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ABSTRACT

A class of formal power series generalizing Hurwitz series and series satisfying the
Eisenstein condition are considered. This class contains a subclass of power series satisfying
linear differential equations with polynomial coefficients not having 0 as one of their
singularities. Basic algebraic properties are investigated, especially an Eisenstein-like criterion
is established.

INTRODUCTION

Eisensteinian series (or series satisfying the Eisenstein condition) are formal power
series of the form X ¢, z?/I* where ¢, are rational integers and I is a fixed positive integer.
It is well-known,! that algebraic power series with rational coefficients are Eisensteinian;
see ref.2 for a generalization. Hurwitz series are formal power series of the form X
c,Z%n!, where c, are rational integers. They were first introduced by Hurwitz? in
connection with his work on the coefficients of lemniscate functions, and have since been
subject to a number of varied investigations. One obvious yet interesting feature of Hurwitz
series is that itself and all its derivatives take rational integral values at the origin. In
an attempt to establish an Eisenstein criterion for Hurwitz series, Carlitz* was led to

the class G, of power series of the form I ¢ z%/[n,s], where ¢, are rational integers,
s a fixed nonnegative integer, and

s} = MO39 L o) - nr 03] = 1

We now introduce our object of study. A formal power series is said to be an
Eisenstein-Hurwitz-Catrlitz series of (s)]) type (or is said to belong to the class E(s;I)) if it
is of the form I ¢ z%I"[n,s] , where c, are algebraic integers, s and I (}1) are nonnegative
rational integers. We are interested in this class of series not only because of its pathological

7

nature, ie. its generalized form over the Eisensteinian and Hurwitz series, but we were
originally led to them through our study of power series solutions of certain linear differential
equations. Indeed, it is not difficult to verify that if a power series y with algebraic
coefficients satisfies a linear differential equation of the form

P, ® +.+ Py2ly’ + Polz) = 0,



154 J.Sci.Soc. Thailand, 16 (1990)

where P{z), i=0,1,....,K, are polynomials with algebraic coefficients, and if Pg(0) # 0,
then yeE(0;]) for some fixed positive integer 1; see ref., 6 for further related resuits. It is
therefore worth-while to examine basic algebraic properties of this class of power series,
particularly, in relation to the Eisenstein criterion, its ancestral birth-place. Of course, some
of the results given below can simply be deduced from those in Carlitz? by a change of
variable, because f(z)eE(s;l) if and only if f(Iz)eG,, but contains a few errors and the
Eisenstein condition deducible from that is somewhat weaker than what we shall
give in our second proof of Theorem 3 below. The exposition of this paper is self-contained,
except for the two proofs of Theorem 3 where we quote from ref.2 a few lemmas whose
proofs are too long to reproduce here.

METHODS.

First, we prove a formula of Zeipel (Lemma 2), which is mentioned without proof
in Carlitz.*

Lemma 1. Let p and k be nonnegative rational integers. Then
dyi= 1 &b -1

+1 +1

1 ETY - PO

1PN LR

Proof. Subtracting the second row from the first row, the third from the second,..., the
(k+1th from the kth row, we get

P P

4 - 0o -& . "y
0 _p+l p+1
PPt

+k-1 +k-1
0 -PT5TH o =PI

+k +k
LEPTY - P

Expanding this last determinant by the first column, we get

d = dy_y
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Continuing recursively, we obtain
_ P
dk—dk_1=...=d1=1(1) =1
1 Pt
Lemma 2. Let m and k be nonnegative rational integers, 0 {(i{m. Then

det [ Dles=0,..k = (XD TR tm et kltm-i k.

1+s 1

Proof. Writing D for the determinant under discussion. Then

CSathdtp <[y (Ppdth LR

@l mrhitl Lo hith

(L) AL L madth

=[(T) T D

(mi+1) (rni+1)(m+1—i) (mi+1)(m+kl—i)

(m;rk) (m;rk)(m+1k—i) (mrk)(m+kk—i)

Factoring a common factor from each row, and making use of Lemma 1, we get

)(m+1) (m+k)

DO (7], as desired.

(it = @

Remarks. Since D is a rational integer, then [mk]/[i,k][m—ik] is a rational integer.

Two simple observations about the class E(s;]) are in order. For nonnegative integer s

and positive integers I, J, we have

Es) &  E)) if 1.
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For positive integer I and nonnegative integers st if s(t, then
Es) < Eg.

Note also that E(0;1) is the class of (generalized) Hurwitz series, and if we define [n,—1] = 1,
then E(—1;]) is the class of (generalized) Eisensteinian series with parameter I.

Theorem 1. The class E(s;]) is closed under addition, subtraction and multiplication, when
s is a nonnegative integer and I is a positive integer.

Proof. That E(s;l) is closed under addition and subtraction is obvious, so we need only check
the multiplication. Let

flz) = T 2,2°[ns] , gz) = £ bz""[ns]
n=0 n=0

be elements of E(s;l), and so a, and b, are algebraic integers. Putting

Hz)g(z) := Eo S
n=
then
n
G = X vai ‘ ‘bn—i
I'i,s] I"—i[n—i,s]
Therefore,
n
*[n,s)c, = EO ab,_; [ns)is]n—is] .

By Zeipel’s formula (Lemma 2), each term in the sum on the right hand side is an algebraic
integer and hence f(z)g(z) belongs to E(s;l).

The closure property does not quite hold for division in E(s;l), but it is close
enough as we shall see next. We need yet another definition.

Definition. A power series T ¢, z" is said to be of order rif cy=cy=...=c,_;=0, but ¢, #0.

Theorem 2. Suppose f(z) and g(z) are elements of E(s;I) and f(z) is of order r, while
glz) is of order)r. Then there exists a natural number ¢ such that cg(z)/f(z)eE(r+s;lc)

and so cg(cz)/f(cz)eE(r+s;]).
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Proof. Since f(z)eE(s;]) is of order r, then it can be written as
f(z) = mE=0 fner Z0H/I+ [mtrs] = 201 rs]~! mEO £z, sV m+1,8],
where all f; (i=r,r+1,..)) are algebraic integers, £ #0. Since
[r,sl/[m+1,s] = [m,r—1}/[m,r+s],
then f(z) can be rewritten as

o
f(z) = 27T "[r,s]"1 L anzmm(mr+s]
me

where the a_ are algebraic integers, and ag#0. Notice also that the series on the right
hand side belongs to the class E(r+s;l). In the same manner, we can write

gz) = z’“I“[r,s]‘1 kEO dkzk/Ik[k,r+s] s
where all dj are algebraic integers. Let

g2)f(z) = 'EO gsz/Ij[j,r+s],
j=

where the g are now algebraic numbers. Then equating the coefficients, we get

k
EO apn8im [Kr+slmr+silk—mr+s] = d (1

For k=0, we see that aygy = dj, which is an algebraic integer. For k=1, we have
apg1 + aigy = dy, an algebraic integer ,

so that a‘(z)gl is algebraic integral. Now we proceed by induction. Assume that agg,

a%gl, ey alégk_l are algebraic integers. From (1),

k
apg + 21 a8y mlk r+s)/[mr+s)[k—m,r+s] = d,, an algebraic integer .

Using Zeipel’s formula and the induction hypothesis, we see that ak61gk is an algebraic
integer. Replacing a; by c:=|Norm(a0)| , which is a natural number, we still get an

algebraic integer ck“gk. Consequently, cg(z)/f(z)eE(r+s;lc), as required. The last assertion
follows immediately from this.

Corollary 1. If (z), g(z) are elements of E(s;l), f(z) is of order r, and g(z) is of order
at least 1, then there exist positive integers ¢ and C(1) such that cg(z)/f(z)eE(1;5+C).
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Proof. By Theorem 2, there exists a natural number ¢ such that
cgl2)lf(z) = 420 bjzi/Iid[j,s+r] :
j=

where the b, are algebraic integers. For a positive integer C)r, note that

ljs+Clls+r) = Y (HED CEST) (o

Now choose C large enough so that (C—nli/lid is rational integral for all j, the corollary
then follows.

RESULTS
In this section, we prove the following result.
Theorem 3. Let f(z) = I a z" be a power series with algebraic coefficients. Suppose

f(z) satisties an algebraicnzquation of the form
Pc@fXz) + .. + Py(2kz) + Pylz) = 0,

where K is a natural number, P(z) (i=0,1,...,K) are elements of E(t;l), P(z)#0, and ¢,
I(}1) are nonnegative rational integers. Then there exist natural numbers ], ¢ and a
nonnegative rational integer r such that cf(z)eE(r+t;]).

Remarks. We give two proofs for this theorem. The first proof resembles the proof of
Theorem 5 in Carlitz;* this proof is short but it can only provide the existence of r)1.
The second proof though longer yields r)0, which is best possible in the sense that
r=0 can actually occur as can be seen by taking a special case of Theorem 2. '
For the first proof, we need a lemma of Carlitz® whose proof is a slight
modification, via Theorem 1 above, of Lemma 1 in ref.2 so we omit it here.

[+ ]
Lemma 3. Let f(z) = I a,z" be a power series with algebraic coefficients. Suppose

f(z) satisfies an algebralxc‘:=equation
PK(Z)fK(z) +..+ Py@f(z) + Pylz) = 0, Pr(z)#0,

where P(z), i=0,1,...K, are elements of E(t;I), then there exist nonnegative integer s and
positive integer ] such that Kz):= EO ag,n.1Z0 satisfies
n=

K
kzo 25+, (2)Fz) = 0,

where the By(z) are elements of E(t)), B(z)#0, By(z) not divisible by 2+1 and By2)
of order at least s+1.
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[}

First proof of Theorem 3. By Lemma 3, Kz) = . ag,n4+12" satisfies an algebraic
equation of the form "=
K :
L @Bz =0, 2
k=0

where, for some suitable natural number r)s+1 depending only on s,

Cyl2) = j=r§1 Co;ﬁi/]j[j,t]+j§r Co’sz/]i[j,.t]
-1, ©
- j=§&—1 c o @Mt + 27 [r,t] ! mEO ¢ 0 m+Z LI r+m,t]
-1, ©
= j=)s:+1 ¢ @Mt + 2 "] ~1 m2=0 ¢ 0 m+r2m,r— 111 [m,r+t]
= ‘El ¢’ jzl'/]i[j,t] + 207! ;_:, Corm+ 2™ [m,r+t]
j=s+1 m=0
Ci@ = ]gr c i,zJ/Ji[j,t] = 27t} 1 mgocm;-r zm[r+m,t]/]M[r+m,t]cr,#:0,
= 2T " rt] ! m; ¢’ 2P [m,r—[]/J™[m,r+t]
P

7

=0 m+r

= 27 rt]~! EO Cn 2T [m,r+t] , ¢, #0
m

and for k=23,.. K

o

C2) = Cdlide 2l v o
(2 j=r§<_1 C’il Mil,tl= 29 "[x,t] i_ c rzm[r,t]/Jm[m+r,t]

m 1 k,m+

i le . c;,mﬁ.zm[m,r—1]/]m[m,r+t]

oo
=207t T o Z™Immyr+t]
m=k-1
I ’ ! . .
here ¢, ; €. ; € ; COmip Cmtv Ckmer A€ algebraic integers.

b,z%[n,r+t] , where b /[nr+t] = a

itgg ™
[an]

Write F(z) = s+n+1.

Equating the coefficients of z' in (2), we get

cor + by = 0,
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and so by is an algebraic integer. Equating the coefficients of z+1, we get

2
€041 ¢y <1159 2,+15
ML+t + [1r+t] + T, r+¢] + M+l © 0,

and so }c?b1 is an algebraic integer. Equating the coefficients of zf+2, we get

COrv2 G2, Cre1by N ¢2,r+12b1byg
PI2,r+t] [2,r+t] I+ 1 r+t] P12,r+t] N r+t][ L r+t]

2 3
20420 , Bre2%0 _ 0,
12,1+t Pl2,r+t-

]

and so using Zeipel’s formula, we see that ]Zcsz is an algebraic integer. Continuing
2n+1
r On

by induction in this manner, we have that J°c is algebraic integral for each

n)1. Replacing ¢, by c := |Norm(c,)|, which is a positive integer, we see that J°c2n+1b :=

b, is algebraic integral for all)1. Thus

n

N
=]
+

f(z)

&
=

a
0

Me iMe
[e]

n+s+1Zn+S-H

¥
=1
N
=1

M8 1148

’
+ b zn+s+1/]nc2n+1[n}r+t]
n

=]
i
(=t

0
® b Jstlc2stln 441 r+t] n+s+1
y On ’ ) z

n

]
[
o
o
N
-]
+

n=0

=}

[n,r+t] Jptstlc2nts+lin 4541 r+t]

oo
+ EO Erpss 1222t [n s+ L+t
n=

=

=]

I
Mo
[\¥)
N

(=3

where the f 1 are algebraic integers. Let ¢" be a natural number such that c*an
[nr+t] are algebraic integral for n=0,1,....,s and c?|c’. Then it is easily checked that
¢ fz)eEr+t]c). Writing ¢ for ¢ and ] for ]c*, the theorem is thus proved.

To give the second proof, we need two more lemmas whose proofs are omitted
for they follow the same lines as Lemmas 2,3,4 in ref.2 with appropriate modifications via
Theorem 1 above; these lemmas are due to Popken’.

Lemma 4. Let K be a natural number. Among K+2 power series

fi2) = £ a2 G = I gz® (k=0,1,...K)
n=

g

0

suppose there exists an algebraic relation

K
T G = 0.
k=0
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Let r be a nonnegative rational integer so chosen that the series

K
z ka(z)fk_l(z) has order r. Then there are K+1 power series
k=0

with the following properties:

(i) If each Gy(z) is an element of E(s;l), then each Hi(z) is an element of E(s+2rl;)
for some fixed natural number I;.
(ii) The following relations hold

K K 1
2 H 2)f2) = 0, I KHOET 00, (4)

k
oo
where £(z) = I a2z

Lemma 5. Let K be a natural number and let
fiz) = £ 22" G2) = T guz® (k=0,1,..,K)
n=0 n=0
be power series. Suppose there exists an algebraic relation

K
T Gz = 0.

k=0
Set
K
k+1
T:= L k
ud) gk020
Then
Ta, = - ¢ 8iq; 4qy (n)1),
(q)

where the sum on the right hand side extends over (k+1)-tuples of nonnegative integers (q):=

(qord1r-++9i) subject to
k

When k=0, the sum is a single term goq, = gon-
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K
Second proof of Theorem 3. Suppose f(z) satisfies kEO Pk(z)fk(z) = 0,
where each
P (z) = kEO Pz (k=0,1,.....K)

is an element of E(t:I). We can assume without loss of generality that the algebraic equation
is of lowest character in the sense that £(z) is not a solution of any algebraic equation of degree
smaller than K with coefficients belonging to the class E(t;I). Thus there is a rational integer

r()0) for which the series
K
T kP (2)fk1(z)
k=0

has order r. By Lemma 4, there are power series Hy(z), k=0,1,..... K, as in (3) such that the
algebraic relation in (4) hold, where

[o o}

fz) = Za, z":=
n=0

=]
éMB

b z", say.

n

Since each Py (z)eE(t;]), then by Lemma 4 also we know that each Hy(z) is an element
of E(t+2r;l;) for some fixed positive integer I;. Further, by Lemmas 4 and 5, we find that

K K k-1
T := I khgbk-! = £ kH (OF”" (0)0, and
k=1 k=1 r

Tb, = — £ hy by by ()1),
n (CI) 90 4 q

where the sum on the right hand side runs over the same range as described in Lemma 5.
Since each Hk(z)eE(t+2r;Il), then there is a natural number J such that Jby, Jhyobg, [n,t+2r]
Johy bg (k=0,1,...,K; n)1) all are algebraic integers. We now proceed by induction. For n=1,
we have

K
Tby = — I hyby

and so by the definition of J, we find that [1,t+2r]Tb, is algebraic integral. For n=2, we have

sz = - ((EI) hkqobqq bqk

where the sum extends over integers subject to

0 g kg K} 0 < qO g 2} 0 < q] < 1 (j=1727...,K), q0+q1+“'+qk = 2.

Using the result of the first case, the definition of ] and Zeipel’s formula, we see that [2,t+21]
(J'T)3b, is an algebraic integer.
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Now assume [n,t+2r]JT)?*~1b_ is algebraic integral up to n, we wish to show that
[n+1,t+2c)JT)20+1b_, , is also an algebraic integer.
From the recurrence relation

b b

__ =
Toyp = = (5 hg by b

where the sum extends over O (k{K; 0{qg{n+1, 0(q;{(n (=1,2,..K), go+q(+..+q =
n+1. If k=0, then the desired result is trivial. Assume then that k #0. Next observe that the
highest power of ] needed is

qo+2qy—D+...+(2q,— 1) (2n+1,

by the restriction on the sum above. Similarly, the highest power of T needed plus the power
on the left hand side of the recurrence relation is

2q;—D+..+Q2q~1+1 = 2(n+1-qp)—-k+1(2n+1,

by noting in addition that when q,=0, we have k2. Finally, the factor needed from [.,.],
using Zeipel’s formula, is equal to [n+1,t+2r], as required, i.e. by induction, we have that
[n,t+2r](I'I')2"’1bn is algebraic integral for all n1. Now if T is not a positive integer, since
it is algebraic we can determine a positive integer T such that T'/T is an algebraic integer. Thus
[n,e+2r]0T N2n—1p s algebraic integral for each n)1. The final observation is that since b, =
a, ., then by choosing a new natural number ] which depends on the old ], and on aj,ay,...,a,
we can ensure that a, has the same property as b, i.e. f(z) e E(t+2r]), which concludes the proof.

From Theorem 3, we can deduce examples of transcendental power series with respect

E(t;]). Theorem 4 is an analogue of Theorem 8 in Carlitz.4

e <]
. 2
Theorem 4. The series f(z) = EO Z™h™” when h is a fixed rational integer 2, is transcendental
m=
relative to E(t;I), with t being a nonnegative rational integer and | a natural number.

Proof. If f(z) is algebraic with respect to E(t;]), then by Theorem 3, there exist natural numbers
], ¢ and a nonnegative rational integer r such that cf(z)eE(r+t;]) and so we can write

ch_m2 = b /J™ [m,r+t],

where the b, are algebraic integers, and hence rational integers. Let p be a rational prime
factor of h. Then the highest power of p dividing J™[m,r+t] does not exceed

km + (Im/p)+[m/p?l+..) + (((m+1)/pl+[m+1)/p2]+..) + ..+
+ ([(m+r+t)/pl+[(m+r+t)/p?l+...)

m m+1 m+r+t
(km + ST-17p) + ST-17p) + ...+ _1_17—p( =)
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= km + (r+t+1)2m+r+t)/2(p—1)<{km,

where k and k; are positive constants independent of m. But evidently, the power of p dividing
hm2 is m? . Consequently, for m sufficiently large hm? does not divide J®[mr+t]. This
contradiction proves our theorem.

Our last main result is an analogue of the main theorem in Rudin® which gives a
transcendence test for power series in some subset of E(t+LI), whose transcendence cannot be
deduced from Theorem 3. We follow the same proof as in Rudin.®

Theorem 5. Let S be an infinite set of distinct rational primes. Let

fiz) =

ek
o

amzm/Im[m,t+1] eE(t+1;0),

where a_ are rational integers,I()1) and t are nonnegative rational integers. Assume a, # 0
(mod p) for each p in S. For P (2)eE(]), k=0,..K, with rational coefficients, if there is
an algebraic relation

K
T P@KD =0, (5)
k=0

then each Py(z) must vanish identically.

Proof. Assume to the contrary that there is an equation of the form (5), in which not
all Py(z) vanish identically. Applying Lemma 3, it follows that there are nonnegative
integers s, J(31) for which

K

L @D = G, ©)

k
where Fz) = T Ao 2 s+ 1 e+ 1]eBe+ 1),
n=

[= ]
Coa) = L ¢ lzj/]j[j,t]eE(t;]), ¢ rational integers,
j=s+1 0 0j
® o, ’ ’
Ciza) = ¥ c‘zJ/]l[j,t]eE(t;J), ¢ rational integers, ¢ #0,
|=r ] ] r
x . . ! . .
Clz) = j=r-i)—:k-—1 ckal/]l[],t]eE(t;]), c1<j rational integers, k=2,3,... K,
and 2s+1)rys+1l. 7)
Let L := l.cm. (I]). Then we can rewrite

[e 2]
Fz) = T £, 2" [nast+1e+1]eBe+1L),

n=0
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n+s+1

where £, . = ap, D are rational integers,
Col2) = El co/L[j;t1e E(t;L), co; rational integral,
j=s+
Cy(2) = E c2/Liljt] eE(t;L), ¢ rational integral, c,#0,
I - '
Clz) = I ckai/L][j,t]eE(t;L), i rational integral.
j=r+k-1
Therefore,
@ ® Imt] £ __.
Ckz) = £ % £ e e (®)
m=r j=r
[m,t] [j,tllm—j+s+1,e+1] LmFs+l

By induction, we obtain for i=23...K,

CoF@ - £ 2 g M W19 fuy_g—ups+1
' m=r+1 TTl
]=

[m,t] Lm+s+1 [uptllu;_g—uts+1,t+1]

where uy=m, and the second sum is over r+1<ui€.--ﬁu1<m'

Let p be a prime in S satisfying

poled, por+2+1, pX(WLD
We shall arrive at a contradiction, and hence prove the theorem, by showing that the
coefficient of P+~ 1/[p+r—s—1t]LP*" in the left member of (6) is not a rational integer.

By (8),(9), this coefficient is a sum of terms consisting of integral multiples of factors
of the form

fw, v tllw=v+s+1t+1] (r+1{v{w{p+r—s—1) . (11)
plus the single term

cholp+r-s=1tltllpe+1]l. (12)

But (11) is equal to

1121..(t+ 1) t (w+n)! (
v tst I Jo WFw—vasTagl)l e

The inequalities (7), (10) and (11) imply
(@) p -!~ (w—v+s+1)!
(b) if pl(v+n), or if pl(w—v+s+n+2), then pl(w+n)!
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(c) p2 does not divide any factorial in (13)
(d) p cannot divide both (v+n)! and (w—v+s+n+2).

If follows that none of the terms (11) contains p effectively in the denominator.
However, p does appear effectively in the denominator of (12). To see this, we write (12)

in the form

of 1l2!...(t+1)!(p+r—s—1)l(p+r—s)!...(p+r—-s+t—1)! ] (14)
rp e+ DL @+l plp+ DL (p+e+ D e

By our choice of p, we have P‘I’Crfp' As in (c) above, p2 divides none of the factorials
in (14). Hence, it is evident that the numerator of (14) is divisible by pt+1 and is not
divisible by pt*2, whereas the denominator is divisible by p*2. This contradiction
completes the proof.

Remarks. If we define [m—1] = 1 for nonnegative integer m, then Theorem 5 still
holds for t=—1 even when the assumption a, #0 is removed provided f(z) is not a
polynomial. This follows readily from the (generalized) Eisenstein theorem proved in.ref. 2,
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