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ABSTRACT

We have derived a test for algebraic independence (with respect to convolution)
of arithmetic functions based on a criterion of Shapiro and Sparer which involves the use
of Jacobians. This test is then applied to establish algebraic independence of (arithmetic)
zeta and various d-free functions.

INTRODUCTION

An arithmetic function is a complex-valued function whose domain is the set of
natural numbers IN. It is well known that the set A of all arithmetic functions forms a
ring with respect to addition and convolution, # where the convolution of the two arithmetic
functions f and g is defined by

(f*g) () = iZn f@e@

A notion which has recently attracted more attention is that of *algebraic (in) dependence
(over the field of complex number (). A set of arithmetic functions f 1>+ 18 said to be
*algebraically independent (over() if there exists no nontrivial polynomial P with complex
coefficients such that
*; *]
P (fjfp) 1 = T ag filu**f =0
®

where ag) e C.f" = f*f*.*f (i times).

Define the yth arithmetic zeta function by

¢, ) =

and the yth square-free function by
Q'y (n) = n” ,if n is square-free,
=0 ,otherwise.
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Carlitz,> Popken,*¢ Shapiro and Sparer’ showed that {,...,¢;,Qos-...Qs are *algebraically
independent (over C).In a recent note,® we have improved this result by showing that Sorens s
Rdl,o’"-’Rdl,sl’-"’Rdm,o’"-’Rdm,sm are *algebraically independent (over C),where Rd,'y is the
~4th d-free function defined by

Ry . n) =n ,if n is a d-free integer,
=0 ,otherwise;

n being d-free means the highest power of any prime factor contained in n is d-1. In the
proof there, we made use of an *algebraic dependence criterion of Popken,® and strategically
reduced the problem to cases of fewer d-free functions. In the present paper, we give another
proof of this result by a completely different method based on the use of Jacobians. We
first derive a convenient modification of Shapiro and Sparer’s *algebraic independence
criterion,’ and then apply it to prove the desired independence result.

MATERIALS AND METHODS

A derivation D over the ring of arithmetic functions A is a mapping of A into
itself such that

D (f*g) = Df*g + f*Dg
and
D (¢if + c,g) = ¢,Df + ¢,Dg,

for all f,g € A, and complex constants c],cz.4 A typical example of derivation is the (p—)
basic derivation, p prime, defined by

D, (O @) = f (ap) v, (np),

where vp (n) denotes the exponent of the highest power of p which divides n. Given f reesfi
in A and derivations Dy,...,D; over A, the Jacobian of the f; relative to the D, is the tXt

determinant
J (feef 3D, Dy) 1= det (D (fj)),

where each product in the determinant expansion is taken to be a convolution product.
In,’ Shapiro and Sparer proved the following theorem, which is the starting point
of our work.

Theorem. (Shapiro-Sparer). Let f;,....f; be given functions of A and D;,...,.D, derivations
over A which annihilate all elements of a subring E of A. If J (f 1reeosf3D1se.,Dp) # 0, then
the f,,...,f; are *algebraically independent over E.
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Let p,....p, be distinct primes and Dy,...,D, their corresponding basic derivations.
From Shapiro-Sparer’s theorem above, if Dy,...,.D, annihilate all elements of a subring E
of A, and if

J = J (f]""’f[;Dl""’D[) = lel vee let -_ré O,

Df, .. D

then f|,...,f are *algebraically independent over E. Now J # 0 when and only when there
exists a natural number n such that

T@ = B O f % Dfi) (m) 0,
1

where the sum is taken over all possible permutations

(i) = (el OF (1,2,0000),

and i) = 1 if (i) is an even permutation, and = 0, otherwise. Expanding the convolution
product, and using the defining property of basic derivations, we get

J (n) = ()1:) e(l) kli'kt - n leil (kl)"'thil (kl)"'leit (kt)

= Zi o z e £y, (kypy-fy, (k) Vi, (Kypy)-vy, (kpy)
= kﬁ.kt - vpl(k,pl)...vpt kpp |f; kipp) . f; (kpy)
f, (kypy) f; (kipp)
RESULTS

The result obtained at the end of the last section can be formulated as our first
main theorem.

Theorem 1. Let f|,...,f; be given functions of A. Suppose that there exist distinct primes
p;s----P; Whose basic derivations annihilate all elements of a subring E of A. If there exists
a natural number n such that

kl-?kt = n Vp, KPPV kep) [fy (ypy) o £ (kDY) # 0,

ft (klpl) f[ (k[pt)

then f,...,f; are *algebraically independent over E.
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Using this theorem, we now derive a test which is more convenient to apply. Take
E to be the subring of A which is isomorphic to € i..

{feA;f(m) = ceCifn=1and f(n) = 0 otherwise. }.

Clearly, then, for each prime p, the corresponding basic derivation Dp annihilates all
elements of ¢ We thus have:

Corollary. Let f,,...,f, be given functions of A. Let Py Py be distinct primes and D;,...,D,
their corresponding basic derivations. If there exists a natural number n such that

Kok = n Vo KiPp-vp, (p) [£ (ypp) e £y (k) £ 0,

f, (k;py) f, (k,py)
then f|,...,f, are *algebraically independent over ¢

We are now ready to establish our second main result.

Theorem 2. Let m(=1), d, > ... >d, = 2, 54,8,...,,, be nonnegative integers. Then the

arithmetic functions fo’---’fso’Rdl,O"--'Rd,sl’---’Rdm,o’---’Rdm,sm are *algebraically indepen -
dent over €  Proof. Let

I = (iao,ial,"“’iusa) (a = 0,1,...,m)
be m+1 vectors whose components are nonnegative integers. Let
(paﬂ ta=01,..m 8= 0,1,...,3(1

m
be a sequence of L (s, + 1) distinct primes. Consider the function
a=0

f gl ysnip) = det (Ayg) @ = 0,1,..,m
g = 0,,.,m

where the Aaﬂ’s are (s, + 1) X (sz + 1) submatrices defined by

Ao =| o (igoPgo) o (iggy Pasg)| (B = 01,..,m)
§‘50 (ib‘OpﬁO) §'50 (i655 pﬁs[g)
L -
Ay =[Rq o GgoPg) - Rap0 gsg Ppg| (o = 12,m;
8 = 0,1,...m).
Ragose GgoPgo) - Ry, (igsg pBSﬁ)J
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Now consider the product

m Sa . = m—1 S p(wdozﬂ_1 )
A Tt ™ T
a =0 =0 a=0 B=0
and recall that
$o (M) = Rda’ﬁ(n) (¢ =01,...m-m’; 8 = 0,1,...,8,)
Rda,ﬁ (n) =0 (¢ = m-m'+1,..m; 8 =0l,..s)ifnisd _ - — free, but

notd, . —free (apnd sonotd. ./, 5,..,d,—free), where m’ = 0,1,...,m. Observe that
among all possible X o (s, + D —tuples (ig,....i)) of integers for which the relation (1)
o =

holds, all but one of their corresponding determinant values F (iy,...,i;) vanish, because
of two identical rows or two identical columns. The only surviving determinant has

, dy ~1 . dy 1
loo = Poo s losg = Posy

dy —1 dy 1
o 4 o D
ijp = P1o o lisy = Pigg
I S _ dy-d
im,0 = Pm-1,os tm—lsym 1 = Pm—lsy g
Imo = Iml = = msy, = 1

with value
F:=F (po (dl) P (dz)’“-’pm_] (dm)a 1)
= [Ago (Po (d})
0 A]] (Pl (dz))
0 0 Am~1,m—l Pp_1 ).
0 0 0 An )

where the ij(p(d’g+1) ) are square submatrices obtained from Aﬁﬁ by substituting
im,im,...,iﬁsﬁ with appropriate values of prime powers as above. Since the block determinant
of F has an upper triangular shape, expanding via Laplace’s expansion of block determinants,’

we arrive at
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1
F =+ det (A, (1)) ';n-o det (Agz (g (dg, D).

Each subdeterminant on the right hand side is a Vandermonde determinant and so does
not vanish. Hence, F # 0. Invoking upon the corollary, the theorem follows.
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