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ABSTRACT

We formulate the antiplane problem concerning a finite elastic body with an
arbitrary number of coplanar cracks in its interior in terms of a system of boundary integral
equations containing Hadamard finite-part singular integrals. A numerical procedure for
solving the integral equations is described. Specific example problems are considered and the
numerical results obtained are given.

INTRODUCTION

In recent years, the boundary integral equation method has shown to be a useful
and effective numerical tool for analysing linear elastic problems. Nevertheless, the direct
application of the method to elastic crack problems encounters some difficulties. To begin
with, the crack has to be modelled. For a problem with a certain symmetry (in its geometry
and boundary conditions), this may be done by taking only half of the elastic material
under consideration with one of the crack faces as part of the boundary. In general, the
modelling of the crack is, however, not a trivial task since the opposite crack faces lie on
one and the same surface. Cruse! has modelled a straight crack as an open-cavity in the
shape of an ellipse with a small radius of curvature. This model is unsatisfactory because
it gives rise to an almost indeterminate system of linear algebraic equations. Apart from
this, there is the difficulty associated with the stress singularities at the crack edges.

An approach to overcome the difficulties discussed above is to modify the fundamental
singular solution for the boundary integral equation in such a way that the crack surface is not
included in the path of integration. Such a modified fundamental singular solution or
Green’s function was obtained by Snyder and Cruse? and Clements and Haselgrove3 for a
stress-free planar crack in an anisotropic elastic material. Recently, Ang and Clements?
extended the work of Clements and Haselgrove3 to include the case where the faces of
the planar crack remain wholly in contact throughout the deformation of the material.
The Green’s function for an arc crack in an isotropic material was given by Ang® The
Green’s function approach provides highly accurate results, especially in the computation
of the stresses near the crack edges. However, the only drawback is that the derivation
of the Green’s functions requires considerable mathematical effort and it is possible to obtain
them explicitly in terms of known elementary functlons for a rather limited class of
crack problems.
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In the present paper, we show how an elastic crack problem can be formulated
in terms of boundary integral equations containing Hadamard finite-part singular integrals.
For clarity, we will restrict our discussion to the relatively simpler case where the isotropic
material contains an arbitrary number of coplanar cracks subject to an antiplane deformation.
The formulation presented here contains the crack opening displacement as an unknown
function and does not require the modelling of the cracks as open-cavities with small
radii of curvature. In addition, due to recent work by loakimidisé and Kaya and Erdogan,’
the finite-part boundary integral equations for the problem are easily amenable to numerical
treatment. Specific problems are considered and the numerical results obtained are given.

An Elastic Crack Problem

Referred to an Oxyz Cartesian coordinate frame, consider a homogeneous isotropic
elastic material R with geometry which is independent of the z coordinate. The interior
of the material contains M coplanar cracks in the regions a;{x (b, y=0, i=12,............ M,
where a, and b; are real constants which are such that aj (b (ap{by(.cneecnne. (ap (b
Denote the ith crack by T', and the exterior boundary of the material by C (Fig. 1).

The material is subject to an antiplane deformation. Specifically, the displacement
(u,v,w) is such that u=v=0 and w=w(x,y). The material has elastic behaviour which is
governed by the Laplace’s equation

aZ_W + 32_w = 0. (2.1)
ax2  ay?
Displacements or tractions independent of z are specified on the exterior boundary
C in such a way that the cracks are traction-free. The problem is to find the displacement
W satisfying (2.1) and the conditions on the cracks and the boundary C.

Integral Equations

If the displacement W and the traction P are completely known on the boundary
Q=C+T'+T'y+.....+T then a solution of the crack problem is given by (see, e.g: Clements8)

Mw(xg) = ﬂ[A(x,xo) wi(x)—P(x)®(x,x0)] dS(x), 3.1)

where x=(x,y), xp=(£,v), A=1 if xg lies in the interior R and O (A {1 if xp lies on @ and

D50 = 7= log (x—EP+ [y,

y(x—§) +n,ly—n)

27([x—¢P+ly-n])
where (ny,ny) is the unit normal (outward) vector to R on @ at the point (x,y). Note

Alx,x0) = (3.2)

that for convenience we have chosen the elastic modulus p of the material to be one.
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Differentiating (3.1) with partially with respect to n, we obtain

W)= | A (550 WiO-P® “(x) dSty) 33

where the subscript  denotes partial differentiation with respect to 7, and
-y

2a(lx— P+ ly-n)?)

2y —n)x—Em, — (Ix— 12— [y-n1m,,

2x([x—£P + [y —n]??
It we choose x, to be the (limiting) points in R that approach the top face of
each of the cracks and apply the condition P=0 on I; (i=1,2,....,M), we find that (3.3)

becomes

*

A (xxp) =

(3.4)

[ 1A GEO") Wi-PWE* (50"] dsto)

b b
— L P awn) k=872 dx—-L L AW() (x=82 dx=0
2% 2 2r =1, i#p |y
for ap<5<bp, p=12,.....M, (3.5

where x denotes that the integral is to be interpreted in the Hadamard finite-part sense
and Aw(x)=w(x,0 )-w(x,0") for a,{x(by, p=12,...M.

A Numerical Procedure

The integral equations in (3.1) and (3.5) are employed to obtain a numerical
procedure for the solution of the crack problem.

The exterior boundary C is first discretised into N straight segments. Assume that
the displacement W and the traction P are constant over a given segment. If we take x
to be the midpoint of each of the N segments in turn, after applying the condition
P=0O on the crack faces, we obtain the approximation

1 N
3 Wk=n§1 Wy c. A(x,py) dSx)-P, C. ®(x,p) dS()]
- e I\).i.l ]bi AW(x) ([x—¢ ]2+ dz)_1 dx for k=1,2.....N “4.1)
-271=1 a k k yhyeeeagiNy .

where C_ denotes the n-th segment of the discretised boundary C, Py =(c,,dy) is the midpoint
of the k-th segment and w,, and P, are respectively the constant values of W and P over
the n-th segment.

Assuming that the cracks do not intersect with the exterior boundary C, we make
the approximation
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“a—L.i2 1 x—a;—L,
awl) = \1- [T 2 Gy (2 |
L 'l L,
for a;{x(b, i=12,....,M, (4.2)

where 2L;=b;—a; Uj()_() is the j—th order Chebyshev polynomial of the second kind and

oD are real coefficients yet to be determined.
Substitution of (4.2) into (3.5) yields, after some manipulation (see, e.g. Kaya and

Erdogan7), we obtain the approximation

& (x, Ls+a +L,, 0%) dS(x)]

N A*
nzz:l (W, i A* (x Lpsta +L,, 0% dS(x)-P,
n
P 1 M, VI-2 U_; () de
T AU (S)- r T oL =1
+j=1 Lp I Vi1 O i=1,i#p j=1 R R (Lir+ai+Li—LpS—axP—LP)2
=0 for —1¢(s<1, p=12,...M (4.3)
Putting (4.2) into (4.1), we‘ obtain
1 ; A ,
B 7, ol Asp) dS@-P, [ @lp ds)
M ] 1 V1-r2 U,
_G4 R L L ‘ -2 U Odr o m12,0N, (4.4)
T j=1j=1 j U Lr+a -G +dy?

If over any segment C™, either W or P, is specified and if we choose the parameters

to be given in turn by
(4.5)

s=s_=cos[ 2p—Dx/(2]) ] for p=12,.....

equations (4.3) and (4.4) constitute a system of (N+]JM) linear algebraic equations

in (N+JM) unknowns. For example, if W is completely specified on C, the unknowns

from the linear algebraic equations.
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In equations (4.3) and (4.4), all the integrals over the segment C_ are computed
numerically using the nine-point (extended) trapezoidal rule, except for n=k, for the integrals
with the logarithmic integrand, we use

27 c ®(x,p) dS(x)= 8;(—1+log(8,/2)), 4.6)
Lk

where 8y, is the length of the segment C;. The integrals over the interval (—-1,1) in (4.4)
are accurately computed using the numerical quadrature (25.4.40) in Abramowitz and Stegung.

The stress intensity factors defined by (for i=12,.....M)

K =lim 4/ 2(a;—x) 6ysz) and K O=lim +/ 2(x— b)) 6yz(x,O), 4.7)

x—-al x—b;*
where by, is the partial derivative of w with respect to y (taking the shear modulus as
one), are of fundamental importance in linear fracture mechanics.
From (3.3) and (4.2), the stress intensity factors are approximately given by
] ) ] a(i)
K,® Z]E Uj—l(_l) and K0 =~ 2 ):

5 L Ui @8)

i L 1/2

Example Problems

Firstly, for a test problem, we take the boundary C to be a square with vertices
D(0,2), E(4,2), F(4,-2) and G(0,—2) and choose M=1 (one planar crack) with a;=1 and
L;=1 (Fig. 2). Each side of the square is discretised into N straight segments so that
N=4Nj.

It is easy to verify that the traction which corresponds -to the displacement

wix,y)=Relil(x—2+iy)?—1]1/2], 6.1

where Re denotes the real part of a complex number and i=(—1)2, vanishes on the
crack faces. We use (5.1) to generate displacement on the boundary of the square and then
solve for the traction using (4.3) —(4.5). We compare these numerical values of P with
those obtained analytically from

P=Relin,(x=2+iy)[x~2+iy~1)~12—n (x—2+iy)[x—2+iy]>-1)~172] (5.2)
" At selected points, the comparison is given in Table 1 for N=40 with J=2 and
N=120 with J=6. The precentage error in the numerical value of P is computed using

numerical value—exact value % 100%.
exact value

(percentage error) =
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TABLE 1. Comparison of numerical values of the traction with the exact ones (test problem).

Point Exact N=40, J=2 N=120, J=6

(x,y) value BIEM % Error BIEM % Error
(0.20,2.00) —-0.9861 -1.0785 9.37 —-0.9740 1.23
(0.60,2.00) -0.9645 -0.9524 1.25 -0.9636 0.09
(1.00,2.00) -0.9378 —-0.9359 0.20 -0.9373 0.05
(1.40.200) -0.9123 -0.9104 0.21 -0.9120 0.04
(1.80,2.00) —0.8966 -0.8947 0.21 -0.8962 0.04
(4.00,1.80) 0.0694 0.1219 7.57 0.0739 6.57
(4.00,1.40) 0.0847 0.0892 5.32 0.0856 1.12
(4.00,1.00) 0.0950 0.0981 3.33 0.0954 0.42
(4.00,0.60) 0.0855 0.0877 2.53 0.0858 0.34
(4.00,0.20) 0.0371 0.0380 2.37 0.0372 0.41

TABLE 2. Comparison of the numerical values of the stress intensity factors with the
exact ones (test problem).

SIF N=40J=2 N=120,J=6 Exact

KL -0.9998 -1.0000 -1.0000
Ky -0.9998 —1.0000 —1.0000
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TABLE 3. Stress intensity factors for various values of o

N=60,J=5 N=120,J=10 «
K, 1.3726 1.3801 0.25
K, 1.8038 1.8071
KM 1.3214 1.3292 0.50
K, 1.5546 1.5577
KD 1.2726 1.2803 1.00
K, 1.3936 1.3966
K, 1.2462 1.2539 1.50
KM 1.3308 1.3337
KD 1.2287 1.2364 2.00
KD 1.2968 1.2997
KM 1.2171 1.2247 2.50
KD 1.2768 1.2796
KM 1.2145 1.2220 2.75
KD 1.2719 1.2746

147
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Fig. 1. An elastic material with two coplanar cracks.
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Fig. 2. Sketch for the test problem.
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Rigid wall

Fig. 3. A rectangular slab with two coplanar cracks.
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It is clear from the table that as we increase N and ] there is a significant improvement
in the numerical values of P. '

We also obtain numerical values of the stress intensity factors K,() and K¢V using
(4.8). The results are given in Table 2. The agreement between the numerical and exact
values is excellent.

Consider now the case where the boundary C is a rectangle STUV with $(-3,2),
T(5,2), U(5,-2) and V(=3,—2). There are two coplanar cracks in the interior of the rectangular
slab. We take a;=—2, by=0, ay=a and by=a+2, where o is a real number between
0 and 3 (Fig. 3). The side UV is attached to a rigid wall so that wi(x,—2)=0 for —3{(x(5
and the side ST is subject to shear stress such that P(x,2)=1 for —3{(x{5. The other
two remaining sides of the slab are traction-free.

Each of the parallel and vertical sides of the slab is respectively discretised into
2N, and N; segments so that N=6N;. After solving (4.3)—(4.5), we compute the stress
intensity factors using (4.8). In particular, we are interested in examining how the stress
intensity factors K, and Ky{!) (at the tips x=-2 and x=0 respectively) are affected by the
distance o between the inner tips of the two cracks. In Table 3, the values of these stress
intensity factors for various values of o are obtained using N=60 with J=5 and N=120
with J=10. It is clear from the table that increasing « has the effect of decreasing the
stress intensity factors K, and KM

CONCLUSION

We have illustrated how an elastic problem concerning an arbitrary number of
coplanar cracks in a finite solid subject to an antiplane deformation can be formulated
in terms of a system of finite-part boundary integral equations. A simple procedure for
the numerical solution of the integral equations was described. Numerical results were obtained
for some specific example problems using the procedure. For one of the problems where
analytic solution is known, the numerical results obtained compared favourably with the
exact ones. It is possible to extend the formulation presented here to plane problems
involving coplanar cracks in general anisotropic materials or to include the case where the
planar cracks are arbitrarily-oriented with respect to one another.
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