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ABSTRACT

A modified Monod model of a continuous microbial culture in which the yield term depends
linearly on the substrate concentration is extended to incorporate the effect of external forces on the
cell membrane permeability. Bifurcation analysis of the new mathematical model, which consists of
three non-linear ordinary differential equations, shows that the model can simulate the oscillatory
behavior observed in experimental data for certain ranges of the system parameters. Computer
simulation of the model is presented in support of our theoretical predictions.

INTRODUCTION

Sustained oscillations in the patterns of microbial growth and product formation
have been frequently observed in continuous cultures when the feed conditions and the
culture conditions remain constant [ 1, 2 ]. According to Yerushalmi ez al. [ 2 ], these
oscillations are even more pronounced in the long term fermentations or in the cell-retention
fermentations where the cells stay in the bio-reactor for long periods of time.

Although the mechanism for these oscillations is not yet fully understood, it is clear
that occurrence of such oscillatory behavior has adverse effects on the efforts to optimize
the operation of continuous bio-reactors. It also effects productivity of the process and
complicates its proper design. It is therefore most important to investigate in depth the
factors that cause such rhythmicities, the explanations for which range from experimental
errors to the changing microbial physiological behavior often attributed to changes in the
cellular metabolic pathway under certain conditions. Recent studies of the parameter affecting
the cell physiology of C. acetobutylicum showed a high sensitivity of growth and solvent
production to the cytoplasmic membrane permeability [ 2 ]. A high permeability of the
cytoplasmic membrane promotes the growth of the microbial culture, the utilization of the
substrate and the biosynthesis of the solvents. The opposite result is obtained with a low
permeability of the cell membrane.

The controlling action of the cellular membrane permeability on the activities in
many anaerobic processes has been frequently observed. Examples include the influence of
plasma-membrane lipid composition and membrane fluidity on growth and solute
accumulation by S. cerevisiae { 3 ], growth of Clostridium thermocellum [ 4 |, and growth and
production of ethanol and glycerol by yeast cultures [ 5 ].



98 J].5ci.Soc.Thailand, 21(1995)

In this paper, we consider a mathematical model which incorporates this sensitivity
to the cellular membrane permeability, the specific rate of change of which is assumed to
vary in a sinusoidal fashion. One physical controlling factor which has been proposed to
exert its biological effect on the cytoplasmic membrane permeability is the geomagnetic
field variation. This concept has been extensively investigated and is well supported by
experimental evidence [ 6, 7 ]. Attempts to incorporate such effects into a model of the
continuous microbial culture was carried out by Yerushalmi et al. [ 2 ]. We consider a
modification of their model based on an adaptation of the Monod model in which the yield
term is assumed to vary linearly with the substrate concentration. Through bifurcation
analysis, the model is shown to simulate different oscillatory behavior observed in
experimental data.

SYSTEM MODEL

Basically, microbial kinetics have varied in diverse ways from a model due to Monod
fashioned after Michaelis-Menten kinetics for single enzyme-substrate reactions. This simple
but valuable model views microbial growth as conversion of a fixed amount of substrate
( or nutrient ) to biomass occurring autocatalytically in the presence of preexisting biomass
[ 8]. The yield coefficient Y in the Monod's model is constant. The most obvious departure
of the predictions of Monod's model, apparently, is in the variation of the stoichiometric
coefficient Y. Theoretical studies of models in which the yield term varies linearly with the
substrate concentration can be found in the work of Agrawal et al. [ 8] and that of
Lenburyetal [9].In[8], Agrawal et al. carried out an extensive theoretical investigation
of the dynamic behavior of isothermal continuous stirred tank biological reactors modelled
by the following mass balance equations on cells and the limiting substrate:

dsS

a— = —G(S)X+D(S)_S) ( 1 )
dX

=2 - -D

= ©(S)X—DX (2)

where X denotes the cells concentration; S the substrate concentration; wu(S) the specific
growth rate; o(S) the specific substrate consumption rate; S the feed substrate
concentration; and D the dilution rate.

In their work, the function 6(S) was assumed to have the form

_ M) _ .S
® =3I (K +S)Y(S) (3)

where p_ is the maximum specific growth rate and K_ is the Monod constant while
the yield term Y( S ) has the form



J.8¢i.Soc. Thailand, 21(1995) 99

amount of biomass formed =
Y = = aS+b
( S ) amount of substrate consumex ( 4 )

which reflects the increase in the yield in response to an increase in the substrate
concentration S. This also includes the case of constant yield when a = 0.

The model equations ( 1) and ( 2 ) do not take into account the variation of the
membrane permeability with time. Since studies have confirmed high sensitivity of culture
growth and production to membrane permeability, it is suggested in [ 2 ] that the influence
is incorporated into the system model so that the mass balance equation on the limiting
substrate is given by

ds n'sXx

dt S+ Ky

+D(Sp-8) (5)

where n' = kn, with k a proportionality constant, and n the number of active nutrient
transport sites. According to Yerushalmi er al. [ 2 ], permeation dynamics is the major
factor responsible for the formation of the active sugar ( nutrient ) transport sites, especially
in the aging cells. This is in turns due to the accumulation of the non-active deposits in the
cytoplasm which make the permeation control the incorporation of the protein in the lipid
skeleton of the cytoplasmic membrane. This relationship may be described by the equation:

d

d
E(nX)--kp Y

(PX) (6)

where P measures the membrane permeability and l(P is a constant of variation. Integrating
equation ( 6 ), we obtain the relation

nX =kpXP+ ky (7)

where k; is a constant of integration.

Using ( 7 ), equation ( 5 ) may be cast in the following form:

ds _  (CXP+Cy)S

at (S+K)Y +D(So-8) (8)

where C; = kkjY and C, = kk;Y are constants. In other words, assuming that the yield
term is constant, the specific growth rate has the form
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y = (GP+G/ XS
(S+Km) (9)

so that the mass balance equation for X becomes

X _ (GXP+C)S o
dt (S+Kp) (10)

in which the effect of permeability variation has been taken into account. On the other
hand, it is reasonable to expect the yield coefficient Y to reflect the varying amount of
nutrient mass required to produce a unit of biomass, as has been argued in [ 8 ] and
[ 9] for example. We therefore combine both effects by letting Y assume the form in
( 4 ) so that the mass balance equation for S becomes

dS _ _ (CiXP+GCp)S )
a (S+Km)(aS+b)+D(So S) (11)

Experimental evidence has shown that external forces such as electrical or magnetic
fields can contribute to permeability by introducing an 'order' in the composition of the
cytoplasmic membrane ( see [ 2 ] for more detail ). As a resul, the cellular membrane
permeability can follow an oscillatory pattern which can be described by the following
equation:

d
E? = ~Kcos(@gt)P (12)

where K is a proportionality constant. Equation ( 12 ) describes the periodic changes
in the cytoplasmic membrane permeability when there is no cells growth. If there is cells
growth, the newly formed cells posses thin cell membrane with high permeability which
contributes to an increase in the apparent permeability of the cells population. In the case
of influence from the geomagnetic field variations, the period is found to be approximately
24 hours, so that wy= 2 /24. However, to include other factors which may effect membrane
permeability in the similar manner, we let @, be an arbitrary constant frequency of oscillation
of the applied field.

Thus, the variation in the permeability of the cells population, based on the overall
cells mass, can be described by the following equation:



J.5¢i.Soc. Thailand, 21(1995) 101

d dX
—PX) = =% (wot)PX+ ¥ ==
dt( ) hcos(wt)PX+ ¥y @

in which the first term on the right was directly obtained from equation (12), describing
the periodic changes in the membrane permeability, while the second term describes the
increase in the apparent permeability of the cells population due to the growth of the
culture and the formation of new cells, assuming that the inhibitory effect of other factors
such as the butanol level is neglegible.

Eliminating X from both sides of the above equation results in the following
expression:

dP
5 - - Y%cos Wot)P+ (Y, — P)1 (13)

where p is given by equation ( 9 ).

Therefore, our system model consists of equations (10), (11), and (14) with (9). We
are interested in the dynamic behavior and , in particular, the existence of different types
of oscillatory behavior in the system described by these three equations.

BIFURCATION ANALYSIS

For the following analysis, it is convenient to introduce new variables. Namely, we
define T = Dt, x = X/a,y =PC/D ,z =35, p=CyaD , M =k, d = b/a
zg = Sy, a= 1D, B= vC/D,u = cos(wyt), v=r1ysin(wyt) and
® = wyD.

In these variables, our model equations becomes

dx z

ar (Xy+p)M+z_X (14)
d p

d—¥ = -auy+(/3—y)[y+;(-]Mz+z (15)
dz _ —(xy +P) z (zo-z

a T TWIEEE et ) (1)
du

T - W (17)

dv
d—T‘“’“ (18)
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The above system has a steady state solution ( x, y,, z,, U, v,) obtained from equating
the right sides of equations ( 14 ) - ( 18 ) to zero, namely

v = P (19)
- Zs 7 _
s+ Vg zer T 2072 = O (20)
Xg = (zo4d) (zgZ) (21)
and U = 0, Vg =0 (22)
If we let
— Zs
o = M+ 2 (23)
(Bxg+PIM
(M+zs)2 (24)

then the Jacobian matrix | of the system of equations ( 14 ) - (18 ) evaluated at the
steady state ( X, y,, Z, U, v,) can be written as

po -1 6xg ) 0 0

0o -1 0 —ays O

—9B  —Xs0 6(252--Md)_1 0 0
;- zg+d  zg+d  M(zg+d)

0 0 0 0 -o

0 0 0 w 0

The 5 eigenvalues of ] are found to be
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M2 = —I‘(5) = 1"2(6) (25)

/14,5 = * |0
where
522 —Md)
I} = ﬂ9+——$_ 2
re) M (zg+ d)? (26)

la(zsz - Md) “1ls 6ﬁ6
| M(zg+ ) z5+d

A(8) = T2(8)-a{(po-1) boe7)

Due to the complex conjugate eigenvalues =+ iw , therefore, the model will have a
periodic solution for appropriate parametric values. In particular, by the theory of ordinary
differential equations, if the parametric values are such that all eigenvalues other tha 0y s
have negative real parts, then the simulated solution trajectories close to the steady state
will approach a closed cycle surrounding the critical point ( x, y,, z, u, v in the five
dimensional phase space. In this case the profile of x( T ) will be periodic with time
closely resembling the regular rhythmicity found in many experimental data. However,
such closed cycles lying on a plane in the phase space cannot simulate more irregular
oscillatory patterns also observed in other data, such as that taken from the work of
Paruleka et al.[10] presented in Figure 1. Here, alternatively low and high peaks can be
observed in the growth pattern. Such characteristics appear in all their runs under different
operating parameters.

To investigate the possibility of such higher dimensional oscillations in our model,
we consider the system of equations ( 14 ) - ( 16 ) with o = 0, and let

= (B6-1)2 (z+d)/ p6 (28)
5, = (2-BO)(zg+d)Y (29)
where
y = (zg+d)M

sz-Md (30)
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According to Hopf bifurcation theory [ 11 ], if a value §_can be found such that

i) Re 7@8) = 0,

if) A (8) and  A,(8) are complex conjugates,

i) Im AQ) # 0,

iv) Re A,(8) # O, where A' denotes the derivative of A,

v)  all other eigenvalues have negative real parts,

then the system of equations (14)-(16) with o= 0 will have a family of periodic
solutions for values of & in some open interval ( 8, ,8,+€). The result is stated in the

following theorem.

Theorem If
Y > 0 (31)
B > 1 (32)
1—,/71(7 1)
1/p > 6 > __B—+ (33)

and y > M > 1-6 (34)
6 .

then the system of equations (14 ) - (16) witha =0 will have periodic solutions bifurcating
from a non-washout steady state for values of & in some open interval (3 ,5.+€) where
is given by equation ( 29 ).

Proof First, we show that with © so chosen, &, < & by considering the equation

2 _ 1
F(0) = (B6) 2(Be)+m =0

The function F(B) is quadratic in 8 and has two real roots:

010 = i__B__ {17+ (35)
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Thus, for 8,> 08>0, , we have F() < 0, that is
(86) ~ 2(B6) +—1—< 0
Y +1
Rearranging ( 36 ), we find
(B6)% - 2(B6) +1< (2P0 - B26?)Y

Multipying both sides by z +d, we have

(B0 —1F (z5+d)
BO

< (2-B6)(zs + d)y

That is, we have

if 6,> 6>86, . However,

0, = 1_+__W> 1/

so that if 0 satisfies inequality ( 33 ) then
6, > 1B > 6 > 6,

which implies ( 39 ) as claimed.

Now, we observe that

r (s, = 0

B3
and ABy = _4[_(ﬁe_1)2+szTg]

(36)

(37)

(38)

(39)

(40)

(41)

105
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which is negative because of inequality ( 39 ). Thus,

RedA (8,) = T'(8,)/2 = 0

and A, (8.) and A, (8, ) are complex conjugates. Also, since we have strict inequality
in ( 39),

Ima,(8,) = %[—A(é’c)]” 220

These are requirements i), ii), and iii), respectively.

Moreover, from ( 26 ) we have

, (22 -Md) 1
re.) = =
®) M(zg + d)° Y(zs+d)

and therefore Re A, (8,) # 0 which is requirement iv). Finally, the remaining eigenvalue
is Ay =-1<0.

Thus, all requirements for Hopf bifurcation are met. For 8 in some open interval
(3, ,8,+¢) , the system of equations (14)-(16) with o = 0 will have a periodic solution
bifurcating from its steady state ( Xy, y,, Z, ). For the system of equations (14 ) - (18)
with o # 0, this means that if conditions (31 ) - ( 34 ) are satisfied a Hopf bifurcation
occurs on top of the existing periodic solution ( due to the eigenvalues *iw ) giving rise
to solution trajectory on a 2-torus in the five dimensional phase space.

With the above choice of parametric values, Hopf bifurcation occurs at a non-washout
steady state ( X, Y, Z,), namely y = B =20 and from (23),

Mo
= — 0
zg o > (42)

Mo
since 7”@ > 0, with 0 chosen to be less than 1/B 1. Then, the value of d can be

determined from ( 30 ) as

Y22~ zM
M(7+1) (43)
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Since

(y232 - zM) (Mz2-zM) = M(z2-2z)
and z > 1 by the second inequality in ( 34 ), we have d > 0.

With these values of v, B, 8, z, and d, the critical value 8, can be found from ( 29).
It is important to note that with our choice of v,

e<e,=1+___1/7é(7”) <%

since ('YY_+1) < 1. Therefore 2-6B > 0 so that the value of &_ given by (29) will be
positive.
The parametric value 8 > 0 is then chosen to be in the interval ( 9. 8. +¢)

for some small € > 0 so that Hopf bifurcation may occur. Then, x, can be determined
from (20 ) and (24 ) as

X = d3(M+ z)z/M > 0 (44)

Then, from ( 20 ) and ( 21 ) we find that

p = xS(“g+ZS)_BXS
S
That is,
p = x(1-08)/0 (45)

which is positive since 8 < 1/B.

Finally, from ( 21 ), we have

Xs
Z;+d

(46)

+2g > O

using the values of x,, y,, z; and d found previously.
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Fig. 1. Alternatively low and high peaks can be observed in the profile of cells concentration ( x ), for which the
data points have been taken from reference [10] of continuous culture with fixed dilution rate: D = 0.2
hrl, pH = 5.5, Temp. = 30° C.
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Fig. 2. Computer simulation of the model system of equations ( 14 ) - ( 18 ) with parametric values chosen
so that bifurcation occurs: M =1, y=1,p=15 8=106, y,=15d=0375 &=21, x, = 7.875,
p=13125 Zy=157, o= /12 and a = 1. The solution trajectory, projected onto the ( x, y )-plane,
is seen to approach the closed curve on a torus surrounding the steady state (x, vy, z, u, v) = (7.875,
1.5,15,0,0)
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Fig. 3. The simulated time course of cells concentration x of Fig. 2 exhibiting alternatively low and high peaks
resembling those observed in experimental data.
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2 4 6 8 10 12 14

Fig. 4. The effect of varying the field density constant . In the inset, where @ =0, the solution trajectory
is seen to approach and lie on the plane y = B as time progresses.
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In Figure 2, we present a computer simulation of the model equations ( 14 ) - (18)
with o # 0 and parametric values chosen to satisfy the bifurcation requirements (31 )
- (34). The solution trajectory is seen to approach the closed curve on the surface of
a 2-torus surrounding the steady state (X y,, Zg Uy, Vg y= (78751515 0,0) in
the 5-dimensional phase space, seen here projected onto the ( x, y) - plane. The time course
of cells concentration is shown in Figure 3 exhibiting alternatively low and high peaks
which compares well with experimental data mentioned earlier ( Figure 1). When different
parametric values were tried, we have been able to generate different oscillatory patterns
resembling those observed in experimental data of continuous cultures under different
operating parameters [ 1, 10 ].

ASYMPTOTIC BEHAVIOR AND STABILITY ANALYSIS

On multiplying equation ( 14 ) by y, equation ( 15) by x, and adding, we obtain
the equation
dw

z
a1 = (aU—1)W+/3(W+P)M+Z (47)

where w = xy. We see that equations ( 16 ) and ( 47 ) involve only the two variables w
and z, and therefore can be solved without the help of equation (14). Letting (w (T,
Z (T) ) be the solution to equations ( 16) and (47 ), equation (14 ) may then be written
as

dx
ol F(T) — x (48)
2T

where F(T) = (w(T)+ p)

Wi is a known function of T. Equation (48) can be

solved directly for the solution x = X ().
Moreover, on substituting z = 0 in ( 16 ), we find that

dz

= Z > 0
dT 0

z=0
which means that

z2(T)20 forallT 2 0 (49)
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Considering equation ( 47 ) with w =0, we also have

wl o _ Pz 5
dT iy M+z
for positive parametric values. Thus,
Xx(T)y(T)20 forall T20 (50)

Using (49 ) and ( 50 ) in ( 48 ), we again have
x(T)=2 0 forall T20 (91)

Therefore, we conclude that all solutions to our system model remain in the positive octant
of the ( x, y, z ) space.

Further, with ( 49 ), (50 ) and ( 51 ), equation ( 15 ) can be written as

dy

ar = ~euly=p)-(y-B)G(T)-oBu (52)
where G (T) = (X(g)_z/;_)r;)z)(ﬁ_()—r ) is a known function which satisfies

G(T) 2 Oforall T 20 (53)

Using the Liebnitz' formula to solve equation ( 52 ), we obtain

y (T) - B = e_aV(T)-h(T){C - (XBOIGQV(T).’.h(t)U(T)dT} (54)

where h(M = (})G(f)df and ¢ is a constant of integration. Since ( 53 ) holds h( T ) is

iav(T)Sea

increasing with T . Also, € since -1 < v( T ) <1 Thus, we have

T T
Ie—h(T) feh(’)u(t)dﬂ < eza'h(T)eh(T)Hu(c)dd < %
0 o
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Thus, letting T — oo in ( 54 ) we find

y(T)-B = ofetry (T)as T —eo

where y_(T) is 2 bounded function. In other words, with o = 0, all solutions to the system
of equations ( 14 )-( 16 ) approach and lie, as time passes, on the plane y = B in the (X,
y, Z ) space.

Figure 4 shows the effect of varying the field density constant o on the position and
shape of the solution trajectory. The solution trajectories for smaller o are closer to the
plane y =8

With regards to the stability of these periodic solutions, one can apply various stability
criteria ( see, for example, [ 11 ] ) on the system of equations (16) and (47 ) with
o = 0 which describes the solution curve (W(T),Z (T)). It turns out to be very laborous
calculation if one allows complete generality for the system parameters. However, for the
case p =0 and B = 1, equations ( 16 ) and ( 47 ) may be written as

dx
21 = _
a7 M(x,) % - x, (55)
dX2 _
T['— = 2(X2)X1+X2 ( 56 )
where x, = _-W, x,=1- Z,
Zy Zy
M (x2) = (1-x3)
1+0-xo (57)
and
_ I(xp)
T(x,) T —m————
27 1t v-xg (58)
with ¢=M, and \V=-9—
) z0

By making use of the Poincare's criterion and Friedrichs' bifurcation theory, the
following condition for orbitally stable periodic solution of equations ( 55) and ( 56 ) can

be found [ 8 }:
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” *
411 (X2g ) X2¢*

32’”(X25*) XZS* < Z”(xz;‘)[" + ( 59 )

3]—[’()(23*)

, z . .
where Xps"  is the value of Xag =1—;s- at the critical value §_ of 8. That is, from
0

(24) and (29),
* 1 &
Xg2 =1—Z[m~dJ

Using (57 ) and ( 58 ) in (59 ), we find that the bifurcated periodic solution will
be stable if

Fow) = [i-xe g0 +0f{o X2 1- S0 }-ompe® < 0 (60)
where
_(1+¥—xp5")

(1+¢—X25*

(*]

Therefore, the bifurcation originating at the critical value 8, of & is stable if
F <0 and unstable if F > 0. Moreover, it can be shown that a stable bifurcated periodic
solution surrounds an unstable critical point. If it surrounds a stable critical point, it is
unstable.

CONCLUSIONS

A model of three ordinary differential equations is used to describe, under certain
simplifying hypotheses, a membrane permeability sensitive chemostat system. Depending
on the values of the system parameters, the model system may exhibit sustained regular
oscillation in the form of a one frequency limit cycle, or a more irregular oscillation in the
form of a solution trajectory on the surface of a torus surrounding a non-washout steady
state. Thus, by incorporating the effect of membrane permeability variation, the model is
shown to be capable of exhibiting oscillatory behavior which compares well with observed
experimental data. A stability investigation shows that if the quantity F(¢, w) has positive
value then the bifurcated solutions are repelling and if it is negative then the solutions are
attracting.

Factors such as electric and magnetic forces have been proposed to have significant
effects on cytoplasmic membrane permeability inducing oscillatory pattern in permeability
which in turn causes the rhythmicity in the microbial growth patterns. Some investigations
have been carried out in that direction [ 2, 7 ]. Nontheless, relatively little efforts have been
made, up to date, to model such effects of rhythmic variation in membrane permeability
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on microbial culture, in order that their biochemical impact may be better understood and
appreciated. More in depth studies of the causes and mechanism of the rhythmicities are
clearly needed, the repercussions of these kind of studies in the large scale fermentation
industry being significant indeed.
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