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ABSTRACT

In this paper we give a complete expression for the one-particle propagator corresponding to
an action containing a series of any number of non-local harmonic oscillators, a local harmonic
oscillator and a term due to an arbitrary driving force. We also outline how the diagonal matrix
elements may be applied in variational calculations concerning two interacting particles in a field.

1. INTRODUCTION

There exists a variety of problems involving quantum mechanics which require a
suitable non-perturbative treatment. In many instances path-integral techniques have
provided satisfactory results as, for example, in Feynman's celebrated work on the polaron
(1] and in disordered systems [2]. For problems of this nature, the retarded propagator can
be expressed in terms of a path integral with a non-local action. Physical quantities are then
generally estimated using variational techniques which simulate the actual system with a
trial quadratic action which must also be non-local.

The polaron [1] is an example of a particle in a field with which it interacts. The
trace over the field coordinates is taken exactly to leave a one-particle action which is
entirely non-local. This development has been extended to the case of two [3,4], or more
[5,6], interacting particles in a field. For such cases the best trial actions involve both local
and non-local terms.

There have been published a number of articles on the subject of general quadratic
actions, including [7-9]. The methods developed are, however, difficult to apply to certain
more complicated specific examples. In this paper we present an explicit derivation of the
propagator corresponding to the following action :
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This action contains the kinetic energy of a particle of mass m, a local harmonic
potential, a senes of n non-local terms and a term due to an arbitrary driving force F . We
assume that wo and the K; are not zero and that the £; are distinct. In the case of one

non-local term (# =1), the propagator has been given by Castrigiano and Kokiantonis {10].
The derivation for any number of non-local terms but no local term was reported in [11].

Since the action § is a quadratic function it is known [12] that the propagator must
take the form

KG(0),57(0),0)= G(exp(f S, ()7 (0),1)] (1.2)
where S, is the classical action and G(z) is the prefactor given by
G@)= KF=0(O,t;O,O) (1.3)

The propagator is a path integral over all paths starting at time zero from 7(0) and ending
at time t at 7(¢).

We obtain the solution to the classical equation of motion by generalising the approach
of [10] . The prefactor is then derived from the classical action using a generating functional.
We also include a brief discussion of how our propagator might be used to improve variational
estimates of the energy of two particles in a field.

2. THE CLASSICAL SOLUTION

For notational convenience we will first work in one dimension. The classical equation
of motion reads

mi(1) + (mo+ Y x)x(1)
i=1

n 1
= 13 k9 [do
0

i=1

cosQ; (5|7~ o)

nig, @t F(7) 2.1)
224
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and the Fourier transform

t
X(2)=[dr e x(1) (22)
is given by 0

2 1 < K;
m| g —Z 1+— Z——”Qz D) X(z)
t

= m(%(0) + izx(0)) - me™" (k(t) +izx(0)) T [dt e "R (1)
0

—_ 1 [ 15
—l(l e )z “sin ‘ Q 1 QF — (Z Re(e! ¥ X(Q))) +iQ; Im(e ' X (Q; )))
2.3)

It is useful to introduce n parameters @; , as in [11], which are solutions of

n K-j
z T3 s - m (2.4)
2 2
Then
1 < K; L a)'2 - 22
1+ — L = I I ! (2.5)
mZ{QIZ -7 o Ql-z — 22

and the left-hand side of (2.3) is zero if
2 - 2 2 2 : 2 2
0§ [J@f -5 ="[[wj -z%) @6
.= i:

This equation has 2(1 +1) roots 2] which are distributed symmetrically about zero.
Provided that the Z; are distinct we can write

z S;(z2)—=8;(z;)

Z=1Z]

X(2)= (2.7)

t
0

where
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with coefficients @, and b, to be determined. This result is obtained from (2.3) while
demanding that X(z) is always finite. If the initial parameters are chosen so that the z

are not distinct we can take appropriate limits afterwards.

The coefficients b, are easily found by comparing terms in (2.3), with X(z) given

by (2.7) and (2.8), which involve the arbitrary driving force F. We find that

(-7

b = 1 i=! 2.9)
TP -4
k=0

where the lower product contains # factors, the prime indicating the exclusion of the k=/

factor. Clearly

Y b =0 (2.10)
!

It can also be shown that

-my bz =1 (2.11)
1
and that, for any of the ;,
blzl
i MY 2.12)
2 2 ’
7zl — L

The solution for x(7) is now given by

t
x(r)=Y ™| a;+b j do e '°“ F(0) ) (2.13)

) T
Differentiating twice and using (2.10) and (2.11) yields

t
imi(1)=—m Y. 21¢'™ | 4 +b1fd0e—'°7’F(0) ]+iF(T) (2.14)
l T

Comparison with the equation of motion (2.1) now gives that
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i=]

i QY ——— T a,+b,jdae " F (o) ]
— l l

T
1 & ! cosQ; (5 ~|t— o))
== ) K;Q;|do ix(o 1
251 2] sindQ;t © 219)

in view of the fact that the z; obey

K'

m(a) -z )—222 2 (2.16)

11 Zl

We next substitute for X(0) in (2. 15) and perform some integrals. Using (2.12), we
can then demonstrate that

t t
iQf(_"T) _iQi(_—T)

y K oge e
N |

i=1 Sll’l?Qit ] Qi +2 Qi -z

t
(a=¢")a +[do e F(0)) =0 @.17)
0

This result must be true for any value of 7 in the interval (0, ) This allows us to write

277

o ((1 ¢ )ay + by j doe ’°7'F(o))
(1-€")a) + by j do "% F(0)
0
o (2.18)

-

for each of the Q;. The two remaining equations necessary for solving for the @, are obtained
from (2.13). These are

ix(t)=Y e, (2.19)

and l t

ix(0)= Z(a; + bIIdO' e 0% F(O')) (2.20)
l 0
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To solve for the @, we need to invert a (21 +2) x (21 +2) matrix M. With the a,
contained in a vector @ , we can arrange this as

=R .21

with ! .
Ry = i(x())+ x(0) - Y by [do e F(6)  (222)

I o
t
. (2.23)
= i(x(0)~ x()) = X by [do e " F(0)
and, for 1<i<n ; Lo
Ryjpy = z 2 > jdoe %% F (o) (2.24)
—zfy
bz
Ryivn =—Z L ’Z j do "% F (o) (2.25)
—zfy
The inverse of the matrix M is given by
-1 by itz,
MY =2
( )11 25,3 bec € (2.26)
k
——itz,
(M) __L,ba (2.27)
12 2 Ny,
and, for 1<i<n ; 1,
——liz,
(M_l) __L bz e 2
12i+1  2s Ql.2 _ 212 2 bz, (2.28)
(Q:z_zlz)z
bkck(z: —zlz)
Q72
-1 -1 k e
M =—(M ¥ S
( )l,2i+2 ( )l,2i+1 21 Y by 229)
k

In these expressions

Ve sin%tzl (2.30)
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and 1
CI = COt"tZl (2‘31)
2
The a, are now given by
1.
——itz,
a bl € 2
2y D bick
k
i(x(0) + x(£)) + mz;(x(0) — x(£)) Y. bycy
k
r -
~[do F(0)S bye | 1= im2, 3 e, + iy (2.32)
0
where Ay = i 1 1 1
=] le 212 le Z]% bnzp
(Q?_zz)z
p [
bc, (z

1 22 bpcp Zk), Qz_z (2.33)

14

We can simplify (2.32) by using the followmg results. First,

i 1 1 1 oy S Y
LZQF QI ba 2k O

where Oy is equal to unity if zlz = z,% and zero otherwise. Second, for ,2 distinct from
both ;2 and ;2 , 1

i 1 1 1 1 Sy
507 -2 Qf -7 QF -7 2 bels 7 2’912121-2

2

5 (2.35)

It now follows that p

Zbke_lo-z* Ay = e 1% Zbkck +2bk€—io-z" mz,prcp —C |(2.36)
k k k p
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Substitution in (2.32) then gives

B} =_b_l e—%itz,
! 25‘1 zbkck
k
[ i(x(0)+ x(2)) + mz)(x(0) — x(1)) Y, bk
k t
—i(0—=)z,

t ) t
-ijdoe""z'F(G)Zbka+ijdo—F(o)Z£s’£e 27" @3
k k °k

Finally we substitute for the @, in (2.13) and find that

X(D) == (x() = x(O)A(D)*+ L0+ O
1 ADA©) 0
2m£d"F (0)[ a0 o GD) o

where
b
A(T) = —mZ—sf cos(T—5)z 2.39)
l
This result clearly reduces to that given in [10] if » =1.

The classical action is easily derived from (2.38). We find that

t
S =—;-m(x(t)fc(t)—x(O)x(O))+%JdT F(t)x()

! t
__*(x(t) x(0)[dr F(DA(D)+ (x(t) +xO)[dT F(o) ii ;;

0
) ADAG)
4m£dr£d0 F(’I)F(O‘)( A0) AT ol)cj (2.40)

In more than one dimension we simply replace x and F by vectors and take scalar products

where appropriate.
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3. THE PREFACTOR

The prefactor G(1) is given by a path integral over all paths from and back to the
origin [12], that is

0 .
G = [Dlx(2)] - (3.1)
0

This is obvious since the classical action is zero if X(0)=x(¢) =0 and F = (. If we now
differentiate with respect to (0(% it is found that

. J 2 9Sp—q
—ifa?d InG(t
D G T < aw8>

= ——mwo jdr<x( 7) > (3.2)

where the average (A), of any quantity A, is defined by

(i
4)=Za ;) j DIx(7))4 exp ¢Sk 0) (33)

Substitution of the force

F(o)=%h ké(1- 0) (34)

into the classical action (2.40) with x(0) = x(#) =0 shows that

ik 582 A2
(e m):e’(p{ 4m  AO) _A(O)ﬂ (8.9)
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Then, expanding in powers of k and comparing coefficients of k% , we have

2\ _ i A2 )
(J(f) )— 2m| AO) A(0) (3.6)
and, substituting into (3.2),
p) 1 [ A®)?
507 MO0 = 4£d{ Q) ~A© (3.7)

Consider next the polynomial

n n
2. 2 2 2. 2 2 2
P =[] - 0)) -0 [T - (3.8)
i=1 i=1
According to (2.6) P(212 ) = 0. Differentiation with respect to a)(% , with constant £; and
@; , yields
2
oz n
I pre2 N _ 2 2
poe il =1 - (39)
0 i=1

where P'(zz) is the derivative of P(Zz) with respect to 22 . Now,

n
PR =]/ -2 (3.10)
k=0
and, comparing (2.9), we have that
2
P Dmbyz, (3.11)
2
(90)0

This result is necessary to manipulate the left-hand side of (3.7).
Returning to (2.9) we see that, if 212 and Z,% are not equal,

ozf  zf —zj
Also, using (2.11), it is found that
ob b 2 bz
L1 3/ k% (3.13)

Z, —a
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where the summation is over half of the zy. If z; is included then —z; is not. The £ =/

term is of course excluded as indicated by the prime on the summation. Using this summation
scheme,

n
b
A(T) = —2m2s—jcos(r -5z (3.14)
1=0

and, with (3.12) and (3.13),

0 mby(2¢; t | 2m~~; by
—AQ)=—~| —+—+— |—— CLz) —CyZ 3.15
8212 221 [ Z; S12 z; IZZ) Z]%—le( k<l 1 k) ( )

It is now easy to show that

1 n
jd‘t‘ A(1)? = 4m2blzl—(22—A(0) (3.16)
0 1=0 o"z,

Finally, since

—8m 0
A(0)=—) biz;—5Ins 3.17
0)=— g,) 121 52" (8.17)
we see that, using (3.11) and (3.16) in (3.7),
J d (1
—=InG(t) = ——={5InA(0) + Ins 3.18
8212 8212 (2 l) 618

Integrating and comparing with the result in [11] for @y = 0 the final result for the
prefactor is

n
% H sin '2LQ it
i=l

n
. (3.19)
H sm% zt
=0

m
G = ( 47a‘ﬁA(0)]

In 4 dimensions we simply raise this whole expression to the power 4. For n=1 the prefactor
given in [10] is recovered.
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4. A TRIAL ACTION FOR TWO PARTICLES IN A FIELD

We will now give an expression for an upper bound on the ground-state energy of
two interacting particles in a field which may contain any number of variational parameters.

To establish notation, our Hamiltonian is
BB v —ibe Stw i
H=t 24 v(|7 =7, [+ 2Zha,baba
2m  2m c k ok

zkr,+ lkrz)(b-‘+b k)

2
+§, Tk @.1)
7

This includes the kinetic energy of two particles of mass m , an interparticle interaction V,
the kinetic energy of collective modes of frequency @y and an interaction term characterised
by the coupling constant &k. The b3 are the usual boson operators and ¢ is the 4-
dimensional volume. Generalisation to include more than one type of collective mode, as
in [3], is obvious.

Elimination of the field coordinates by the prescription of Feynman [13] reformulates
the problem in terms of the two-particle propagator

7.(1) (1)
K10 72(0).6710172(000)=  [DIA(D] [DIFy(9) eﬁ (42)
T.(0) 7,(0)

The path integrations are over all paths from time zero, when the particles are at 71(0)

and ?2 (0) , to time ¢ when they are at 7|(f) and ?2 (#). The action S is given by

t 1 . - - a
S= jdr [-z-m(rl (7° +7,( 1)2)—V[|r1 (9—ny( ﬁlj]
0

1 5° coswk(l—lt ol)
g ferfe

sm a)kt

@ FTD (D k(o) | k(o)) 43)
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The ground-state energy is given by

.1 :

where K(t ) is shorthand for K (0,0, ;0,0,0) and B is the inverse temperature. An upper
bound on Ej is obtained from the approximate propagator [13]

=s-5)

K@) =K, (1) B (4.5)

where S, is a trial action, K|, is the propagator for S, and the average (A), of any quantity
A, is

0 0 i
1 . a 75
(4)= 0 OjD(q( ) OJD(rz(r» e (4.6)

For convenience we will follow Khandekar (14] and introduce a transformation of
coordinates

- 1 . .
x=7-2‘(r1—f2) (4.7)
- 1 . .
y= ‘/E(r1+r2) (4.8)

With these definitions X is the coordinate for the relative motion and ¥ is the coordinate
for the translationally invariant centre-of-mass motion.
The trial action we consider is

t
S, =-;'mjdr(3c'(r)2+ 33(1)2 —a)g 3?(1)2)
0

) o cosQut-lr-ol) . .
—12 i [dt [do——% (3(9)- X(0))?
83 o o sin~ Q;t

cosQ}(% -] 7- ol)
sin'zLQﬁ

I o a o
_52‘; KiQf deIdo (¥(9- 7)) (4.9)
1= 0 O
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This choice contains 2(n +#1' )+1 variational parameters. These are the K; and €; for
1<i<n, the K‘ and Q for 1<i<n’ and @, . Previous work [3,4] has used thlS trial
action with n =n' =1 and Q; = Qj, that is four variational parameters. A constant force
driving the relative motion was also included in [4] to aid in identifying the state where the
particles are bound together. We find this to be unnecessary.

Finding an upper bound for E, using the approximate propagator (4.5) is a
straightforward but rather tedious operation. Essentially, we can use (2.40) to deal with

terms involving the relative motion and the classical action in [11] for those involving the
centre-of-mass motion. Our result is

’

2 -1 2 ;

—d‘ﬁZzl(1+mblzl)— dﬁZQ +2dﬁz(w _a- 1 1'1_]

_%Z Zb _%Z‘ °] O ~RC.(0) ""Esz(x))
k k

(4.10)

where V) is the Fourier transform of the interparticle interaction and

Ci(x)=—2ibl(lie ') ”z /3(1 e m,.'x) 1- mE ,2Jx

1=0 i=1 @i

4.11)

The z; are given by (2.16) and the by by (2.9). The @] and h; are given according to the
results of [11] ;

’

S
5y = 4.12)
@i = Q]
and n 2 2
L 2 o2\ /% — @
h,-=—(a>{ -Q; )H PRl (4.13)
m ' !
j=1 %) ;

where the i = factor is excluded.

In actual minimisations of (4.10) it is convenient to let the variational parameters be
the z; for 0</<n , the Q,' for 1<i< n and the Qf and (0,' for 1<i<n’. Each of
these parameters must be kept real and non-negative. Also the z; and the ®; must be
distinct. If the smallest of the Zj, say Zp, is set to be zero we have the state where the
particles have infinite separation. Otherwise the average separation is always finite and
given by
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(32) = —dﬁl%bz (4.14)

Whether or not the particles are bound depends on which state has the lowest energy.

The best known example of this general formalism is the large bipolaron. The field
consists of longitudinal optical phonons and the particles are electrons with a Coulomb
interaction. The electron-lattice interaction takes the form suggested by Fréhlich [15]. Phonon
dispersion is ignored and @y is set to be a constant. In Feynman units (A= m = w, =1)
the electron-lattice coupling constant is then given by (4 =3)

2
gk = (4.15)
k2
where ¢ is the dimensionless polaron coupling constant. With
4nU
Vi = ?—- (4.16)

all the sums over Z in (4.10) can be performed exactly and (4 =3)

4 0
SN (4.17)
1=0

If @, =0 this reduces to twice the upper bound for the ground-state energy of a large
polaron given in [16]. For 4 =2 there is a simple scaling relation [4] which can be used to
convert (4.17).

We have investigated (4.17) numerically. Increasing the number of variational
parameters always decreases the upper bound. In particular better results are found in the
domain of bipolaron stability if the €2; and the Q are not equal. In the table we present
some data for illustration. Although the improvements are not in this case remarkable, they
do illustrate the general principle that the upper bound (4.10) is better optimised by increasing
the number of variational parameters. It is also worth noting that the complexity of the
sums over k in (4.10) is mdependent of the number of variational parameters. Data
corresponding to ours for n = n” =1 and £y = Q7 has been indicated graphically in [6,17].
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We believe that our estimates should be a little lower. The small improvements obtained
for the large bipolaron are consistent with those for the large polaron [16].

TABLE Upper bounds on the ground-state energy of a large bipolaron with [J =+/2¢

and n=n’
n o
10 20
-28.6490 -101.6911
2 -28.6533 -101.6920
4 -28.6534 -101.6921

5. CONCLUDING REMARKS

We have presented a complete derivation of all the matrix elements of the retarded
propagator corresponding to an action containing a local harmonic oscillator, an arbitrary
time-dependent driving force and a series of any number of non-local harmonic oscillators.
The propagator is given by equations (1.2), (2.40) and (3.19) and is the principal result of
this paper.

One application of this result is the simulation of the relative motion of two particles
in a field. With # non-local oscillators in the trial action, 2# +1 parameters are provided for
use in a variational calculation. For any system described by the Hamiltonian (4.1), an
upper bound on the energy is given by (4.10), which involves as many variational parameters
as desired.
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