - p. Hence E = 0 implies u‘  + (1 - 2h)u? + h? -1 = 0. Let 4y = Uy or uy, Then

uly + (1 =23, + h>-1 = 1+ hp + (2 —h)((1 - k)2 + 4hp)1/2, (24)
uty + (L=2h)u%, + k2 -1 = 1+ hp — (2 - h)((1 - h)* + 4hp)1/2, (25)

Equation (24) tells us that £ does not vanish if we take u, as a critical speed. Suppose both
sides of (24) vanish. Then real 4’ imples & < 5/4 and the right hand side of (24) is greater
than zero. This is a contradiction. Thus the only possible case for E = 0 is that the critical

speed u? is equal to 42 and it is easy to show that E = 0 if 2. = 4?_ and
p 0 q y 0

027 02’

1+hp = (2 = B)((1 = h)? + 4hp)1/2, (26)
With the conditions (21) and (25), we obtain a Steady FMKdV,

F1n22n2x + F2n2x + F3n2xxx + F4bx =0 (27)
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where
= 3uy(4p + 3h —u%),
F, = A2(1 + hyu3 — 4h(1 - p))uy?,
Fy = up'(h(1 + h) — u}(h? + 1 + 3ph),
F, = ug(h—u3).
The coefficients F, to F, here are the simplified forms of F, to F, in the previous section

by using (23). The sign of F.F-, determines the existence of solutions of (27). In the following
sections, we assume F.F, > 0 and the case for F.F, < 0 is considered in subsequent study [10].

li n |

Il

31 Symmetric solition-like waves
We assume the speed U* of the fluid at x = -eo are the same and given by U = u +
A + O(€) and consider (27) F,/F, > 0 and F,/F, < 0. (27) can be rewritten as

ey = _Al n22n2x + A2n2x + A3bx ’ (28)
where A, = F//F, > 0, A, = -F/JF, > 0, A, = -F/F,". Here 1 is a parameter determining the

flow regime, eg. A > 0 and A < 0 represent the supercritical and subcritical cases respectively.
Where &= 0, (28) has soliton solutions whose value is 0 at x = *oo for 4, 20 :

ny(x) = *(6A,/A )/ ?sech((A,)!/%x), (29)
For A, < 0, there is no soliton solution. The solutions in (29) are obtained as in the classical

case by taking the limit of elliptic functions in the periodic solutions of (28) for # = 0 when
the wave length tends to infinity. Next we consider (28) when &_= 0 but of compact support.

We look for a solution 7,(x) such that A, > 0 and
b}Eﬁo(d/dx)l'nz(x) =0 =012
Integrating (28) from -e= to x, it follows that
ANy — My = AMS/3 - Ab(x), oo<x<eo. (30)
(30) can be converted to the following integral equation:

n(x) = JTK(x O(A15(E)/3 - Ap(&) dE,

where K(x, &) = exp(—\/74‘2| x - El)/(2VA,) is a Green function of AK(x, &) - K, (x, &) =
S(x, &), —o0 < x < oo

Define
Ty = JTKGx, AMNE/3 - Ab(E) dE,
= Il = s::g}?|n2(x)|,
H = {ulieC@R) llexp(VA, lx hull< o},
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By, = f{ulueH, lullsM,0<M <o}

Then clearly H is a complete metric space and By, is a closed ball in H, and the following
theorem can be proved by Contraction Mapping Theorem[8].

Theorem 1. (30) has a solution in C3(R) which decays exponentially at |x | = oo if A, is
sufficiently large.

We have shown that (28) has an exponentially decaying solution as x tends to #ee. In
the following we use numerical computation to find symmetric soliton-like solutions of (28)
when the obstruction 4(x) is given by b(x) = R(1 - x)¥? for |x|< 1 and b(x) = 0 for k| > 1,
where R is a given constant.

Let

n,(x) = £(6A,/A;)?sech((A,)V/2(x - x,)), 31)

where x, is a phase shift. To find a solution in lx| < 1, we need only consider (30) in
-1 <x < 0 subject to (M,(x))> = -An*/6 + An? at x = -1 and n,(x) = 0 at x = 0. This problem
can be solved numerically by a shooting method and the phase shift x, is determined by (31)
for x = -1. There are three parameters involved in this analysis: the depth ratio #, the
perturbation of the horizontal velocity at far upstream A and the density ratio p. The numerical
results are given in Fig. 2 and Fig. 3. Since solutions for different values of # and p are
qualitatively similar, we choose # = 0.98 and r = 0.25 in all calculations. Four typical soliton-
like solutions are shown in Fig. 2. Fig. 3 shows the relation between the value of soliton-like
solution at x = 0 as a function of A. In both numerical results, we assume R = 1.

We remark that the shooting method for two-point boundary value problem is simple.
The differential equation is solved as an initial value problem in some form over the given
domain for a succession of trial values of 1 which are adjusted till the boundary conditions at
both ends can be satisfied at once. The simplest way to do is to shoot from one end to the
other, that is to say we choose 77 such that the left-end boundary is satisfied. The second trial
for shooting is done with the corrected value of 1 which is adjusted according to the miss-
distance from the first shooting. We repeat the process until 7 satisfies the right-end boundary
condition.

3.2 SYMMETRIC WAVES WITH ZERO BEHIND AND AHEAD OF THE OBSTRUCTION

Similar to section 3.1, we consider the equation

anxx = _A1n22n2x + A2n2x + A3bx ’ (32)
where A =F/F, >0, A, = -F/F, >0, A, = -F/F, Integrating (32) from - to x, we obtain

M = —AM5/3 + Agn, + Asb(x), (33)

where &(x) is assumed to have compact support and 7,(-e9) = 0. We assume N, =0 in (-eo,
x) where [x, x_] is the support of the obstruction. We can show that the solution of (33)
exists and is bounded with initial values n,(x) = n,(x) = 0. [8] In the following, we use
numerical computation to find symmetric wave solution of (33) which is zero behind and
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Fig. 2. Four typical soliton-like solution.
h=098R=1A=-4
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Fig. 3. Relationship between n,(0) and A
h=098R=1
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Fig. 4. Symmetric solution with one hump.
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Fig. 5. Solution curve of symmetric solutions with one hump, # = 0.98
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ahead of the elliptic obstruction. Similar methods as in section 3.1 is used to find the solutions
of this problem. To find a solution in |x| < 1, we need only consider (33) in
-1 £x <0 subject toM,(x) = M,(x) = 0atx = -1 and n, (x) = 0 atx = 0. The same assumptions
as in section 3.1 have been made for the obstruction and the numerical results are shown in
Fig. 4 and 5. Fig. 4 shows the symmetric solutions for positive values of A. The relations
between R, which represents the height of the obstruction, and A are given in Fig. 5. We note
that, for a given R, symmetric solution is embedded in periodic solutions.

We have shown that there exist two types of symmetric solutions of the interfacial
wave forms both analytically and numerically. First type of solutions depends strongly on the
values of A as shown in section 3.1 and corresponds to symmetric soliton-like solutions. The
other type of solutions is the limiting case of the solutions with waves behind the bump and
zero ahead. These correspond to symmetric wave solution with one hump.
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