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ABSTRACT

We present an adaptive grid refinement technique to simulate coupled river-groundwater
flows.

New numerical results based on a splitting algorithm, a domain decomposition and an algebraic
mapping are analyzed and applied to real-world river-groundwater systems.

INTRODUCTION

Mathematical models of a coupled river-groundwater flow, based on the numerical
solution of the Saint-Venant! and the Boussinesq? equations, have been extensively studied
in recent years315,

For this non-standard initial-boundary value problem, we propose a numerical approach
based on the splitting algorithm® and on a decomposition technique combined with
numerically generated curvilinear grids.

We obtain a non-monotone, nine-point, divergent, self-adjoint and positive definite
numerical scheme for the Boussinesq equation in a curvilinear coordinate system and a
family of seven-point conditionally monotone schemes. The property of monotonicity
provides a stable global splitting algorithm in terms of some geometrical parameters related
to the corresponding coordinate transformation.

Our technique is highly efficient in regions of large gradients of the solution (for
instance near rivers).

BASIC EQUATIONS

In this section, we present a mathematical formulation of a coupled river-groundwater
problem based on a system of PDE'’s.

First, we introduce the parabolic version of the Saint-Venant equations, i.e.,
w,+Q, =d, 1

h,-1+ (0* QQ|) /(W*R**) = 0, @)
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where t is the time coordinate, t € (O,T), T the simulation time, s the space coordinate
along a river, s € G, where G is a set of river curves at a plane (x,y), { = (st) = h+z
the water surface level, h=h(s,t) the water depth, z=z (s) the bottom level, w=w(s,h)
the cross-sectional area of a river flow, Q=Q (s,t) = wV the discharge, V=V (s,t) the
velocity, R=R (s,h) the hydraulic radius, I=-(z), the slope of a bottom, n the Manning
coefficient and d=d (s,t) the lateral discharge.

Next, we introduce the Boussinesq equation
uH, = div (K grad H) + . (3)

Here, div=d/dx + d/dy, grad=(d/0x, d/dy) and x,y € D, where D is the groundwater
region, p=u (x,y) the storage coefficient, H=H (x,y,t) the groundwater level, K=K (H-Z)
it Z<H<Z0, Z=Z (x,y) the confining groundwater bed level, Z=Z, (x,y) the ground
level, K=K (xyy) the hydraulic conductivity and e=e (x,y,t) an influx.

Let o=a(t) , B=p(t) be the coefficients of the hydraulic connection between river and
groundwater flows.

Define
H_{a ({-H), if H= gz
Q" = B (-2, if H< gz @)
d(S,t) = - QH,

5
e xy.) = QY ©
where QM denotes the river-groundwater exchange

Mass conservation and continuity of g, at internal nodes of the intersection of river
branches, is represented by the adjoint conditions

2Q,=0,¢=¢(0T € i, ©

J e
where i, is a set of branches with the common internal node ] and where {. denotes the
water level in the corresponding node.

It is also necessary to specify the boundary conditions at the boundary T of a
groundwater region , at inflow and outflow nodes of the river system, as well as the initial
conditions for H and { at t=0.

Further details are given in 36,14,

DECOMPOSITION. SPLITTING TECHNIQUE
In this section, we present the main steps of the numerical algorithm.

Our numerical procedure is based on a partition of a region D into subdomains and
on a generation (in every subdomain) of a local curvilinear coordinate system adapted to the
shape of both the boundary and river system.
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An efficiency-estimate of this approach (with regard to problems of river-groundwater
flows) is given in¥14. A comparison with rectangular grids shows an accuracy increase of
about 30%.

The first stage of the numerical procedure involves the solution of Eq.(3) with the
time step At , by an iterative implicit nine-point scheme and a block version of the SOR
method.

At the second stage, we solve the system of the Eq’s (1)-(2) , (6) , with the time-step
At=At/L (L an integer), by an implicit four-point scheme and by a special version of the
sweep method®>.

The global iterative algorithm is based on the convergence criterion

"QH,n g+l _ QH,ng

<& where ng is an iteration number.

ALGEBRAIC METHOD OF THE CURVILINEAR GRID GENERATION

Next, we propose a modification of well-known algebraic methods formerly developed
for and applied to geometric problems of computer-aid design!¢-18.

Let R, (&), k=0,..,N,, T,(m), p=0, ..,N;, be the boundary and inner
coordinate curves at the “physical space” (x,y) to be transformed into the “computational
space”. ({,n) (Cf. Fig.1).

Define the coordinate transformation F (&,n)=(x (£,n),y(&.,n)) by

FE M) =2 T, )+ LR (E)e, M- XX T, E)e,m)., (6
P k p k

where ¥,(§), ©,(n) are the blending (mixing) functions!¢ satisfying v,()=9,,,
¢.(n)=6,; pi=0,....N¢, k,j= 0,..,N, and &, 7, the corresponding coordinate

lines &= const, M= const.
Consequently F (§n) satisfies the conditions
F¢E.n) =R (&), k= 0,....,N,
F¢&, .,n)=T,m), p=0,....N;.
Finally, we invoke the calibration parameters €, , €;, and we define

v,(&), ¢, (1M) by

(6) _ ¢ ((g—gp)/gl,p)’ if 5 2 ép ’
o ’M (&-&) 1g,,), if & <&,
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where
(1-t)’(1+2t) , if0<t<1,
¢ ()=10 , if t>1,
¢ (t), if t<O.

Fig.2 shows an example of the grid generation technique.

NUMERICAL SCHEME FOR THE BOUSSINESQ EQUATION

In this section, we construct a set of self-adjoint, positive definite, conditionally
monotone operators and a divergent finite-difference approximation of the Boussinesq
equation (in a curvilinear coordinate system) based on the weak formulation of Eq.(3), i.e.,

|} pH vaxdy = § (0H+0,)dt -} Kerad(H)grad(vydxdy =0, (7

D GNT D

where H, v € W1, (D), H, € L, ( (0,T) xD), duv is an element of G or and o,, , are
determined from the boundary conditions or by the Eq’s (4)-(5).

Transformation of Eq (7) in terms of the new variables §n reveals that
) pH, vagdn+ §(x H+ x,)do +
A S

+J] KlAcso(g)H, v, — ctg(g)(H v, +H,v,) + A 'csc(p)Hvld&dn =0, @

A

where J is the Jacobian of the transformation, ¢ an angle between the local base vectors
Ly =Ly, =L, (xy) and A =ig|/]i, ]
The correspondence between the “physical” and “computational” space is shown in Fig.1.

Let At be a time step, AE, An space steps in the transformed region A and A9 a space
step along a boundary S . The uniform grids in the transformed region, in the boundary of
this region and in the river curves are respectively denoted by A, S; and ¥,.

Applying the symmetric approximant to the rectangular cell A;; €A, ie.,

1
[[kgrad)grad(v) d& dn =~ 025 X122,

A a.p=0

yields
2[0St (H )y, +025 > ISP INEA + X (g H+ g A0 =0,  ©)
Ah

a,p=0 ¥uSp

where Iffj‘ﬂ involves the points (Xi_2a+1ayj) ) (Xi,yj) ’ (Xi’yj-zlﬁﬂ) and

H),,; = H' —H})) /At H], = H(x,,y,t,).

1

The condition U ;; =1, U, =0 for i#k, j#p yields the divergent scheme:
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Fig. 1. Coordinate tranformation, (a) "physical space”, (b) "Computational space”.

R, ()

T, Ty ()

Fig. 2. Algebraic mapping technique, (a) initial region, (b) final grid.
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Sij 5 M)y =[(h" W), = (WTW)[, 1/ A +

[(h*W, )i, =W T, ] /AN + (@, 1 + @, )AD
where S;; is the area of the cell A;; and (h" We i (h* W, )i juy, are the finite-

difference approximations of the projections of the vector-function W=-Kgrad(H) on the

vectors  lg,l,, with components
(W, 1,) = K|1, |8, /|1, |escio) - H, /7]1; kte(on,
(W,1,) = K1, [(H, /|| esct@) - H, /1, e o).

The third term in Eq.(3) corresponds to an approximation of the boundary conditions
and internal sources (4)-(5).

It is not hard to demonstrate (Cf.Eq.(9)) that the finite-difference approximation of
the elliptic part of Eq.(1) possesses the properties analogcus to those of symmetry and
positive definiteness of the initial differential operator.

Finally, observe that the proposed finite-difference operator is not monotone (i.e.
L(H) = 0 does not imply H 2 0). A non-symmetric approximant of the integral
)] Kerad(H)grad(v)dE dn (for instance 0.50% +1')or 05(1% +1'°)) yields the

family of seven-point finite-difference operators being monotone under the conditions:

lcospx )| < AGy) < 1/feos(p(x.y)) .
O<o (x,y) <m.
The above conditions provide stability of the global splitting algorithm?.

Observe that the non-monotonicity of the nine-point operator is practically “weak”
without any impact on the stability of the algorithm, provided that the grid does not
contain too small angles.

APPLICATION

The following application illustrates the capability of the proposed method in
modelling the impact of an irrigation system on a natural groundwater flow (Fig.3).

We calibrate the model by measurements at the points 41,42,45,47,120,161,163.

The groundwater region is decomposed into four subregions 1,2,3 and 4. In each
subregion, we generate a local curvilinear coordinate system and adapt a grid to the shape
of the channels (Cf.Fig. 4 and Fig. 5). We apply our numerical procedure with the time

steps At=1 hour and At=1 day. Internal iterations are interrupted
whenever ”Mp+l —MPISIO“‘, where M=H or M= and p is a number of internal

iterations. Restricting the number of global iterations to ng=3, reveals
that [H™"-H™|<5 107, &' &
E (s,t), se ¥, te (L,t+AT) .

<107, where £, is the average value of
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BOUNDARY OF THE RIVER BASIN

——
SUBDOMAIN 3

——

SUBDOMAIN 4

Fig. 3. Scheme of the irrigation system.
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Fig. 4. Curvilinear grid for subdomain 1.
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Fig. 5. Curvilinear grid for subdomain 2.
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Fig. 6. Contour map of a groundwater level for subdomain 1.
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Fig. 7. Contour map of a groundwater level for subdomain 2.
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Typical contour maps of the groundwater level, shown in the Fig.6 and Fig.7,

demonstrate that the proposed numerical procedure enables us to simulate “a boundary
layer” near the drainage channels.

Finally, a comparison between computed and measured groundwater levels displays

a negligible deflection of about 5 cm.
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