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ABSTRACT

Results are presented on a study of the important parameters of synchronous and
nonsynchronous, weakly and strongly coupled optical directional couplers using the finite element
method. Accurate propagation constants and field profiles have been obtained for the modes of the
isolated guides and supermodes of the coupled system. The power transfer efficiency and cross-talk
are calculated from the individual guide modes using improved coupled mode approximations and
from the supermodes using the least squares boundary residual method.

I INTRODUCTION

The investigation of coupling between optical waveguides has been a subject of
considerable interest in the design of directional couplers [1], modulators and switches [2],
wavelength filters [3], and large laser atrays [4]. The accurate calculation of coupling
parameters is of considerable interest, to study the loss of synchronism in electro-optic
modulators and switches or in optical filters in the use of nonidentical sections to reduce
bandwidths.

In most of the practical directional coupler-based devices, the individual waveguides
use two-dimensional confinement and can be of arbitrary cross-section with anisotropic,
nonlinear, lossy or active materials. The finite element method [5] has already been established
as one of the most powerful methods available to characterize a wide range of practical
waveguides. This method has been used to find the coupling length accurately between two
identical [6] and nonidentical [7] waveguides with two-dimensional confinement.

In this paper, the power coupling efficiency between two optical waveguides is
presented for the first time using the finite element method along with the improved
coupled mode approaches [8,9,10] and the least square boundary residual method [11].

II. THE FINITE ELEMENT METHOD

In the finite element method (FEM), the waveguiding region is subdivided into a
patchwork of a finite number of subregions called elements. Each element can have different
sizes and shapes, so using many such elements a complex waveguiding cross-section can be
accurately represented and as each element can have a different refractive index, waveguides
with arbitrary refractive index profiles can also be accurately modelled. Each element can
also have a different loss or gain factor, different anisotropy or different nonlinearity so a
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wide range of practical waveguides can be considered. The analysis can be carried out by
using the accurate vector H-field [5] formulation which is "exact-in-the-limit" or by using
the approximate TE or TM scalar formulation which provides a faster solution.

The finite element method can provide accurate modal field profiles and propagation
constants for all the modes of each individual guide or for all the supermodes for a coupled
structures consisting of two or many waveguides. The modes in two isolated waveguides
"a" and "b" may be considered as

E.xyz) = E, (xy) exp (B,2) (1a)
Eb(xz}/1z) = E[y (XJY) exp (]Bbz) (1b)

respectively, where E_(x,y) and E,(x,y) describe the transverse (x,y) dependence of the modal
eigenvectors and B, and B, are their propagation constants for isolated guides "a" and "$"
respectively. Similarly the first two even and odd supermodes in the coupled structure can
be considered as

E.(xyz) = E, (xy) exp (B.2) (2a)
E (xy,z) = E, (xy) exp (iB,2) (2b)

where E, (x,y) and E, (x,y) describe the transverse dependence of the field profiles and B,
and B, are their propagation constants for the even and odd supermodes of the coupled
system. In the finite element solution, the entire coupled system is considered, so the
resulting eigenvectors E, (x,y) and E, (x,y) are always orthogonal to each other, even when
the guides are not identical and are strongly coupled. The supermode eigenvalues 8, and 3,
are accurately calculated using the finite element method to obtain the coupling length
accurately from the difference of B, and .

The main emphasis of this paper is the calculation of the power transfer efficiency
between two coupled optical waveguides. It is possible to find the power transfer between
two guides starting from the individual modes of the isolated guides or from the supermodes
of the complete coupled structure. In this paper both such approaches are used, after
obtaining accurate eigenvalues and eigenvectors of the individual guides and coupled
structures.

III. THE COUPLED MODE APPROACH :

Once the transverse dependences of £, (x,y) and E, (x,y) are known along with their
propagation constants, then the power transfer efficiency between the guides can be
calculated by using various coupled mode approaches.

Traditional coupled mode theory [12] recently has been improved by Hardy and
Streifer (8], by Marcatili [9] for nonidentical waveguides and by Chuang [10] for strongly
coupled waveguides.
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The mode overlap coefficients, C;;, (i,j=a,b) which measure the proximity of the
guides are given by [8]

C = 2 [] B xHo iaxay (3a)
Co = 2 [] EOxH?-2dxdy (3b)

Hardy and Streifer [8] and Chuang [10] calculate the overlap integral from the Poynting
vector of E x H, whereas Marcatili [9] calls a similar parameter the butt coupling and
calculates the mode overlap from the overlap integral of the electric fields which yields only
a slight difference between the definitions, as B, may not be the same as B, for nonidentical
guides.

The coupling coefficient from guide "4" to guide "4" is identified by K , which is given
by [8].

{[Eab-'- Cab[ﬁ(a) - ﬂ(b) - I;bb] }

K. =
“ ( 1 _Cabea ) <4a)
{[}ba + Cba [B(b)_ ﬁ(u) - Eaa]}
Ky = (4b)
(I_Cabcba )
where
~ E(b)
— (a) (a) by _ = p(a )
Ky=o _UA:-: [E”. gz b L Jdxdy  (sa)
o a g(a) ! a
Ko = o [Jac[B0. B0 Fr BV B dvdy (ob)

These represent an improved definition of the coupling coefficient [8] when compared

to K, and K, used in the conventional coupled mode theorem [12]. Marcatili [9] uses the

notations K, and K, for parameters similar to K, and K, respectively. For coupling between
two identical waveguides, K ,, the coupling coefficient from guide & to guide a is identical
to K, which is the coupling coefficient from guide a to guide b.

Once the mode overlap coefficients, C , and C,, and the coupling per unit length K ,

and K, are known, then the power transfer efficiency from guide a to guide b can be
calculated by using equations (25) and (26) in the work of Chuang [10], equations (14) and
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(15) in the work of Hardy and Streifer [8] and the formulae for P, and P, from the work
of Marcatili [9].

IV. LEAST SQUARES BOUNDARY RESIDUAL METHOD

Since the FEM can provide accurate solutions for the supermodes of the coupled
system, an alternative to the coupled mode approach as described in section III, the Least
Squares Boundary Residual (LSBR) method has been applied in this paper for the first time
to directional coupler problems. This procedure is used to find the power carried by the
even and odd supermodes for a given incident power in guide "a" or "#". Here it is assumed
a single isolated waveguide section, section I, is butt coupled to the directional coupler
section, section II, as shown in Fig. 1. The main objective is to calculate the amplitudes
of the even and odd modes 4, b, respectively in section II. This approach is better than the
use of traditional overlap integral methods as many modes can be considered to satisfy the
field continuity at the discontinuity junction plane. This approach is also better than the
point matching methods because the error integral is evaluated over the discontinuity

interface, rather than just field matching at some specific points.

More detailed discussion on the Least Squares Boundary method can be found in our
earlier work [11]. Briefly, the LSBR method looks for a stationary solution to satisfy the
continuity conditions of both the tangential fields namely, E, and H,, in a least squares sense
by minimizing the error function, /] where

J = “E,’ ~E' +az?|H! - H!| d© 6)

where E', E" and H!, H] are the transverse electric and magnetic fields in

sections I and II respectively. Z, is the free-space wave impedance and o is a dimensionless

weighting factor. It can be shown that the minimum criterion of equation (6) reduces to
the following linear equation [11] :

Cx =v (7)

where [C] is square matrix generated from the eigenvectors and {v} is an array due to the
incident mode.

The solution of this equation gives in {x} the required approximate coefficients of
a, and b,. These constitute one column of the scattering matrix, corresponding to the chosen
incident mode.

The eigenvalues and eigenvectors used are first generated by our vector FEM program.

The eigenvectors are given by the nodal values of the three components of the vector H
field for each mode. From these nodal H fields, the vector E field over each element can be
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Fig.1. Butt coupling of an isolated guide to the directional coupler section.
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Fig.2. Schematic diagram of two parallel coupled optical waveguides.
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calculated by applying Maxwell's equation. Many modal eigenvalues and eigenvectors for
both sides of the discontinuity plane are used as the input to the LSBR program. The LSBR
program calculates the error function / and minimizes the error criterion (6) with respect
to each value of 4; and &, for any given incidence, by solving a homogeneous linear equation
(7). Solving this equation will give the unknown column vector {x} consisting of the
unknown reflected and transmitted coefficients of all the modes considered in the analysis.
The singular value decomposition algorithm has been used to solve the linear equation, (7).
To improve the numerical efficiency, the FE nodal points in section I are matched with the
nodal points of section II across the discontinuity interface. In this case there is no need
to generate the nodal E fields, as the electric field part of the integral J in equation (6) can
be calculated directly from the nodal H field values.

V. RESULTS

The finite element method is one of the most powerful methods available to obtain
the propagation constants and modal profiles for a wide range of optical waveguides [5]
including linear, nonlinear, anisotropic, and lossy optical waveguides of regular or irregular
cross-section. However, here the results are restricted to the TE modes in planar waveguides,
only to enable us to compare our results with other work, but it should be stressed that
this numerical procedure is equally valid for hybrid modes in coupled waveguides with two
dimensional confinement.

At first, the accuracy of the finite element method as a means to obtain propagation
constants for the individual modes and supermodes is illustrated. In the first example, the
structure analysed by Hardy and Streifer [8] is considered, which is shown in Fig. 2. Two
slab waveguides "a" and "b" with film thicknesses 1, and 1, are separated by 1, (um
dimensions). The refractive indices for the guides 2 and &, the separation and the cladding
region are #, n, n_and n_respectively and the operating wavelength is 0.8 um.

Table 1 shows the comparison of the finite element solutions with the analytical
solutions for the individual TE mode of the isolated guide "4" and the even and odd TE
supermodes of the coupled structure. In this example, two waveguides with identical

TABLE 1.  The comparison of finite element solutions (FEM) with analytical solutions
(AN) for By, B, and B,.

T By Be Bo
in um AN FEM AN FEM AN FEM
0.10 2697534 2697534 | 27.20137  27.20137 | 26.93143 2693143
0.12 27.06138  27.06138 | 27.20992  27.20992 | 27001436 27001436
0.15 2718799  27.18798 | 27.24361  27.24360 | 27.11346  27.11346
0.18 27.30535  27.30543 | 27.32241  27.32241 | 27.15637  27.15636
0.20 27.37685  27.37685 | 27.38579  27.38578 | 27.16669  27.16668
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refractive indices, n, = n, = 3.6 and the cladding refractive index, n_ = n_ =3.4 are considered.
In this case T, and 15 are fixed at 0.15 um and 0.4 um respectively, but T, varies from 0.1
um to 0.2um. Here B, is the propagation constant for the isolated guide b and B, and B are
propagation constants for the even and odd supermodes of the coupled guides. The analytical
solutions (AN) are obtained by finding roots of the transcendental equation due to the field
matching at the dielectric interfaces. The finite element (FEM) solutions are obtained by
using 4000 mesh divisions. It takes about 10 seconds to find modal solutions on a SUN
Sparcstation 2 for this mesh refinement. Table 1 shows the excellent agreement of the finite
element results with the analytical results and if required, the accuracy can be further
improved by using an even finer mesh.

Fig. 3 shows the Ex field profiles for the even- and odd-like TE supermodes for a
nonsynchronous directional coupler when t, and 7, are 0.15um and 0.1 um respectively,
with the separation distance, T, = 0.4 um. It can be observed that the modal profiles are
not symmetrical since the individual guides are not identical. The first supermode is the
even-like mode with most of the power confined in the guide "a" whereas the second
supermode is odd-like mode with most of the power confined in the guide "#". This is because
the dominant mode in guide "a" has a higher propagation constant than the mode in guide
"b" (as 1T, > T,) so the first supermode with higher propagation constant resembles more
the mode E, when the individual modes are not phase matched. The power intensity profile
obtained from these field profiles match accurately with the exact profiles shown in Fig. 2
of the results of Hardy and Streifer [8].

To reduce the coupling length, the separation distance T3 can be reduced to increase
the mode coupling and subsequently shorten the overall device length. However, this will
introduce cross-talk due to incomplete power transfer between the guides, even when the
guides may be identical. First a synchronous directional coupler problem [13] is considered
to test our numerical procedures. In this second example, n, = n, = 3.44, n = n = 3.436,
1, =1, = 2.0 um, and the wavelength is considered to be 1.06 um. Fig. 4 shows the cross-
talk in dB with the separation distance, 75, using the coupled mode approach (CH) [10] and
the Least Squares Boundary Residual method (LSBR) approach. In this example, results
from both the approaches agree reasonably with the work of Chen [13].

To find the power transfer efficiency and cross-talk, using the coupled mode
approaches, the ovetlap integrals and coupling coefficients need to be calculated. To illustrate
the procedure and steps taken, some intermediate results are presented for the first example
with coupled nonidentical waveguides, which is more complicated than in the second
example, which is for the coupled identical waveguides. Fig. 5 shows the variation of K,
and K, with the thickness of guide &, T, when thickness of guide a and 1, are fixed at 0.15
pm and 0.4 um respectively. In this figure, K , and K, are compared with the approximate
coupling coefficients K, and K, , which are calculated by using equation (5a and 5b) (8].
Next accurate values of K,, and K, are calculated by using equation (4a and 4b) (8] by
considering appropriate correction factors. K, reduces monotonically as T, increases, where
as Kba increases. It can be observed that the coupling coefficients are identical when 7,=1,,
but when the guides are not identical, the coupling coefficients can differ widely. Our
results agree well with those of Hardy and Streifer [8].
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The coupling length of the coupled waveguides can be accurately calculated from the
propagation constant difference of the first two supermodes. In the finite element method
the propagation constants of the two supermodes are obtained directly, whereas using the
coupled mode theory, these can also be estimated from individual modes of the two isolated
guides by using different coupled mode approaches.

Fig. 6 shows the variation of the propagation constants of the two supermodes with
the second guide thickness, T,. The finite element results (FEM) and analytical results (AN)
are identical and cannot be distinguished in this figure. Results using the Hardy and Streifer
(HS) approach [8] agreed better with the analytical and the FEM results. Results using the
Marcatili (MA) approach [9] are consistently higher value than the actual eigenvalues. The
propagation constants of individual modes B, and B, are also shown. Results using the Chuang
(CH) approach [10] are also satisfactory except when 1, = 0.10 um, when B, is smaller than
B, which cannot be correct.

Fig. 7 shows the coupling length variation with the second guide width, t,, when 1,
= 0.15 pum for different separation distances, 1;. It has been shown in Table 1 that the
analytical (AN) and the finite element results (FEM) agree extremely well even when the
guides are strongly coupled and they cannot be distinguished one from another, whereas,
calculation of the propagation constants of the supermodes by using the coupled mode
approaches may be satisfactory but not very accurate, as shown in Fig. 6. The coupled mode
(CH) approaches [10] agree well for the weakly coupled conditions but in general overestimate
the coupling length when the guides are not synchronous, as shown for t,= 0.4 um. It should
also be noted that when t, = 1, the coupling length varies exponentially with the separation
distance, 1, but when 1, is not equal to 1, the coupling length depends mostly on the
factor IB, - B, .

The main emphasis of this paper has been the calculation of power transfer efficiency
between the two optical waveguides. It has been mentioned earlier that the power transfer
ratio can be obtained by starting from the individual modes of the isolated guides or from
the supermodes of the complete coupled structure. Results are shown later in which both
approaches are used, after obtaining accurate eigenvalues and eigenvectors of the individual
guides and coupled guides.

First the amplitudes of the even and odd supermode field coefficients are calculated
using the LSBR approach. Fig. 8 shows the variation of coefficients #, and &, with a second
guide thickness, T,. When guide 4 is wider than guide 4, (t, < 1,), the amplitude of the odd-
like supermode (#,) is higher than that of the even-like supermode (¥,). Similarly, when guide
b is wider than guide 2 (1, > 1,) an even-like supermode carries more power than the odd-
like supermode. It can be noted that when 1,= 0.15 um, although the guides are identical,
but the two supermodes carry unequal power, where ¥, is equal to 0.786 and #, is equal to
0.617. This is due to the strong coupling between the isolated modes and their inequality
is responsible for less than 100% power transfer between the guides. However, it has been
tested by the authors (but not shown here) that for weakly coupled identical guides
b, = b, ~ 1 and each supermode will carry half of the incident power in section .

V2
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Fig. 9 shows the variation of the maximum power transfer efficiency with 1, using
three different approaches. In this case the total length of the device is adjusted to be equal
to the coupling length for different widths of guide . Contrary to the coupled mode
approaches, the LSBR result shows the maximum power transfer between the guides when
7, is slightly smaller than 0.15 um. However, it has been tested by the authors by using the
LSBR approach (but not shown here) that maximum power transfer between the guides
takes place when 1, = 1,, only if the guides are weakly coupled.

Fig. 10 shows the variation of the power transfer efficiency with 7, using the coupled
mode (CH) [10] and LSBR approaches. In this case, the total length of the device is fixed
at L. for 1, = 0.15 um, where both the effect of the lack of phase synchronism and the
change of the coupling length have been considered. This conditions simulates the loss of
synchronism due to fabrication tolerances or due to external effects. Here, the power transfer
efficiency is significantly lower than the maximum power transfer, as shown in Fig. 9. This
reduced power transfer is due to the additional effect of coupling length mismatching as the
value of L. changes with T, whereas the device length is kept fixed.

VI. CONCLUSION

The finite element analysis provides a determination of the accurate coupling length
for weakly or strongly coupled identical or nonidentical waveguides by using accurate
vector formulations for parallel waveguides of arbitrary cross-section, dissimilar index and
nonidentical shapes. The application of improved coupled mode theories along with the
accurate eigenvectors and eigenvalues obtained by the finite element method provide the
power transfer ratio between such coupled waveguides. Different coupled mode approaches
have been considered to study some of the coupled guided structures. Here the results from
the LSBR have also been presented, which agree well with the results from the coupled
mode appioaches. In this paper, the characterization of the TE mode coupling in planar
structures are presented only to make a comparison with published results using different
procedures. However, these approaches presented are valid for hybrid modes in optical
waveguides with two-dimensional confinement. The calculation of important device
parameters, such as power transfer, cross-talk, and filter bandwidth, for practical optical
waveguides, will be very useful to optimize the design of modern directional coupler-based
photonic devices.
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