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Abstract

We present the most probable uniform configurations of the :cos <\ : interacting
system on a lattice in d-dimension, where d < 4. We point out that several global and local
minima can appear depending on the value of the parameters J, 0. , A, m?, d. ForJ=0,
O = A =1, we have calculated numerically the critical mass square. We show graphically
the dependence of the amplitude of the solution on the variation of mass square.

1. Introduction

In this paper, we present our study on_the classical solutions of a Euclidean Scalar
Boson Field Theory on a d-dimensional lattice. We are interested in this model as it can
be a representation of an Ising-Like Model on a continuous field. [ 1,2 ] Here, the theory
is restricted to an ultralocal interaction of the form

A(\j)) =L_  :cosay

A j:C (I.1)

for A C Z9, where xp € Rforallje A, a>0.[3] Thelattice spacing is fixed to be unity.
C is the kernel of (m - A y!, and can be represented by the Fourier transform;

C..,=(2m)-947.. Sk dk e ik.(i=1) {24 239
[T”T]

The :.: denotes the Wick ordering; i.e.,

_ (l—cos kSL)}"1 (1.2)

J L=
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. . 12
e ‘“"’jzc=e'°““j+’z°‘ Cij (1.3)

The Hamiltonian for the model is comprised of a free part H_, an interacting term FA,
and the source term J. |,

Hh ) =nl () +FA ) 0w (1.4)
where the free part is |
HY )= X3, 0,05 Y, @5
and the source term is
L =2, 5 J¥; (L.6)

As with most of the models in statistical mechanics, the main feature of the
problem are governed by the most probable configuration. For the canonical ensemble,
the most probable configuration is that which minimizes the Hamiltonian of the system.

II. The Minima of the Hamiltonian

The most probable configuration is the one that leads to the maximum of the
probability density exp {-H"" } having the probability measure

A-
duh (@) = (W) Lexp {-H (9} ay (L1

Let the configuration that minimizes the Hamiltonian H, eqn. (1.4), be { ¢} i } el For
large A , and uniform external field, J i = J, the solution may be assumed to be uniform;
i.e.,

J; i = v (11.2)

forallj € A . This is what we expect from the physical consideration. When A —Z9, the
bulk properties should be independent of where they are observed.

Substituting (I1.2) into (I.1)-(1.6), we get
As 1 T1 -2 . T .
HE (A, 1) = %(Z; 0 Cydy + AfAfzcosag: -+ [A] Ty (11.3)
Since C1is the (m2 - A4), we can verify that the Laplacian contributes very little to the sum

in the bracket of the first term in (I1.3);
So
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Liepdy = |34 (1L.4)

Here, | 37 | denotes the surface area of A. As || <o, we can ignore | 3A /| A . (11.2)
becomes

_1 _ - -
]A] HA(w:A,J) = 1/zmzq)?‘ + )\:cosocwzc + Y (IL.5)

The minimization of (I1.5) leads to

Lalc
2 - 2 00, _
m-yY + J - doe stnay = 0 (11.6)
Lalc
=
2 _
m? - AaZe Dosad > 0 (L7

where we have used the definition of the Wick Ordermg and the covariance C forj=j’

Note that 1/m? > C > 1/(m + 4d). For m?>>4d, the covariance COO is approx1mately
1/m?

The solution of (I1.6) is the intersection of a straight line mzlﬁ + J and the sin-curve
Aoexp {5 0‘2C00 } sinay . They can have a singular or multiple solutions depending on
the value of the parameters mz, P R

Inequality (I1.7) tells us that the minimum can occur only when the slope of the
straight line is greater than the tangent of the sin-curve at the intersection points.

The Case of J =

Setting J to zero, the straight line m2$ passes through the origin. Thus, \F =0is
always a solution of (II.6).

For large m2, we have only ﬁ = 0 as a unique solution of (I1.6). It is minimum
due to (I1.7). Slowly lowering the value of m? until the line m2$ is tangent to the sin-curve
at the origin,we still have .IIJ = 0 as a unique solution of (I1.6) but it does not, however, satisfy
(I1.7). In faut the inequality sign becomes an equality, i.e., l]) = 0 is a critical point. In
decreasing m? further, the straight line will cut the sin- -curve at 1}) 0 and two other
points, meaning that three solutions exist. The solution 11) 0 does not give a minimum,
but a maximum. The minimums are obtained with the other two solutions.

The critical points of (I1.6) can occur only when the straight line mzﬁ is itself a
tangent line to the sin-curve, i.e., the slope
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- al:sinap* .
mf = uz)\:cosmp*:c = v -C (11.8)
il_)#
(11.8) can be simplified to give
tanoy* = ap”® (I1.9)

The solution of this equation can lead to undesirable results, i.e., a negative slope. Note
that in the solution of (IL.9) % *is independent of the mass, m? and the coupling constant A .
It is clear that the first solution of (IL.9) isat Y * = 0.

Letting $* be the n™ -solution of (I1.9), we find it to lie between 2(n-1)T and
2(n-1) T+ 7 /2. Y ¥ approaches 2(n-1) T+ /2 for large n. Therefore, critical points
occur when

¥olc (mty (L.10)

m? = a®he 00 cosayy

2 2
ro“Cc_ (m*)
1 00
- a“Ae

J1+ @i?

We label the solution of (II.10) as the critical mass, mle. We find mﬁ to decrease
monotonic to Zero.

For m? = m? (IL.11)

It is immediately seen that equation (I1.6) gives 4n-3 solutions, of which 2 are critical,
2n-2 are minimum, and 2n-3 are maximum.

For m2, > m? > m2 (11.12)
(I1.6) has 4n-1 solutions, of which 2n are minimum, and 2n-1 maximum, where n 2. 2.
The case of n = 1 is a special one. A unique solution exists at \D"‘ = 0, if

2

m? > m} (1L.13)

The solution leads to a minimum when m? > mf, and to a critical point when m? = m%.

For the increasing dimensionality d, one sees that the kernel C of the operator (m
-A)Y! decreases. This has an effect on the variation of { with respect to m?; ; P decreases
pointwise as d increases. The general features of the graph for arbitrary d is similar to the
case of d = 1 shown in Fig. I, but the critical mass square m is lower for each n (see table I).
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TABLE 1.
THE FIRST FIVE CRITICAL MASS SQUARES FOR
d<4,J=0 Xr=a=1

2 2 2 2 2
d m mj; mj my mg
1 1.2192 0.2166 0.1375 0.1048 0.0865
2 1.1292 0.1580 0.0894 0.0627 0.0483
3 1.0872 0.1434 0.0795 0.0551 0.0421
4 1.0649 0.1383 0.0765 0.0529 0.0404
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