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ABSTARCT

The dynamic behavior of a model for the continuous culture subject to product inhibition is
investigated theoretically in terms of multiplicity and stability of steady states and existence and
stability character of limit cycles. It is shown that bifurcation of periodic solution cannot occur from
the washout steady state of the model system. At the point of bifurcation of periodic solution from a
nontrivial steady state, however, an increase in the substrate concentration must decrease the specific
growth rate and increase the substrate consumption rate. Various boundary conditions are derived
which delineate the parameter space into regions of dynamically different behavior. The predicted
types of behavior are then illustrated by numerical computation of cells and product concentration
trafectories.

INTRODUCTION

Basically, microbial kinetics have varied in diverse ways from a model due to Monod
fashioned after Michaelis-Menton kinetics for single enzyme-substrate reactions, in which
the yield coefficient Y is assumed constant. The most obvious departure from the predictions
of Monod model is in the variation of the stoichiometric coefficient Y, as in the work of
Agrawal et al. [ 1] for example. Dynamic behaviors of the continucus fermentation have
also been studied theoretically by several workers for different types of specific growth rate
function. In some fermentations inhibition of microbial growth is observed at a high
concentration of its product as in, for example, the lactic acid fermentation [ 2 ]. A model
for such a chemostat in which the growth of a microorganism is inhibited by its product
was presented and theoretically studied in a paper by Yano and Koga [ 2 ], where the
specific growth rate was assumed to have the form

n(P) = [T
[1+ (F/Kp)*]

and the single - vessel continuous fermentation system is described by the following system
of differential equations:
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dxX = p(P)X - DX (1)
dt
dpP =[nl + n2u(P)]X - DP (2)
dt

in the case that the growth limiting substrate S is supplied in sufficient amount so
that the concentration change in S has little effect on the rates of change in the cells or
product concentration. Here, X ( t ) denotes the cells concentration at time t; P (t) the
product concentration at time t; D the dilution rate; and hl and h2 are constants for
product formation.

Lenbury and Chiaranai [ 3 ] later carried out a theoretical study of the two dimensional
model with hl = 0; namely

dx = puX - DX X(0)= X0 (3)
dt

dp = uX - DP P(O)= PO (4)
dt Yp

If Yp is assumed constant, it can be shown [ 4 ] that the system of Eqns. (3 ) and
(4 ) will not admit periodic behavior. It was also shown by Lenbury and Chiaranai [ 3 ]
that if Yp is a linear function of the product concentration, sustained oscillation in X and
P is possible due to a Hopf bifurcation in the system of differential equations which
comprises the model. Some recent studies on these types of models can be found in the
work of Alsholm [ 5 ] and that of Cheng-Fu [ 6 ]. In this paper, we shall therefore consider
the system of Eqns. ( 3 ) and ( 4 ) with

Yp = A+BP (5)
where A and B are constants.

Following the work of Poore [ 7 ] and Uppal et al. [ 8, 9 ] and later that of Agrawal
et al. [ 1] on dynamic behavior of continuous stirred tank biological reactors, the criterion
for periodic behavior of continuous cultures originating from Friedrich's [ 10 ] sufficient
condition for the existence of limit cycles will be derived. We adopt for simplicity the
function

W = po (1 + P/ k,-P2/ k) (6)

where m0 , km, and kp are positive constants, which exhibits the same characteristics
as the usual product inhibition model [ 2 ] in the range where the function has positive
value. In fact, the function in ( 6 ) results from linearizing the exponential term in the
one hump' product inhibition model

[T =k(P+1)exp(-P/K) (7)

Different types of dynamic behavior of the continuous biological reactor subject to
product inhibition, modelled by Eqns. (3) and (4 ) with (5 ) and (6 ), shall be classified
in terms of a 'modified Damkohler number' and two other system parameters.



J.5¢i.Soc. Thailand, 20(1994) 45

MATERIAL AND METHOD

Introducing for convenience a new set of variables , namely ; x, = X /| kaP
(0) 1, x =P/km,T=Dt,Da=u(0)/D,M(x2)=p,
(k%) /1(0) ,y(xz)=Yp(kmx2)/Yp(O),a=km2/kp,B=-A/Bkm,the
Eqns. ( 6 ) through ( 9 ) become

dx, = x; + D, M(x,) x, (8)
dT

dx, = X, + DaM(xz)x1/Y(X2) (9)
dT

y(x) =(b-x)/b (10)
M(x,) =1 + x, - ax)? (11)

Letting

L(x) =M(x)/y(x) (12)
fo(x,x%x,,Da) = -x; + DaM (x;) x, (13)
(% ,x,,Da) = -%X, + DaZ (x,) x (14)

Eqns. (8 ) and (9 ) may be recast in vector form as
dx/dT = f(x,Da) (15)

We investigate the dynamic as well as steady state behavior of the system described
by Eqn. (15 ). We are particularly interested in the effects of the yield expression and the
parabolic specific growth rate on the existence of limit cycles and their stability.

Solving the equation
f(x,,Da) = 0
forx, = (x4 ,x,), we obtain the steady state solutions as
(a) trivial ( washout ) steady state : Xg = X, = 0,
(b) nontrivial steady state (s ) : X3 = y(Xy) %Xy, M(x,) = 1/ Da.
Let ] be the Jacobian matrix of f evaluated at the steady state of interest,

-1 + DaM(x,) Da M (x, ) x4
J(x,,Da) = (16)
Da$S (xg,) -1 + Da §' (x,) xy

where the prime denotes differentiation with respect to x2. The necessary and
sufficient conditions for local stability of a steady state are that eigenvalues have negative
real parts, which are equivalent to

det] > 0 and tr] < 0



46 J.S¢i.Soc. Thailand, 20(1994)

At the washout steady state,
tr J = -2 4+ Da (17)
det ] = 1 - Da. (18)

It follows therefore that the washout steady state is stable if Da < 1 and a saddle point
for Da > 1.

For the nontrivial steady states, xs 0,
det ] = -D, M'(x,) xg (19)
and Tr ] = -1 + DaZ (xy5)xy4 (20)
Therefore, the necessary and sufficient conditions for local stability are
M (x,) < 0 (21)
and §' (xg < 1/ Daxy (22)

Now, Hopf bifurcation occurs at a steady state xs* if ] evaluated at xs* has purely
imaginary eigenvalues, which requires that

det] > 0 and tr] = 0 (23)

Due to (17) and ( 18), the two conditions in ( 23 ) cannot be satisfied simultaneously
for the washout steady state. Therefore, bifurcation of periodic solution cannot occur here.

For the nontrivial steady states, it is possible to prove the following theorem.

Theorem1 A necessary condition that a Hopf bifurcation of periodic solution occurs from
a nontrivial steady state of the system of equations ( 8 ) and (9 ), with (10 ) and ( 11),
is that B < 0.

Proof For a nontrivial steady state, condition ( 23 ) for Hopf bifurcation becomes

M' (x,") <0 (24)
and D, Y (x," ) x4* - 1 = 0 (25)
or, equivalently
T (xs2*) = 1>0 (26)
X *Da

Conditions ( 24 ) and ( 26 ) state that, at the point of bifurcation, an increase in the
substarte concentration must decrease the specific growth rate and increase the substrate
consumption rate. This can be explained by the graphs depicted in Figute 1 which shows
possible regions of bifurcation for different specific growth rate and substrate consumption
rate curves.

Since y (x,) = M(x,)/Z(x,), conditions ( 24 ) and ( 26 ) imply that

dy = [M(X)Z(%)-Z ()M (x)/E(x) < 0
dt
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which means that the yield coefficient must decrease with the substrate concentration.
Hence, no periodic solution is possible if B 2 0.

As a result of the above theorem, we will henceforth assume that B < 0 ( equivalently
B > 0). Applying conditions (24 ) and (25 ) to the functions in Eqgns. ( 10 ) and (11),
we find that for positive det ] the following condition must be satisfied

1 - 2ox,* < 0 (27)
while tr] = 0 is equivalent to the requirement that
g(xg")= (1-0B) (x" P +2x%x5"-p=0 (28)
the other factors in tr | being always positive.
The function g ( x,*) will have two distinct positive real roots x,* = 1 and
1, with r, < 1 if
/8 > op -1 >0 (29)

On the other hand, if af - 1 < 0 then g(x,*) has only one positive real root ;.
Also, if af - 1 < O then from Eqn. (28)

xzs*=B/Z-(aB-l)(xsZ*)2/2>B/2>1/2a
Therefore, det ] = 2ax,* - 1 > 0 when of - 1 < 0,in which case no bifurcation
occurs. In other words, M' ( x,* ), and correspondingly det ] , changes signs when
of -1 =20 (30)
Finally , onset of instability of steady states x is realized when tr] = 0and
(tr]) = 0 which, from Eqn. ( 28 ), occurs when
af? Bp-1=0 (31)

STABILITY OF LIMIT CYCLES

Applying the Poincare's criterion and Friedrich's bifurcation theory [10], we
may derive the following condition for the stability of the periodic solution which bifurcates
from the point x, = x,* :

BE" (x,° )%yt < I (%" ) {1+ 4 M (x," )xg"/BM(x") } (32)

According to Agrawal et al. [ 9 ], it can be shown that if a bifurcated periodic solution
surrounds an unstable critical point, it is stable. If it surrounds a stable critical point it is
unstable. We are now in the position to prove the following theorem.

Theorem2 The limit cycle which bifurcates from the 'upper' bifurcation point x,* = r,
is always stable, while the limit cycle which bifurcates from the lower' bifurcation point
X,* = 1, is stable if

9 [1-B(op-1) 1"r? < (B-r)?(3-14ar)/(3-6ar) (33)
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Proof

Evaluating M", X" and X" and substituting into Eqn. ( 32 ), we arrive at the
following stability condition :

A (1-aB)x,* + 11 (xM2 < (B-xy,")% (8- 14ox,*) (34)
(3-60ox,*)
From Eqn. ( 28 ), we have
(1-aB)r, + 1 = = [1-B(af-1)] (35)
Therefore, for x, = r,, the left hand side of the inequality in ( 34 ) reads

9L 1-B( ap-1)]"r,2

which is always negative. On the other hand, we need have 1 - 2ax,* < 0 for bifurcation,
in which case we must have

3 - l4ax,” < 3 - 6ax," < 0
This in turns implies
(8-14axy,")/(3-6ax,") > 1

and therefore the right hand side of ( 33 ) is always positive. This means that a limit cycle
bifurcating from the bifurcation point x,* = 1, is always stable.

Now , for the point x,* = r;, the stability condition (35) for the limit cycle
becomes

9 [1-B(oB-1) 1V2r? < (B-1,)*(3-14ar)/(3-60r,)
which is inequality ( 33 ).

Substituting the appropriate root rlin (33 ), we find that a loss of stability of the

periodic solution which bifurcates from xs2* = rl occurs when
B = (1+c)(-14c2+68c-54)/(3c?-38c+27) (36)
where ¢ = [ 1-B(ofp-1)]V2

LOCATIONS OF BIFURCATION POINTS
Letting w be the 'modified Damkohler number' defined by

w =1-1/Da (37)
we have from ( b ) that
w = o (x,)? - xg, (38)
the graph of which can be seen in Figure 2. We see that w = Qat x;, =0 and 1/ a.

By condition ( 29 ) for two positive real roots we must have
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B(aBp-1) < 1 and of > 1
so that
(ap-1)/c® < P (af-1) < B
Thus, we have
nr, = B/(af-1) > 1/a? (39)

which means that if r; < 1/ a then r, > 1/ a.On the other hand , if r;, >1/a
then r, >r; > 1/ 0. In other words, r, is always greater than the value 1/ o, while
1, may be either less than or greater than that value. Substituting 1/ o forx,* in Eqn.
(31), we find that r, will be equal to 1/ a when

of =1+2a (40)
1+ a

If of is less than the quantity on the right of Eqn. (40 ) then r, <1/ As w increases,
X, increases until the value r; is reached where tr] = 0, then bifurcation occurs at this
critical value w,* of the modified Damkohler number . If the parametric values o and B
satisfy condition (33 ) also, then the bifurcation originating at this lower critical modified
Damkohler number w1* is stable. Between the two critical modified Damkohler numbers
w,* and w,* at which points tr] = 0, the steady state is unstable which is represented
by a dashed line, while the stable limit cycles existing between these two w*'s are denoted
by dots. The distance between the dot and the dashed line approximately represents the
average amplitude (in x, ) of the limit cycle surrounding the unstable steady state.

BEHAVIOR CLASSIFICATION

From the above discussions, we have found that the two system parameters o and
B determine the stability regions of bifurcating periodic solutions. Figure 2 shows the
(o, B ) plane divided into 5 regions by the graphs of Eqns. (30), (31), (36 ) and
(40 ) . Following the representation used by Uppal et al. [ 10 ] we also show in Figure
3 typical steady state and limit cycle plots of x, vs w for each region. There can be as
many as eleven different types of qualitative phase plane which are possible for different
ranges of the modified Damkohler numbers w. These are labelled A through K in Table 1.

In region I, there is no bifurcation (aB? - p- 1 > 0 ). Three types of phase plane
are possible : A, B and C. The type A shows only one stable washout steady state. The
type B shows one stable washout, one unstable normal and one stable normal, while the
type C shows an unstable washout ( saddle point ) and a stable normal.

In region II,, off? - B-1 > 0 and so bifurcation occurs. Since this region is above
the graph of Eqn. (36 ), unstable bifurcation originates at the lower modified Damkohler
number w,*, with stable bifurcation originating at the upper modified Damkohler number
w,*. This region is also bounded below by the graph of Eqn. (40 ) and therefore r; >1/
o. Thus, in this region, two cases are possible, Ila and IIb, permitting seven types of phase
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TABLE 1. Typical phase plots.

A B CDEFGH I J K
Stable washout (node) 1 1 0 0 0 0 1 1 1 1 1
Unstable washout (saddle pt.) o 0 11 1 1 0 0 0 O O
Stable normal (node or focus) 0 1 1 1 0 1 0 1 0 1 0
Unstable normal (saddle pt.orfocus) 0 1 0 0 1 0 1 1 2 1 2
Stable limit cycle o 0 0 11 0 0 1 1 00
Unstable limit cycle o 0 0 1 0 1 0 1 0 1 0

Total invariants 1 3 2 4 3 3 2 5 4 4 3
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functions.
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Fig. 4 Computer simulation of the system model with & = 1.0, p =1.6 and Da = 0.61 (Region II, type F)
showing solution trajectories tanding away from the unstable limit cycle.
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Fig. 5 Computer simulation of the system model with o =0.273997, B = 3.9 and Da = 1891370559 ( Region
IV, type I) showing solution trajectories pushed away from the saddle point towards the stable limit cycle
or the stable washout steady state.
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plane, A through G. The type D shows one unstable washout ( saddle point ) , a stable
normal surrounded by one unstable limit cycle inside a stable one which bifurcates from
the upper modified Damkohler number w,*. The type E shows one unstable washout, one
unstable normal ( focus ) and a stable limit cycle which surrounds the steady state. The
type F shows one unstable washout, one stable normal and one unstable limit cycle. The
type G shows one unstable washout and one unstable normal.

Region III is bounded below by the graph of Eqn. ( 36 ) which means that the limit
cycle bifurcating at the lower modified Damkohler number is still unstable. It is bounded
above by the graph of Eqn.(40) which means that r, lies below the value 1/a here and there
can be two and below by that of Eqn. ( 36 ). Here, rl lies below the value 1/ a and
there can be two cases, IIla and IlIb, in this region admitting eight types of phase plane,
A through C, E, and H through K. The type H shows one stable washout, one unstable
normal and one stable normal ( focus ) surrounded by an unstable limit cycle inside a stable
limit cycle. The type I shows one stable washout and two unstable normals one of which
is a focus surrounded by a stable limit cycle. The type ] shows one stable washout, one
unstable normal, one stable normal and an unstable limit cycle. The type K shows one
stable washout and two unstable normals.

Region 1V is one of stable bifurcation at the lower modified Damkohler number w,*
since the stability condition (33) is satisfied . There, five types of phase plane trajectories
are possible, A through C,E and L

Finally, in region V. af - 1 < 0 and no bifurcation occurs. Tr | becomes positive at
X, for which M' ( x, ) < 0 so that the nonwashout steady states are always unstable.
Thus, there are 3 possible types of phase plane in this region, A, G and K.

Figure 4 shows computer simulation of the system model foraa = 1.0 and B = 1.6,
where the solution trajectories of the type F are seen to tend away from the unstable limit
cycle whose approximate position is represented by the dashed line. In Figure 5, a computer
simulation of the system model is presented for oo = 0.273997 and B = 3.9 in region
IV and Da = 1.891370559 of the type I, showing the predicted three steady states, a stable
washout, a saddle point, and an unstable focus surrounded by a stable limit cycle. Trajectories
are seen to be pushed away from the saddle point, either towards the stable washout steady
state or towards the stable limit cycle.

To summerise, typical plots of all eleven possible types of phase space, labelled A
through K in Table 1, are depicted in Figure 6.

CONCLUSIONS

We have theoretically investigated steady state multiplicity and existence of limit
cycle behavior of a continuous bio-reactor subject to product inhibition modelled by two
mass balance equations over cells and product, in which the supply of substrate is assumed
to be of a surplus amount so that the concentration change of S has little effect on the
rates of change in X and P.
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It is found that bifurcation to periodic solutions can occur only at the nontrivial
steady state and not at the washout steady state. At the nontrivial steady state, bifurcation
of periodic solution occurs only if an increase of the substrate concentration leads to a
decrease of the specific growth rate and an increase of the substrate consumption rate.
Asymptotically stable limit cycles exist for a significant range of the modified Damkohler
number at appropriate system parametric values. While it is possible for bifurcation to
originate at two modified Damkohler numbers w,* and w,*, the one originating at the
upper modified Damkohler number w,* is always stable.

Employing a simple product inhibition form of the specific growth rate which results
from linearizing the so called " one hump " function involving two parameters, phase plane
trajectories have been completely classified and numerical examples given. It was also
shown that for bifurcation to occur ,the yield coefficient must decrease with the substrate
concentration justifying our use of a simple linearly decreasing yield coefficient Y_ (P )
which was sufficient to allow limit cycle behavior. In practice, the yield coefficient is
known to vary for many organisms [ 1 ] and various researchers have adopted such linear
form for the yield expression in their works with models of continuous fermentation processes
[ 2, 5]. It is also reasonable to expect that a high product concentration will have an
inhibitory effect on the yield.

Introducing the modified Damkohler number, our analysis shows that, in changing
its value, the product inhibition model considered in this paper yields five dynamically
different regions in the parameter plane and up to a combination of five possible invariants
in a phase plane. Such high variety in dynamic behaviour which the model can simulate
indicates how, inspite of its simplicity, the model is able to give new and valuable insights
to the complexity of continuous microbial cultures.



J.Sci.Soc. Thailand, 20(1994) 59

ACKNOWLEDGEMENTS

Appreciation is rendered to the National Research Council of Thailand and Thai Oil

Company Limited for their financial support.

REFERENCES

1.

P. Agrawal, S. Lee, H. C. Lim and D. Ramakrishna (1982). Theoretical Investigations of Dynamic Behavior
of Isothermal Continuous Stirred Tank Biological Reactors. Chem. Engng. Sci. 37, 453 - 462.

T. Yano and S. Koga (1973). Dynamic Behavior of the Chemostat Subject to Product Inhibition. ]. Gen. Appl.
Microbiol. 19 (2 ), 97 - 114 .

Y .Lenbury and C.Chiaranai (1987). Bifurcation Analysis of a Product Inhibition Model of a Continuous
Fermentation Process.Appl. Microbiol. Biotechnol 25:532-534.

Y. Lenbury and C. Chiaranai (1987). Direction of the Sustained Oscillation Trajectoriy in the Cell - Product
Phase Plane Describing Product Inhibition on Continuous Fermentation Systems. Acta Biotechnol. 7 (5 )
433 - 437.

P. Alsholm (1992). Non - existence of periodic solutions in a model of continuous fermentation. Proc. R.
Soc. Lond. A 438, 311-318.

]. Cheng-Fu, Existence and uniqueness of limit cycles in continuous cultures of microorganisms with
nonconstant yield factor. Preprint, Universita degli studi di Bari, Italy.

Poore, B. A. (1973). A model Equation Arising from Chemical Reactor Theory. Arch. Rat. Mech. Anal. 52,
358 - 388.

A.Uppal, W. H.Ray and A. B. Poore (1974). On the Dynamic Behavior of Continuous Stirred Tank Reactors.
Chem. Engng. Sci. 29, 967 - 985.

A. Uppal, W. H. Ray and A. B. Poore (1976). The Classification of the Dynamic Behavior of Continuous
Stirred Tank Reactors - Influence of Residence Time. Chem. Engng. Sci. 31, 205 - 214.

10. K. O. Friedrichs, Advanced Ordinary Differential Equations. Gordon & Breach, New York 1965.





