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ABSTRACT

Agrawal' and later Suzuki® have recently classified the dynamic behavior of a
continuous microbial flow reactor employing, respectively, the two and three parameter
substrate inhibition model. In this report we use the two variable product inhibition model
proposed by Yano and Koga® with a modified specific growth rate and derive the boundary
equations which divide the parameter space of different dynamic behavior.

INTRODUCTION

Ever since the papers of Poore (1973) and Uppal* on bifurcation theory and its
application to the investigation of periodic behavior of well-stirred chemical reactors, much
work has been done in a similar attempt on biochemical reactors. Such oscillatory behavior
have been frequently observed in both batch and continuous biological systems (Bonomi?®
and Borzani®) and many models have been developed to analyse their dynamic behavior.
Variation of the yield term (Y) by Agrawal! and Crooke,” has led to damped and sustained
oscillations, respectively, in a continuous culture. Similar investigation on a batch culture
was made by Lenbury,® where a simple set of ordinary non-linear differential equations
based on the Monod model was utilized.

Here, we shall examine a simple product inhibition model of a continuous-stirred
tank reactor proposed by Yano and Koga’ and derive the boundary equations which
completely divide the parameter space of different dynamic behavior.
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SYSTEM MODEL

In the case where the growth-limiting substrate (S) is supplied in sufficient amount
so that at any moment the concentration change of S has little affect on the dynamic behavior
of the system, the single-vessel continuous fermentation system can be described by the
following two-variable system:

dX = wP)X - DX )
dt

dP = wP)X — DP, Q)
dt Y

where X represents the cells concentration ; P the ethanol concentration ; u(P) the specific
growth rate ; Y the cells to product yield ; and D the dilution rate.

Following the work of Lenbury and Chiaranai,® we consider here the yield coeffi-
cient of the form

Y(P) = ¢ — dP, 3)

where ¢ and d are positive constants. Also, we consider the following modified form of
the specific growth rate ;

WP) = pyll = P/K) )
K, - P)

which is a combination of the Monod’s model and that proposed by Yano and Koga. Here,
we assume that K, and Kp are positive constants. Fig.l1 shows plots of u(P) and o(P) =
u(P)/ Y (P) for suitable parametric values. Although other more general forms may be used
for these functions, it can be shown that (3) and (4) are enough to describe limit cycles
and their stability which are to be investigated.

Introducing a new set of variables, namely ; x; = X/dY (), x, = P/K|, 7 =
Dt, D, = w(0)/D, M(xy) = w(K;x5)/ w0}, y(xp) = Y(lez)/Y(O) ,a = Kp/Kl, 8 =
c/dK,,

the Egs. (1) through (4) become

dﬂ = (DgM(x,) — Dx, (5)

dr

dr a(l — x5)

M(x,) = b 24 7
a — X2

y(xp) = (B = X35 - (8)
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In order that M(x,) and £(x,) = M(x,)/y(x,) have positive function values for
X, on (0,1), we assume that a=1land g =1.

STABILITY OF STEADY STATES

The steady state solutions are obtained from Egs. (5) and (6) as

(a) trivial solution (washout) : x; = x5 = 0.
(b) nontrivial solution (s) : X; = y(X,)X,, M(x,) = 1/D, where (") indicates
steady state.

Let J be the Jacobian matrix of Eqs. (5) and (6) evaluated at the steady state of
interest,

J = | -1+ DM(xy) DM’ (X)X ©)
Dy £ (Xy) ~1 + Dy &' (X)X,

where the prime denotes differentiation with respect to x,. The necessary and sufficient
conditions for local stability of a steady state are that the eigenvalues have negative real
parts, which are equivalent to

det J>0and tr J <O. (10)

It follows that the washout steady state is a stable node for Dy<1 and a saddle point
(unstable) for Dy > 1.

For the nontrivial steady states,

det ] = —DyM’ (X)X 5 (11)
and trJ = -1+ I X)X/ T (X,). 12)
Hence, the necessary and sufficient conditions for local stability are

M (x))< 0 (13)
and L' (Xy) < E(Xp)/X5 . (14)

BIFURCATION OF LIMIT CYCLES
The Hopf-bifurcation occurs when J has pure imaginary eigenvalues, namely

det J>0and tr J = 0. (15)

For the nontrivial steady states the condition (15) becomes
M’ (x,)< 0 16)
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TABLE 1 Typical phase — plane plots

CASE

»

Stable washout (node)

Unstable washout (saddle point)
Stable normal (node or focus)
Unstable normal (node or focus)
Stable limit cycle

Unstable limit cycle
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Fig. 1 Plot of typical y and o curves. Shaded portion indicates possible regions of bifurcation.
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Fig. 2 Classification of dynamic behavior in the parameter space.
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These are equivalent to

@ wdP)p_;, < O (18)
and (d o/dF’)P:Ki_\2 = oK;/P< 0. 19

This means that, at the point of bifurcation, an increase in product concentration must
decrease the specific growth rate and increase the production rate. Possible regions of
bifurcation are indicated by the shaded portion in Fig.1

Now, onset of instability occurs when

trJ = 0and (tr J)) = 0. (20)

We note that the denominator of tr J is always positive for 0 <x,<land tr J =
—~latx, = 0 whiletr J —- o when x, — 1.

Using (7) and (8), condition (20) is satisfied when
g(?z) = 0 and g’ (x,) = O. 21

where g(x ,) is the numerator of tr J and
8(X) = 2x] — 3 + ¢)X, + 26X, — 7 (22)
where ¢ = a + 8,9 = af.

Then, condition (21) can be expressed as

Q@pf) =30+9-¢)3+0-1=0 (23)

For dynamic instability tr J> 0 and, from Eq. (23), this requires that

1>¢ +3(1 + 9 — ¢).173 24)

Let P, and P, be the two positive real roots of tr J = 0, the third root of the cubic equation

being negative. Corresponding to P, and P, we have two critical values Dy, and Do,z
given by

_ ¢- P

D f- =12 25
oL T =Py @)

Thus, bifurcation to periodic solutions occurs at two points for this system. As
D, increases beyond the value of unity a stable nontrivial steady state appears until the
lower critical value Dy ;. corresponding to the bifurcation point P, is reached where
tr J = 0. At this point bifurcation to periodic solutions occurs. As Dy increases further,
tr J becomes positive, causing an unstable nontrivial steady state, until the upper critical
value Dy, is reached and tr J = 0 again.

Agrawal' derived the condition for the stability of limit cycles for the microbial
flow reactor. Comparison of their model with ours, leads to the following expression for
asymptotically orbitally stable periodic solutions,
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M, A =11 -P, — (- 1O, 1+06) OP/6; — 1~ 8P/3)
- % -1 PO} <0 , i=1,2, (26)

CLASSIFICATION OF THE DYNAMIC BEHAVIOR

The two parameters a and (3, therefore, determine the stability regions of bifurcating
periodic solutions. Numerical results show that inequality (26), with i = 2, is always satisfied
for the values of a =1 and 821 for which (24) holds. This means that bifurcations occurring
at the upper critical value Dy , are always stable. This is not the case, however, for Dy ;.
Fig.2 shows three regions of different dynamic behavior in the parameter space delineated
by the graphs of Egs. (23) and

I'y(a, 3 = 0. (28)

In region I, there is no bifurcation since here Q(a, 8) >0.In region II, there are
stable bifurcations and in region I, bifurcation are unstable at Dy, but stable at D ,.

Following the representation used by Uppal,* we show in Fig.3 plots of X, vs Dy
for each of the three regions. There can be four different types of different phase—plane
trajectories corresponding to different ranges of Dy, values, and they are labelied A through
D in Table 1.

In particular, three types of phase—plane are possible in region II, namely A,
B and C. Type C phase—plane has an unstable washout steady state, which turns out to
be a saddle point, and an unstable nontrivial steady state which is surrounded by a stable
limit cycle. For this type of phase—plane, D lies between D ; and Dy ,, in which range
tr J>0.

Four types of phase—plane are possible in region III, A through D. We have
unstable bifurcation at Dy, and a stable bifurcation at D ,.

In Fig.3, the solid line represents stable steady states while unstable steady states
are represented by the dashed line. Stable limit cycles are denoted by dots and the distance
between the dots and the dashed line approximately represents the average amplitude of
the limit cycle which surrounds the unstable stedy state. Finally, Fig.4 shows a phase—plane
trajectory showing the stable limit cycle which bifurcates from the unstable steady state.
This is a type C phase—plane with D, lying between Dy ; and D ,.
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CONCLUSIONS

This note follows closely the work of Agrawal.! They employed the Monod’s model
and the two parameter hump function for the specific growth rate. We, on the other hand,
used a product inhibition model and a decreasing specific growth function which may be
considered as a combination of the Monod’s model and that proposed by Yano and Koga.
We note that with suitable changes of parameters, our product inhibition model (5) through
(8) reduces to Agrawal’s model of substrate inhibition model in their dimensionless form.
We find that the necessary conditions for bifurcation are that the specific growth rate must
decrease and the specific production rate must increase with the increase of product
concentration. Moreover, bifurcations can not occur at the washout steady state and limit
cycles, bifurcating only from the nontrivial steady state, exist for suitable values of the dilution
rate. Thus, we have completely classified the possible dynamic behavior in the parameter
space for the two parameters product inhibition model consisting of equations (1) through (4).
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