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ABSTRACT

Results are presented on a study of the important parameters of synchronous and
nonsynchronous, weakly and strongly coupled optical directional couplers using the finite element
method. Accurate propagation constants and field profiles have been obtained for the modes of the
isolated guides and supermodes of the coupled system. The power transfer efficiency between
nonidentical coupled optical waveguides is calculated using the coupled mode, the least square
boundary residual and the finite element based propagation method.

L INTRODUCTION

The investigation of coupling between optical waveguides is important for many
directional coupler-based devices. Optical directional couplers, made from electro-optic
materials, are the basis of several guided-wave devices including switches and modulators.
The refractive index of the waveguide material changes due to the applied modulating field,
which in turn affects the propagation constants of the two individual guides, the phase
matching between them and the coupling length. When the change of refractive indices in
the two guides are not identical due to unequal change of refractive indices in two coupled
guides, then the power transfer efficiency deteriorates due to lack of phase matching between
the guides. All these effects, combined together, change the total power transfer from one
guide to another as a function of the applied potential, for switches and modulators. In this
paper, the power coupling efficiency between two optical waveguides is presented using the
finite element method along with the improved coupled mode approaches!?3,

II.  MODAL SOLUTION BY FINITE ELEMENT

The finite element method® has already been established as one of the most powerful
methods to obtain modal solutions for a wide range of optical waveguides. In the finite
element method, the region of concern is subdivided into a patchwork of a number of
subregions called elements. These elements each can be of various shapes, such as triangles
or rectangles or even having curved sides and they can be of various sizes, to suit the device
to be modelled. Using many elements, any cross-section with a complex boundary and
various refractive index profiles can be accurately approximated. Each element can also have
a different loss or gain factor, different anisotropy or different nonlinearity, so a wide range
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of practical waveguides can be considered. The vector H-field formulation, which has been

extensively used for the solution of a variety of optical waveguide problems, can be written
5
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The second part in the numerator imposes divergence conditions of the field in a
Jeast squares sense and eliminates possibility for spurious solutions. The above equation,
being a vector formulation, this is "exact-in-the-limit", and particularly suitable for dielectric
waveguides as the magnetic field is naturally continuous over the waveguide cross-section.
In this formulation, & can be tensor, so the formulation is applicable to consider electro-
optic and acousto-optic effects in optical waveguides and directional couplers. This method
can provide accurate propagation constants and modal field profiles for isolated guides and
supermodes for coupled structures even when the guides are strongly coupled or nonidentical®.

III. THE COUPLED MODE APPROACH

Once the modal properties of the isolated modes and supermodes are known, then
the power transfer efficiency between the guides can be calculated by using the coupled
mode approach. Recently there has been extensive research work to improve the traditional
coupled mode approaches, among them the research of Hardy and Streifer,! Marcatili’ and
Chuang® can be mentioned. In this work, first the accurate propagation constants and
transverse modal field profiles are obtained by using the finite element method. Then the
mode overlap, C;, and the coupling coefficients, K, are calculated from the modal field
profiles using the coupled mode approach. Finally the power transfer efficiency is calculated
from the various coupling parameters.

IV. LEAST SQUARES BOUNDARY RESIDUAL METHOD

Since the FEM can provide accurate solutions for the supermodes of the coupled
system, an alternative to the coupled mode approach as described in section III, the Least
Squares Boundary Residual (LSBR) method has been applied in this paper to directional
coupler problems. This procedure is used to find the power carried by the even and odd
supermodes for a given incident power in guide "a" or "4". Here it is assumed a single isolated
waveguide section, section I, is butt coupled to the directional coupler section, section II,
as shown in Fig. 1. The main objective is to calculate the amplitudes of the even and odd
modes &, b, respectively in section IL. This approach is also better than the point matching
methods because the error integral is evaluated over the discontinuity interface, rather than

just field matching at some specific points.

More detailed discussion on the Least Square Boundary method can be found in our
earlier work [6). Briefly, the LSBR method looks for a stationary solution to satisfy the
continuity conditions of both the tangential fields namely, E, and H,, in a least square sense
by minimizing the error function, /, where
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J = [|E' - E'f + az?|H! - B! a0 @

where E/, E"" and H/, H! are the transverse electric and magnetic fields in sections I and
II respectively. Z is the free-space wave impedance and is a dimensionless weighting
factor. It can be shown that the minimum criterion of equation (2) reduces to the following
linear equation [6] :

Cx=v 3

where [C] is square matrix generated from the eigenvectors and {v} is an array due to the
incident mode.

The solution of this equation gives in {x} the required approximate coefficients of
a;and b, These constitute one column of the scattering matrix, corresponding to the chosen
incident mode.

The eigenvalues and eigenvectors used are first generated by our vector FEM program.
The eigenvectors are given by the nodal values of the three components of the vector H
field for each mode. From these nodal H fields, the vector E field over each element can be
calculated by applying Maxwellis equation. Many modal eigenvalues and eigenvectors for
both sides of the discontinuity plane are used as the input to the LSBR program. The LSBR
program calculates the error function / and minimizes the error criterion (2) with respect
to each value of 4, and &, for any given incidence, by solving a homogeneous linear equation
(3). Solving this equation will give the unknown column vector {x} consisting of the
unknown reflected and transmitted coefficients of all the modes considered in the analysis.
The singular value decomposition algorithm has been used to solve the linear equation, (3).
To improve the numerical efficiency, the FE nodal points in section I are matched with the
nodal points of section II across the discontinuity interface. In this case there is no need
to generate the nodal E fields, as the electric field part of the integral J in equation (2) can
be calculated directly from the nodal H field values.

V. RESULTS

In this example, a titanium-diffused LiNbQ, electro-optic directional coupler switch
is considered together with its simplified equivalent planar structure. The unperturbed
guides are 2.0 um wide and with the refractive index 2.2, when no modulation is applied.
The separation region between the guides is um wide with a refractive index in this region
and as well as in the two cladding regions of 2.19. The operating wavelength is 1.3 um. In
this work it is assumed that when a positive modulation field is applied, the refractive
index in the left guide is increased by An/2 and decreased by an equal amount in the right
guide due to the opposite sign of the electric field, and the guides are no longer identical.
Although the refractive index change due to the electro-optic effect, An,, can be tensor and
proportional to the modulating field components, the variational formulation given by
equation (1) can handle this, but in this planar example only an isotropic refractive index
change is considered.
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The electric field profiles for the first TE supermode are shown in Fig. 2 for An = 0
and 0.002 when the guide separation, s, is 1.9 um. When no modulation is applied, An =
0, the two guides are identical and the even supermodes are symmetrical. However, when
a modulation is applied, it can be observed that the first supermode is the deformed even-
like mode with more power confined in the left guide which has a higher refractive index
than the right guide. This deformation is more prominent when the guide separation, s, is
increased.

Table 1. show the comparison of the finite element solutions with the analytical
solutions for the even and odd TE supermodes of the coupled structure. Here B, and B, are
propagation constants for the even and odd supermodes of the coupled guides. The analytical
solutions (AN) are obtained by finding roots of the transcendental equation due to the field
matching at the dielectric interfaces. The finite element (FEM) solutions are obtained by
using 4000 mesh divisions. It takes about 10 seconds to find modal solutions on a SUN
Sparcstation 2 for this mesh refinement. Table 1 shows the excellent agreement of the
finite element results with the analytical results and if required, the accuracy can be further
improved by using an even finer mesh.

The coupling length decreases with the applied modulation since the propagation
constant difference, AB, between the two isolated waveguides increases. Propagation constants
of two supermodes can also be calculated from the unperturbed modes of the two isolated
guides using the coupled mode approach. Fig. 3 shows that the coupling length variations
with n using the analytical method [AN], the finite element method [FEM] and using the
coupled mode approach [CMA]. The analytical results and the finite element results are
identical and cannot be distinguished one from another. The results using the coupled mode
approach [3] [CMA] shows slight disagreement. It can be observed that the coupling length
is 296 um when An = 0.002 compared to 583 um at An = 0.

Fig. 4 shows the variation of the coupling coefficients , K;; and C; by applying the
coupled mode approach®. It can be noticed at An = 0, K, = K, , whereas when |An| increases
K, increases and K, decreases. It may also be observed that C , and C,, both increase with
|An| and C,, and C,, are nearly identical.

Fig. 5 shows the variation of the supermode coefficients with An for different
separations between the two guides, s. It can be seen that the coefficient of the even
supermode, 4, decreases with An whereas that of the odd supermode, b,, increases. It can
be also noticed that at large separation, such as s = 6.0 um, b, and b, are identical at An
= 0 but b, - 0 and &, — 1.0 rapidly as n increases.

Fig. 6 shows the evolution of optical wave propagation along the axial direction
when An = 0, and in this case the guides are identical. The initial power was launched in
guide #, and at a distance equal to the coupling length, L_, most of the power has been
transferred to guide a. Fig 7 shows the evolution of optical wave propagation along the axial
direction when An = 0.0015 and the guides are not identical. It can be observed that at the
coupling length, L, which is smaller than L_, only part of the incident power in guide "5".

Fig. 8 shows the variation of the maximum power transferred from guide 4 to guide
a with the change of refractive index difference, An, between the guides. It can be seen that
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TABLE 1 The comparison of finite element solutions (FEM) with analytical solutions
(AN) for B, and B..
An AN FEM
Be Bo Be Bo

0.0000 13.01634 13.01096 13.01631 13.01096
0.0004 13.01649 13.01081 13.01649 13.01081
0.0008 13.01691 13.01040 13.01691 13.01040
0.0010 13.01719 13.01013 13.01719 13.01013
0.0015 13.01803 13.00930 13.01803 13.00930
0.0020 13.01900 13.00841 13.01900 13.00841
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Fig.1. Butt coupling of an isolated guide to the directional coupler section.
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Fig.2. Variation of the field profiles for the first TE supermode, for An = 0 and 0.002.
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Fig.3. Variation of the coupling length with An, using different procedures.
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Fig.4. Variation of the overlap integral and coupling coefficients with An.
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Fig.5. Variation of the supermode coefficients with An.
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Fig.6. Propagation of optical power along the axial direction when An = 0,

An=0.0015

[ —

-10 A T B %
transverse y (um)

Fig.7. Propagation of optical power along the axial direction when An = 0.0015.
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Fig.8. Maximum power transfer between two coupled waveguides.
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Fig.9. Variation of the coupled output power in guide a with the refractive index change An.
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results obtained using the LSBR and finite element propagation method agree very well but
the results from the coupled mode approaches (CH3 and HS!) underestimate the maximum
power transfer.

Fig. 9 shows the variation of the output power transfer from guide & to guide a with
the change of refractive index, n, between the guides, when the device length is kept fixed
at L = L = 583 um, which is the coupling length when no modulation is applied. Results
obtained using the LSBR approach show that the power efficiency becomes nearly equal to
unity, only when the guides are weakly coupled. It can be seen that the results agree
reasonably well for all the approaches used. Here, the power transfer efficiency is significantly
lower than the maximum power transfer, as shown in Fig. 8. This reduced power transfer
is due to the additional effect of the coupling length mismatching as the value of L_changes
with n, whereas the device length is kept fixed.

V1. CONCLUSION

The finite element analysis has been seen to provide accurate results for weakly or
strongly coupled identical or nonidentical waveguides. Here the results are restricted to the
TE modes in planar waveguides to enable a comparison of our results with other published
work but it can be stressed that this numerical procedure is equally valid for hybrid modes
in coupled waveguides with two dimensional confinement, anisotropic refractive indices
and diffused profiles. The application of coupled mode theory, along with the accurate
eigenvectors and eigenvalues obtained by the finite element method, can provide the power
transfer ratio between such practical coupled waveguides. Important applications are in the
design of directional coupler-based devices, including passive and active filters, modulators
and switches incorporating electro-optic, elasto-optic and nonlinear phenomena.
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