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ABSTRACT

In this article the Dean's method of negative eigenvalue counting for one-dimensional chain
has been extended to deal with the closed ring threaded by a magnetic flux. This new method is
extremely computer memory-saving and can be used to accurately determine the eigenvalues and
eigenvectors of a finite system with large number of atoms. For studying the properties of electronic
states of the closed rings, we have investigated the first moment, second moment and inverse
participation ratio of the wave functions for periodic, disordered and quasiperiodic systems in variety
of magnetic flux and disorder degree. It is found that the second moment is an efficient parameter
in the study of electronic states as well as persistent currents of the closed rings. The cluster-like
structure of EM, SM, and IPR spectrum of the quasiperiodic ring as well as other interesting
behaviours have been observed. The relationship between the persistent current and second moment
has been studied also.

I INTRODUCTION

The physics of small metallic rings enclosing a magnetic flux ® is an excellent testing
ground for many ideas in the field of mesoscopic physics. The energy levels, wave functions,
and persistent currents have been extensively studied for many years!”. Biittiker et al..?
used the transfer-matrix method to study the flux-periodic effects in one-dimensional normal-
metal rings with inelastic length larger than the size of ring. Carini et a/.® started from the
S::hrc'idinger equation of the mesoscopic rings by diagonalizing the Hamiltonian matrix to
establish the relationship between the eigenenergy and participation ratio of the eigenvector.
Cheung et al.% have also used the diagonalization method to study the persistent current I
in mesoscopic rings. They have calculated I as a function of flux ®, randomness W and
temperature T. From the viewpoint of numerical simulation, a common feature in previous
works is that only rather small systems were investigated, for example, the atom number
of ring N=40 or less was chosen3®. The primary difficulty stems directly from the fact that
the diagonalization method needs huge computer memory, since the number of Hamiltonian
matrix elements is N2. Numerical diagonalizing of a large-order matrix is quite impracticable
on a small computer. The total memory would require much more if the eigenenergies and
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corresponding wave functions are included. This difficulty cannot be solved also by the use
of the recursion method® or Givens-Household transformation’, which, even though, these
are very efficient technique in the field of disordered systems. One of the main purposes of
this article is to present a powerful numerical approach handling very large samples of
mesoscopic rings, which is based on the negative eigenvalue counting method!® (or Dean's
method) of the one-dimensional disordered chain. By the use of our approach we have
successfully calculated the electronic states of a one-dimensional ring with N=2584 in a 386
personal computer. In section Il we present in detail our numerical method. We will show
that besides the advantage of reducing the computer memory to the same as in the original
Dean's method!®11, the improved method allows us to compute any one of the eigenvalues
alone, and then calculate its corresponding eigenvector. This means that we can study some
interesting eigenstates, e.g., the Fermi electronic state alone at very little cost of computer
time. In section 1II, we report the numerical results of the isolated one-dimensional rings
with ordered, disordered, and quasiperiodic lattices. We have investigated the energy
eigenvalues; eigenvectors and their first moment, second moment, and inverse participation
ratio (IPR), which are important parameters used to judge the localization of electronic
states. It is found that the second moment is a very sensitive and efficient parameter for
looking at the localization of states and describing the effects of disorder and magnetic flux
on the persistent current. In the quasiperiodic lattice case, the cluster-like structure of first
moment, second moment, and inverse participation ratio of wave functions are found.
Other interesting results are also observed. In Section IV, we present the numerical results
of the persistent currents related to the randomness W and second moment for the disordered
ring threaded by magnetic flux. Section V gives a brief summary.

II. IMPROVED DEAN'S METHOD FOR THE ONE-DIMENSIONAL RINGS

For a closed ring with a magnetic fields threading the loop, (within the framework
of Wannier representation) the Schrédinger equation with normalized wave function
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The g, is the single-site energy and t; is the nearest-neighbor hopping integral. The
matrix form of Hamiltonian is
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If the two off-diagonal elements linking the first and Nth sites equal zero, the ring reduces
to an # atom chain. For solving the eigenvalue problem (1) a variety of numerical methods
have been devised, the most simple one is the diagonalization method adopted extensively
in previous works on the mesoscopic ring®’. However, as we have mentioned, this method
can only be used on small size systems if a PC computer is used, because of the memory
requirements. For solving a larger system necessary to obtain a better understanding of the
mesoscopic phenomena, new numerical method has to be developed. Dean's method!? of
negative eigenvalue counting has been shown to be a powerful approach, and extensively
used in one-dimensional disordered single chain!!!? and coupled chain'3. One of the present
authors (Liu) has used it to deal with the one-dimensional incommensurate systems!! and
quasilattices! with large number of sites.

In the rest of this section, we describe how the negative eigenvalue counting method
of one-dimensional chain can be extended to tackle the one-dimensional ring problem. We
will present an effective method to calculate the eigenvectors, by which the accuracy of the
calculated wave function can be made to be of the same order of magnitude as that of the
energy eigenvalue. '

The Dean's negative eigenvalue counting method is based on a well-known thorem!
which states that the number of negative eigenvalues of a symmetric Hermite matrix is
equal to the number of changes in sign between consecutive leading principal minors,
starting with the zero-order minor as positive.

For a tridiagonal matrix M with two off-diagonal elements linking first and Nth
sites, the eigenvalue problem of the matrix M can be viewed as (M -xI) [¥> = 0

a, b, t*
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where |[¥> is the eigenvector corresponding to the eigenvalue. In the Dean's method, a set
of {u;}, which are equivalent to the leading principal minoss, are used to deal with the
disordered chain containing large number of atoms. In the following, we present our
treatment for mesoscopic ring. It shoud not be compared with the original Dean's method
for straight chain.

As a first step, we decompose M -xI as follows
M xI = Lx)U(E), 4)

where L(x) is a lower triangular matrix, the elements L,; of which are zero if i<j, and U(x)
is an upper triangular matrix with Uii=0 if j<i. In detail, the L(x) and U(x) are chosen as
follows:

1 uy vy zy
Ly 1 O u2 v2 0 z

L(x) = O . U(x)=

Ly 1 O Yp2 Vo2 Zn2

Y1 Y2 Y3 Y2 Lpg 1 Un1 Vot

Un
Then, we have

uy Vi

Zs
Lyu, Livitu, v 0 Lzt z,
Ly, Lyvytu; Vs Lyzy+zy
L(x)U(x) = O
Loatiy.2 Ly 2Vartas Lg.225.2% Va1
a2
Yy 1Vityy 2V +Yys Va2V # Lottt 22 Y+ L iVa-s+a

By the use of formula (4), we obtain following recursion relations used to determine the 4,
v, and L;. \
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and recursion relations used for z;and y; :
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Finally we obtain the diagonal elements of matrix U(x):
Uy =ar—-x
52,4 )
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Because the L(x) is a unity mode matrix, the eigenvalue problem can be reduced to

U(x) |¥>=0. The negative eigenvalue theorem states that!?

N
n{ M-x7} =i§‘q(u,-) .

Using the standard procedure of negative eigenvalue counting method, we can obtain all of

the eigenvalues!?.

Now we turn process for obtaining highly accurate eigenvector. For given eigenenergy,

the corresponding eigenvector is determined by the following equation:
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From the recursion relations(5), we can see that

u 0 , j=1,238..,n1

Otherwise, we can not decompose (M-xI) as L(x)U(x). Then the U(x) matrix and
corresponding eigenvalues would not exist. On the other hand, the existence of non-zero
eigenvalue requires det(U)=u,u, ..... u,=0 Therefore, u, must be zero for anyone of the
eigenvalues. Under this condition, we can set ¢,=1, the rest of wave function are determined
by following recursion relations:

Va1

ne

These can also be expressed in terms of the elements of M and U matrices:
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After the normalizing procedure, the wave function is finally determined.
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Here, we should emphasis that for the computer calculatons, the #, =0 is an important
criterion for obtaining an accurate wave function. We have experienced that for the finite
periodic and quasiperiodic rings, the computed u,, is always close to zero for high accuracy.
For the disordered rings, we can control the u, by choosing a suitable pivoting point n. In
practice, no matter how strong the disorder is, ones can easily let u, be under 104 in order
of magnitude. This method allows some very fine numerical results on the eigenvectors and
related parameters to be obtained, which we will show in the next section.

III. ELECTRONIC STATES OF THE MESOSCOPIC RINGS

In this section, we report the numerical results of the one-dimensional rings enclosing
a magnetic flux by the use of the improved Dean's method described in section II. We have
computed three kinds of systems, i. e., periodic, disordered and quasiperiodic ones. For
examining the localization of the electronic states, we have used the first moment (FM) ,
second moment (SM), and inverse participation ratio (IPR) to be the criterion!4. Because
of the geometry of the closed ring, an electron travelling the ring behaves exactly like an
electron in a periodic structure, where the potential variation in one period is the same as
that in one circuit around the ring. Different magnetic flux threading the ring corresponds
to different boundary condition. For the mesoscopic rings, some authors have used the
localization length & as a localization parameterS. Because the FM, SM and IPR are well
defined and could be easily computed at the same time as the calculation of the wave
function processes, we have concentrated in this paper on investigating their valuation in
the adjudgment of localization.

The ith normalized eigenfunction can be expressed as

N

|wi>=Z By | j>, %
j=t

Then the corresponding first moment is defined as

2 B2, ©)

which gives the center of gravity of the wave function in the ring. We have taken the atom
spacing as the unit of length. The second moment is defined as
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which is a measure of the extension of the wave function. For the bound state in a one-
dimensional infinite potential well, we can easily prove that the secand moment equals
(12)2 = (.2886. It has been shown that this characteristic number 1272 can be also- used
to distinguish the extended state from the localized state and intermediate state in the one-
and two-dimensional quasilattices!416.

The inverse participation ratio (IPR) is defined as
i 4
4=2| 8l (10)

which is a measure of the inverse of the number of sites occupied by the wave function.
Carini et al.%* have used the participation ratio(PR), which is the inverse of IPR, to judge
the localization of electronic states of the closed rings containing site number N=3, 4, 16.
In the present article the systems with N = 610 and 2584 are treated. Therefore IPR would
be a more proper choice than PR, because the range of which runs from 0 to 1.

Figure 1 shows the numerical results of our improved Dean's method for periodic and
disordered mesoscopic rings. The site energy €, is chosen to be zero for ordered rings, and
randomly between -W/2 and W/2 for disordered ones. We have also taken a constant
hopping matrix element t. We are considering an on-site diagonal disorder. In Fig.1 we plot
the first moment, second moment, and inverse participation ratio (IPR) versus eigenenergy
for a closed ring with N=610, where the thick lines represent the results of the periodic
rings. For guiding the eyes, the lines have been drawn longer in the figures. Fig.1(a) shows
that for the periodic ring the first moment equals 0.5, i.e., the center of gravity of wave
function for all electronic states locate in the middle of the system. This means that the
wave function has a homogeneous distribution in the system. If the periodic ring is changed
to have a weak disorder W=0.2, we can see in the same figure that the FM spread, especially
for lower and higher energy states. Fig.1(b) shows the second moment versus eigenenergy.
For a periodic ring, the SM is equal to 0.2886, exactly same as that of the one-dimensional
periodic chain and is represented by the thick line in the picture. Fig.1(b) shows that for
a mesoscopic ring with slight disorder (W=0.2), the SM start to decrease, especially for the
states located at lower and higher energy end. A smaller SM means that the electronic
states becomes more localized. This trend is coincident with the general picture of the
disordered systems, i.e. , the states in the middle of band are more extended. The same
conclusion can be drawn from Fig.1(c), which shows the IPR versus eigenenergy. The
difference is the opposite to that of the SM, the larger the IPR, the more localized the wave
function.

Figure 2 shows the results of a disordered ring with randomness W=1. It shows that
following the increase of degree of disorder, the FM, i.e., the center of gravity of the wave
function, spread wildly in the system, the SM drop drastically, and the IPR grow up largely.
This means that for such a disordered ring with W=1, the majority of the electronic states
display a stronger localization so that there are only a few states. Their SM is close to
0.2886, a characteristic number of extended states. Following a further increase in the
degree of disorder, the electronic states get more and more localized. Figure 3 shows the
case with randomness W=2, where we can see that the FM have spread homogeneously
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Fig.1. The first moment, second moment, and the IPR versus eigenenergy for a periodic ring (thick lines) and
disordered ring (dots) with atom number N=610 and W/t=0.2 are shown, where the thick lines have been
drawn longer to guide the eyes. Fig.1(a) shows that if a weak disorder is introduced the centers of gravity
of the wave function will spread around 0.5, the value of periodic ring. Figure 1(b) and 1(c), which display
the second moment and IPR respectively, show this kind of trend also. In the lower and higher energy ends
the states spread wilder, and are more localized than those in the middle of spectrum.
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Same as Figure 1, but W/t=1.0 . Fig.2(a) shows that the center of gravity of the wave function spreads
more homogeneously over the whole system than that of W/t=0.2 case. The electronic states in the lower
and higher energy regions have changed to be localized ones. Only a few states in the middle of the
spectrum their SM and IPR are still closed to 0.2886 and 1/N, respectively.
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Fig.3 Same as Figure 1 and 2, but W/t=2.0. The Fig.3(a) shows that the centers of gravity of the wave functions
have homogeneously spread over whole system. Fig.3(b) shows that for all of the states, the second
moment is under 0.1, which implies that the states are localized. Same conclusion can be drawn also from

the distribution of JPR shown in Fig.3(c).
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Fig.4 The second moment of Fermi electronic state versus randomness W/t for a N=610 disordered system.
Fig4.(a) shows the case of closed ring threaded by flux, and (b) for the open chain. In the closed ring, the
Aharonov-Bohm effect remarkably delays the decrease of SM when the disorder start to increase, then

sharply drops. The crossover between weak and strong disorder appears around W/t=1.
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over whole system. For all states, the SM drop to be lower than 0.1. This means that all
states are localized. Showing the same trend of localization the IPR has increased drastically.
We have attempted to see how this system envolves by recalculations for increasing
randomness W, from 0.2 to 2 with step AW=0.1. We found that the crossover from weak
to strong localization appears roughly at W/t=1. This point is also supported by other
calculation which be shown in the follows.

To examine further the crossover, we have computed the second moment as a function
of randomness W for the Fermi electron of.N=610 ring. The result is shown in Fig.4(a),
where we can see that the SM has a big transition at W=1. This is in consistent with above
estimation. Fig.4(b) displays the result for one-dimensional chain with same size as the ring
case. Compared to the ring case, the difference is remarkable, especially in the region of
W 1, ie., the weak localization region. It means that the Aharonov-Bohm type effects
postpone largely the appearance of localized state when the disorder increases.

In previous works?”, the relationship between persistent current and magnetic flux
has been extensively studied. However, only Carini et /.3 have shown numerically how the
participation ratio(PR) changes following the variation of flux for N=3,4 and 32 small
systems. Along the same line, we have investigated the relations between flux and SM, flux
and IPR for longer closed ring. Figure 5 shows our numerical results of the second moment
for N=610 disordered ring in the cases ®/®;=0.25, 0.35, and 0.45, respectively. From the
figures we can see that the SM spectrum change only slightly for different ®/®,. Similar
conclusion can be also drawn from the IPR spectrum. This means that the localization of
electronic states does not follow the flux change.

Carini et al.3 have chosen the participation ratio(PR) to study the localization of the
electronic state. They found that when the ensemble average is taken, the PR does indeed
have the periodicity of a half flux quantum ®,=hc/e. Because the second moment, which
is easier to be computed, is equivalent to the localization length € in describing the localization
of wave function, it is interesting to investigate the relationship between the SM and
magnetic flux for a definite electronic state. We have calculated the SM versus flux ®/®,
for the 305th eigenstate (Fermi electronic state) of the disordered mesoscopic ring with
N=610 and W/t=1. The ensemble average results of SM and IPR are plotted on Fig.6. We
can see that both display a perfect periodicity of a flux quantum. This is in agreement with
the work by Carini et al.3. The SM curve also shows a perfect sinusoild behavior when
responding to the variation of magnetic flux. The SM and IPR vibrate only in a narrow
range which explains why the localization of the whole spectrum shown in Fig.5 does not
change much with the variation of flux. We have also done the calculation on large system
(N=2584), and found same behavior. It appears that this kind of fluctuation in the
localization is an universal property of electronic states in the mesoscopic ring.

Following the important experiment discovery of the icosahedral symmetry in the
metallic alloy Al-Mn by Shechtman et al.'7, the physical problems of the one-dimensional
Fibonacci lattices have been extensively studied!®20. Many peculiar electronic properties were
discovered, one of which is the self-similarity of the spectrum!438. A very interesting question
arises if the closed ring is formed by the Fibonacci lattice. What is the difference of its
electronic properties from those of the ordered and disordered rings ?



88 J.Sci.Soc.Thailand, 21(1995)

For the transfer model of Fibonacci ring, the Hamiltonian has the same expression
as (2). The site-energy is a constant, but there are two kinds of hopping integral t, and tg,
which are arranged according to the Fibonacci sequence!“. Fig.7 shows the numerical results
of the improved Dean's method for a 15th generation Fibonacci sequence (N=610). In
Fig.7(a), we plot the first moment versus eigenenergy, where we can see that the trifurcation
structure is same as the finite Fibonacci chain®%’. At the same time, we notice that the FM,
Le., the center of gravity of wave functions, is cluster-like formed. One is around 0.38 and
another around 0.72. This kind of spectral structure is very different from that of the
Fibonacci chain, where the FM spread widely over the whole system!®, and also different
from the periodic system where the FM is a straight line (see Fig.1(a) ). Same cluster-like
phenomenon also appears in SM and IPR spectrum shown in Fig.7(b) and (c), respectively.
This kind of spectral structure could be understood if we consider that now the electrons
travelling the ring see a quasiperiodic potential in a circle. The physical condition encountered
by electrons is between the periodic and disordered ones. To illustrate this kind of peculiar
character in Fig.8 we plot two typical wave functions, one of which has SM = 0.72 and
another one SM = 0.38. Both of them display typical quasiperiodic fluctuation behavior!4.

IV. PERSISTENT CURRENTS
It is well-known that the current carried by level E at T=0 is

oE

I = - _nm

" P

In this short section we report our numerical investigation on the relations between
persistent current I and second moment SM as well as I and randomness W. Fig.9(a) shows
the persistent current versus second moment for the Fermi electronic state of disordered
ring with atom number N=610. To obtain the date, an ensemble average has been taken.
A remarkable feature of the I-SM curve is that when the second moment deviates slightly
from (12)"12 = 0.2886, the characteristic number corresponding to the extended states, i.e.,
when the system turns to be disordered from periodic one, the persistent current, undergoes
immediately a very sharp drop. This point is consistent with the physical picture that the
conducting current is related strongly and sensitively to the localization of the Fermi electron.
The above result shows that the second moment is a very efficient parameter for the
numerical study of the electronic properties of the mesoscopic rings. The second moment
is very easy calculated, which the corresponding wave function is being computed. We have
also investigated the effect of disorder on the persistent current. The persistent current
versus the inverse of randomness W is plotted in Fig.9(b), which is in agreement with the
previous work3”.
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Fig.5 Same mesoscopic ring as Figure 3, W/t=1.0. In Fig.5(a),(b) ,(c), the second moment versus eigenenergy are
plotted for ®/®,=0.25, 0.35 and 0.45, respectively. The pictures display that when the magnetic flux
varies, the second moment spectrum changes very little. As a whole, the localization of electronic states
is not sensitive to the variation of the flux.
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Fig.6 The second moment and inverse participation ratio of the Fermi electron for a N=610 closed ring versus

magnetic flux are shown in (a) and (b), respectively. Both display the periodicity of magnetic flux quantum
and perfect sinusoid behavior.
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Fig.7 The first moments, second moments, and the IPR versus eigenenergy for the 15th generation Fibonacci

ring with N=610 are shown, respectively. The site energy ;=0, the transfer matrix elements t,=-0.5, and

ty=-1.5 have been chosen. The spectrum shows a trifurcating and cluster-like structure. (see text)
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Fig.8 Two typical wave functions of same quasiperiodic system as Fig.7. The first site (n/N=0) connects with
610th site (n/N=1) to form a closed ring. Fig.8(a) shows the 202th eigenvector with E=-1.317395138425,
corresponding FM 0.72. Fig. 8(b) is for the 342th eigenvector, E=0.128703318815, FM = 0.38. They belong
to upper and bellow cluster respectively, shown in Fig.7(a) .
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Fig.9 The persistent current versus second moment, and versus inverse of randomness for the Fermi electron of
a N=610 system are shown in Fig.9(a) and (b), respectively. From (a) we can see that when the value of

SM slightly leaves 0.2886, the persistent currents will very sharply drop. It represents the strong effect of
the localization of electronic states on the persistent currents.
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V. BRIEF SUMMARY

We have extended the Dean's method of negative eigenvalue counting for the one-
dimensional disordered chain to deal with the isolated ring threaded by a magnetic flux.
The improved approach allows us obtain the high accurate eigenenergies and eigenvectors
for the systems with large number of atoms, which is impracticable by previous numerical
approach. In this paper we have used the new method to accurately compute the eigenvalues
and eigenvectors of two finite systems with N=610, and 2584 respectively, on a personal
computer. Satisfactory numerical results are obtained. For investigating the localization of
electronic states of the studied closed rings, the first moment, second moment, and inverse
participation ratio have been computed for three kinds of systems, i. e., periodic, disordered,
and quasiperiodic ones. The numerical results show that the increase of the randomness W
causes the electronic states to be more and more localized. This trend is same as the case
of disordered chain but the process is far slower, this being due to the Aharonov-Bohm type
effect. The calculation shows a crossover from weak to strong localization at roughly a
randomness value of W=1. For the quasiperiodic ring, the 'trifurcation structure of the
energy spectrum is obtained, same as for the case of quasiperiodic chain. The cluster-like
structure of EM, SM, and IPR spectrum has been found for the first time, which is very
different from that of the quasiperiodic chain. The relationship between the persistent
current I and SM, I and randomness W are numerically studied. The second moment shows
itself to be a sensitive and efficient parameter for the numerical study of the electronic
properties of the mesoscopic rings.
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