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Abstract

The present paper is a study of the formation of chips due to the penetration of a
rigid wedge into brittle-elastic material such as rock.

The analysis of stress field has been numerically calculated by using published
Boundary Integral Equations. It is found that the position of crack initiation is along the
normal line from middle upper part of the wedge to the wedge side. When the load is
increased less than 1.24 % beyond the critical limit fracture begin to propagate. Consequently
the interior damaged region is growing around the wedge. The growing damaged region
becomes more shallow and longer in the direction parallel to the wedge side. It grows in
both horizontal and vertical directions. Stress near the damaged region is much more
affected than stress far away. The stress path at some point is changed from the straight
line to a curve with upward concavity. If the load is increased more than 1.24% of critical
load the fracture becomes unstable.

Introduction

Methods of analysis in most scientific and engineering fields including modern
technology have been revolutionized by the advent of the modern digital computer. Now
that various procedures have been developed by analysts working at all levels from fairly
pure research to quite specific applications, the Boundary Integral Element (B.1.E.) technique
has evolved to a high level of performance and its usefulness has also been broadly accepted
in a wide range of situations.

The B.1.E. methods, having their origins in classical elasticity, have only in recent
years begun to play a significant role in solid mechanics!2. Solutions to problems in elasticity
and elasto-plasticity by B.I.LE. methods have been obtained by many workers>*3. The
extension of the B.I.E method to fracture mechanics has received much less attention.
The basic theories and equations have been formulated®, but few applications have been
reported. The purposes of this paper are to review one of these applications and present
details of the analysis as applied to the penetration problem.

Background
The two-dimensional isotropic elastic-brittle solid (rock) due to the penetration of
a rigid wedge is shown in Figure 1, namely a two-dimensional wedge-shaped indentor.
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The wedge force 2F is applied to the rock mass. As the wedge force F is increased to the
critical limit, some cracks are observed.” If the force is increased beyond the critical limit,
these cracks begin to propagate in a slow stable manner in the sense that, if loading is
stopped and the stress level is maintained at a certain value, crack propagation ceases. If
the force is further increased the crack system is developed to such a stage that it becomes
unstable and the release of stain energy is sufficient to make the cracks self-propagating
until complete disruption and failure occurs. Consequently, a resulting chip is removed

from the rock mass.

WEDGE FORCE
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Figure 1 The penetration of a rigid wedge-shaped indentor to the rock mass.
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Figure 2 The distribution of wedge-force 2F along the edge AB of a quarter plane R. The
boundary ABDC is divided to 96 elements.

The major difficulty is to describe the chipping phase mathematically, i.e. the
force at which the chip is formed, the chip geometry etc. This involves many major
assumptions. For the sake of simplicity, this penetration problem has been formulated by
considering a truncated quarter plane R with specified traction on the boundary as shown
in Figure 2. Sikarski and Alterio’ solved this problem by assuming linear elastic material
behavior. They used the B.1.E to obtain the stress distribution in the quarter plane region
R and proposed a fracture path based on the assumption that the stress distributions are
unaffected by the propagating crack. Clearly, when the traction is increased to the critical
limit, i.e. at some points the material behaves inelastically, fracture will initiate at surrounding
points forming a growing region of damage and this will affect the ofiginal stress field.
Consequently, the fracture path will be preliminary and this should be modified, so that
it is necessary to adjust the stress field accordingly.

In this presentation, a method of analysis developed in ref. 8 is applied to this
particular problem. An attempt is made to adjust the stress field to take account of the
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effect of the damage region growth by considering it as a pseudo-body force. By using
numerical calculation, it is possible to determine

(1) the load and the point of initiation

(2) the shape of the damaged region.

Analysis

The boundary value problem to be analyzed, namely the formation of chips in a
two-dimensional (plane stress) isotropic elastic-brittle solid (rock) due to the penetration
of a rigid wedge, is shown in Figure 2. The specified tractions on the boundary are given
by

0 on BD
t = p (€/L)m (1 - cos 2rE/L) on AB
n
.......... @)
0 on AC
ts = 0 ,

where t , t, are the normal and tangential traction components, € is a coordinate on AB
of legnth L defined in Figure 2, m is a form of parameter, the higher value of which means
the more asymmetric and concentrated traction distribution, p is a scalar pressure which
can be related to the half wedge force F as follows,

F cos ¢f
p = - ,
L sin (8 + ¢f) S ™ (1 = cos 2mm)dn eeeeeeees ¥))
(o]

where 8 is the half wedge angle and & ¢ is the friction angle. For p defined by equation
(2), all tractions are added up to the same value of F/L (the vertical force component).

Note the given traction is pertinent to the wedge penetration problem i.e., the
tangential traction component is due to friction between the wedge and material.

To perform the analysis, the following basic tools are required:

1. stress field determinations which must be calculated before cracks are
observed and after they are incipient.

2. a fracture criterion based on Mohr’s criterion which will define the boundary
between an elastic and an inelastic region.
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Stress Field for the Region with No Damage in Two-Dimensions.

The stress field solutions in linear elasticity by both direct formulation
indirect formulation>8° have been discussed in detail. A brief discussion following Alterio
and Sikarski!® in the indirect method will be reviewed.

The region of interest is embedded in an infinite (fictitious) plane of the same
material for which the Green’s function Z ij(Q) (Q,P)and qu) (Q, P) are known. T ij(q) (Q,P)
represents the ijth' stress component at a field point Q( & " £ ,) due to a unit point force
in the q direction at the boundary point P(x|, X,) in the region. Ui@ (Q, P) represent the
displacements at a field point Q in the it direction due to a unit point force at P on the
boundary in the q direction. Ug"“) (Q, P)and Z i @ (Q, P) can be expressed as:

3,4,6 and

oo 4 [(3-4v ) In 1 6, + 55 "k,
8t u(1-v) r r2
(k)
I, = - 1 1 [r, 6., +r.6, .-r &.. (1-2v) + 2 r.r.rj ,
1] TR~ W) T —= ik - ki -rﬁ 13 ————-—123]‘9
r

_ 2 2.1/2
where r = [(x1— 51) + (xz- 52) 1

A fictitious traction P * (unknown) now acts along the boundary ABDC, and the stress and
displacement component due to P * are

' (q) "
o..Q) = Sy (P)p (P)ds(®) 3)
1J ABDC q
(@ e 4
w(©) = S U (0,P) p. (P) ds(P) )
i i q

ABDC

where P is on the boundary ABDC and ds is an element of the length along the boundary
ABDC. This must satisfy the boundary conditions

0..n = t. on ABDC )

where n, is the direction cosine of the normal at a point on the boundary ABDC and t; is
the specified traction component.
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. .

To find the unknown fictitioustraction vector $ , let Q tend to point P’ on the
boundary ABDC and substitute (5) into (3) and extract the singularity when P’ coincides
with P in the Cauchy Principal Value sense. This leads to

( ) ' * ] — '
lp: () + S 2V ,P)pq(P)nj(P Yds(P) = ti(P ) I ©)

2 ABDC
P'#4 P

-> %
Once the fictitious traction vector p is determineg Sby numerical calculation) the stresses
anywhere in the field are founded by substituting p into equation (3). This is important
feature since it will be necessary to search the field for the point of fracture initiation.

Initiation of Damage and Initial Damaged Zone.

In order to find the load that causes the macrofracture at some point in the
material, it is necessary to postulate the fracture criterion which will define the onset of
brittle condition. This is analogous to the yield condition of plasticity. Vile!! found that
the fracture envelopes for both the initial and final failure for aggregate concrete, similar
to rock, are very similar in shape. They exhibit very rounded envelopes so it is reasonable
to use the Mohr’s criterion as the fracture criterion.

Based on the condition for tangency of Mohr’s criterion and Mohr’s circle for the
state of prmcnpal stresses G |, G 2 it can be shown by using the argument discussed by
Alterio!? that the elastic surface (see Figure 3) is given by,

fF(o) = 0 b
.......... %)
where
- - - 2 - , - -
fF(O) = (61— 02) —(mi—1)St B(O,mi) if mi(mi—2)61+02< 0
= %~ 8 itmim-2)0o+0, >0, ®)
and
B(o,m.) = 2 [V(G. -G )2+(m -1)2 0,.0.,~-(m,-1)(3,+ 6.)1
i 1 72 i 12 i 1 2 !
i, i
m, = ~/(sc / 8)
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Figure 3 Elastic surface following equations (7) and (8). The stress path of the point at
the position number 93 is concave upward after the stress has been corrected.

Here Sic is the uniaxial compressive stress magnitude at which microcrack growth was first
observed where as S, is the tensile strength of the material. If the stress state at any point
is inside or on the elastic surface i.e., fr(c) <0, this means that the behavior of the
material at that point remains elastic. If the point that lies outside the elastic surface i.e.,
£ o) > 0, it means that there is the possibility of crack initiation and the behavior of material
at that point is no longer elastic. Nondimensionalized g pozbya, =g ,/AF/L),o )=

o ,/(F/L) gives the Fracture function K! (o, S, S‘) defined by

St(m.—1)
= B(o,m.) if m,(m,-2)0, +0.< 0
(6 - o )2 i i i 1
17 72 &)

i i
K (G, St: SC) = F/L

= St/c1 if m, (m - 2) 01+ 02 > 0
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The fracture' functionK' (g, S, Sic) defined in this manner can be interpreted physically!?
as the value of loading F/L necessary to initiate grain damage at a location in the field at
which the stress stateis o O ,+ The contour plot of K can be constructed. Each contour
represents the global force level F/L necessary to propagate the region of damage to that
contour. These contours are preliminary and have to be corrected since we assumed that
the growing region of damage does not affect the elastic field outside of the region. The
crack will be initiated at the point where K' is minimum. If the load F/L is increased by
A F/L beyond the minimum of K, fracture will be initiated and propagate at points in the
vicinity of the point where K! is minimum and a growing region of damage is formed.

Constitutive Equations

In order to find the growing damaged region, it is necessary to define fracture
parameter ¢: i known as ‘“crack tensor’’ which will characterize the intensity and geometry
of crack field in a body of consideration. Dragon13 postulated that the opening of the
crack occurs in some particular principal direction of stress. Thus, the development of
fracturing is related to the increments of the positive stress deviator components. However,
there are stress paths for which no cracks appear and consequently no increments in any
components of the crack tensor. In modelling the development of crack tensor, the kinetics
of brittle fracture should be taken into account. This will provide relations connecting
increments of Q ij and stress or strain increments. Dragon”’14 assumed that the kinetics
of brittle fracture proceed if the actual state of stress satisfies inequalities

fe) >0 (10)

where f; (@) is given by equation (8). Geometrically speaking, fp (o) represents an elastic
surface which separates a purely elastic state from a state of progressive fracture.

Let the principal components of the crack ( Q ;) and the principal stress deviator
(s;) be as given in ref. 13:

. . ¢
d¢i gF(o)dsl if fF(o) >0 for all i such thai

s. >0 and gds. > 0
1 - 1 -~

0 for remaining i,

d¢i = 0 if f(6) <0 in any case.
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The coefficient g( o) is a positive real valued function obtained from fg( o). The gg(o)
involves the influence of actual stresses on fracturing and on particular stress path. One
can find the crack tensor in general coordinate by using the orthogonal transformation
defined by Om n SO we obtain any arbitrary component

To obtain- i) one can integrate d¢ ; along the stress path and using the orthogonal
transformation to obtain ¢ i

By assuming the existence of an elastic potential function and the kinetics of the
brittle fracture which satisfies inequalities (10) following Dragon13 , one can show that the
fracturing strain increment d €ij(f) can be written as

ae{f) . _BW_ o

ij 2G (¢ ij (¢kk6mn+ ¢mn)d¢mn for i + I (12)
o (E) B(9) (A(¢) B($)

- o, —2O g . 1(b 6+ 0 a
JJ 33,2 _ 2 kk mn mn mn

26 (4_.) 9K (. (O
for i = 3 = e (13)
and volumetric parts
(f) B A(Q)
2557 = Ok w2 ) B Oon * O A0 e (14
s 'rs

and elastic strain components for shear and normal part are given by:

(e) 1 . .
dejy = 26_(§__) do, for i 43 e (15)
(e) 1 1 1 1
kk -3 t 3K _(¢_ ) M ] dokk + 3 (¢ 5 do.. for i = j
s 'rs s 'rs s Irs .
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and volumetric strain

(e) 1

dzkk =

K %% (17).
S rs

The coefficient A(4 ) and B(§).are given by

2K h nb G c (¢, )72
a(g) = and B(§) = -0 _¢1J .......... (18)
(c . )? c )m
ult ult

Here K, and G, are initial moduli and n, b and h are material constants. ( ¢ij) is the
intensity of crack tensor defined by

c@;) = 1% b5 ¢ "z 19)

ij

and C, ¢ is the intensity of crack in uniaxial compression. K, is the variable volumetric
moduli and G is the variable shear moduli given by

c(. ,)
ke’ 2
K, (¢rs) = Kh (— SO +r(20)
ult
n
G () = 6, -ba, (C(¢ij))
m
Cae Q@

The total strain component can be decomposed to purely elastic strain increment and
fracturing strain increment as follows  :

_ (e) (£)
deij = deij +deij .......... (22)

Stress Field for Region Containing Damaged Zone

In order to find the stress field in the region including the progressive of fracturing,
the fracturing strain is used as a pseudo-body force to correct the stress field outside the
damaged zone. The integral equations for the displacements and stress components including
the accumulated fracturing strain increment are given in ref. 8
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(i)

u, (@) =f ul® (g, P)p (P)as(P) + S (Q,D) e, (D)dA_ @3)
i ml D
ABDC A
and
AL R ; .
.. (Q) Z (Q,P)p (P)ds(P) T, . »D D)dA_- .
% 4 Q o i Q pq s +A lJml(Q )e ml( ) p~2 M elJ(Q)
.......... (24)
where
(i) (3) (k)

. 2 v z

T. . = Z ) 6 —_— T . 25
1ijml Mt ml,j+ ml,i * ij 1-2v ml,k] @)

Here Q is the interior point, P is a point on the boundary ABDC, D is a point inside the
damaged region A. P"‘q is again the fictitious traction component that has to be determined
from the given boundary conditions. € * D = E (f) (D) obtained from equation (12) is
the accumulated fracturing strain components at the point D inside the region A. dAD is
the area element containing the point D. ¢ | i Q) = €, (e) (Q) is obtained from equation
(15). The boundary conditions to be satistied are

2v * ty

( <. . —— - =
Ui,5%Y5,10005 Ty Y ,k"i7285 50y "

In order to solve for the vector P p we let the point Q tend to P’ on the boundary
ABDC and obtain

(q) .
1 p. (p')A£D£‘z (P'.P)n (P')p ¢P)ds(P)+ i T, i 3m (P’,D)nj(P') €y (DYAL

P'#£P
=t . (P')
1

where the integrals are interpreted in the Cauchy Principal Value sense.

Note ¢ ;ﬂ (P’) = 0 since the fracture has not yet reached the boundary.
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Numerical Implementation

A general purpose computer program called BIEPEN (Boundary Integral
Element Method for Penetration Problem) capable of solving planar brittle elastic problems
including progressive fracturing has been written in FORTRAN language*. This program
can be developed in 3-dimensional problem and use any other constitutive relation.

Boundary Integral Element for Plane Stress.

General analytic solutions to the integration of equations (6) and (27) are not available
and it is, therefore, necessary to solve the equations numerically. The integral equations
reduced to algebraic equations by discretizing the boundary into n straight line segments
which are not necessarily equal. The center of each segment is called node P or Py depending
on whether the point is fixed or not with respect to the integration. The values of p’; andt,
are assumed to be constant on each segment and equal to the values calculated at the node.

Similarly, the interior of damaged region A is covered by a grid containing m cells
which do not have to be equal in area. Their nodal points are located at the centroid D.
The valueof € * (D e) is assumed to be constant over the et cell and equal to the value calculated
at the centroid.

Under these conditions a discrete analog of the boundary integral equations (27)
can be written as

n m *
1 * 1] * 1 . 1 D
5 Py (PP E) Py (P AL (PR + oZ1 € (D) ATypy (1o D)
.......... ©8)
where
S
.
k+ (q)
1] — ] ) P
AT (Pl P S Zi5 (P{,P In (PPIAs(RL) L (29)
Sk
'Miml (Pi, De) = A,}I; Tijml(Pi’ De) nj(Pl) dAe __________ (30)

* The problem in this paper was rug on a CDC 6500
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Details of these calculations are available in ref. 8. Equation (28) can be expressed in
matrix form

(3 (1] + (a0} {p'} = {e} - " a0y G1)

where[I]is the identity matrix. Equation (31) has been solved by a standard Gauss reduction
scheme on{ =11+ [a I } followed by an iteration to refine the solutlon{p*}.

Finally, after solving equation (31), the now completely known fictitious boundary

data may be used to determine the solution for the internal stresses from equation (24) which
can be written as,

n m

* *
= -
955(Q =42y PP AR G (@R + By ey (DA M, gy (D )-2ue, (Q)

.......... (32)
The integrations to determine AK and &M are given by :
S
k+1 (q) .
= P,)
AKijq(Q,Pk) = [ zij (Q,Pk) ds( k)
k
AMijml(Q, D) = Af 75 m1 (@, b)aa L (34)

Any number of interior solutions may be made when the boundary solution is obtained.
Since the solution is performed at pre-selected points, an analyst may concentrate on any
particular area of interest and is not burdened with complete field solutions.

Note that in order to find the internal stresses before the incipient of the fracture, the
numencal unknown value p from equatlon (6) can be calculated from equation (28) by
letting e = 0. Then the known p may again be used to determine the solution for the
internal stresses from equation (3). The numerical result of equation (3) can be obtained
from equation (32) by letting both € :nl and € i be equal to zero.
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Results and Discussion
The region considered is R = {(x, y)/.15¢ x< 1.0,-1.0<y < - .lS}which is

located interior to the rock mass at a distance approximately % of the slant from the

boundary. There are 246 points altogether as shown in Figure 4. The points are
numbered consecutively from the coordinates (.15, - .75), (.15, - .80) ... and so on. The
interior of damaged region A is covered by square grids each of size .025 x .025 sq.in. In
order to divide the boundary ABDC or DBAC, we have to consider each portion separately.
Since the traction distributes only along the portion AB, and there is no traction along the
portion BD and AC, so we have to divide the portion AB and that near AB very precisely
as follows.

Let the length of the boundary DBAC be 5 inches where the portions DB = 2, BA
= 1, and AC = 2 inches respectively. The portion BA is divided to 32 equal parts each of

length —L_inch while the portion BD is divided to 4 equal parts. The first two parts from

32
the end point D is subdivided to 8 parts each of length —é— inch. The third part of DB is

subdivided to 8 parts each of length IIB and the last portion near BA is subdivided to 16 parts

each of length 3L2 inch. The portion AC is divided in the same manner as DB (see Figure

2). There are altogether 96 discretized boundary data elements.

-1.04

6 21 40 €3 80 12l 156 192 228 246

Figure 4 Region (R) with specified 246 interior points is considered. As the load has been
increased up to 1.24% of the critical load, cracks initiate at point (@) for 1% jteration
and points (A ), (©) and (m) are consequently brought into the damaged region
for 214, 374 and 4™ jterations respectively.

[ )



J. Sci. Soc. Thailand, 13 (1987) 99

The value of the parameters used and the material constants are F = 1 b/in.2, L
=lin.,,m =5,0 =T /4, ¢‘f= O,n=1,b=1,h=1,E = 6371 ksi,v = 34,8, =
1.3 ksi, S‘c = 8.8 ksi, Sc = 17.6 ksi. From the calculations, the critical load obtained from
the minimum of K' = 3.215 1b/in? is located at the position 52. At this point there is the
possibility for a crack to develop and initiate. When the load has been increased about
0.62% from the critical load i.e,, F = 3.235 1b/in? it is found that there are five points at
the positions, 22, 31, 41, 52 and 64 outside the elastic surface. Consequently, these points
meet the criteria for crack initiation. The fracturing strain increments from these five
points have been calculated by assuming a linear stress increment for the first iteration.
Then, the calculated fracturing strain will be used as a pseudo-body force for calculating
the stress field for the second iteration. It is found that there is one more point at the position
14 that slips into the damaged region. After the third iteration has been carried out by
taking the effect of the new point into account, it is found that there are no more points
brought into the damaged region. This means that when the load is increased 0.62% from
the critical load, the fracture propagation becomes stable. The principal stresses for the
points that are far away from the damaged region give a better convergence than those
that are close to the damaged region (see Table 1 and Table 2). The percentage of the
stress convergence is no worse than 99.68% for the points that are close to the damaged
region and about 99.96% for the points that far away from the damaged region.

For the load increases 1.08% of the critical load, there are seven points in the
damaged region which locate at the positions 14, 22, 31, 32, 41, 52 and 64. For the second
iteration, there is one more point at the position 7 brought into the damaged region. The
third iteration has been carried out by taking the effect of the new point into account. Itis
found that there are no more points brought into the damaged region. The fracture
propagation is still stable and the growing damaged region becomes shallow and longer in
the horizontal direction. The principal stresses for the points that are far away and close
to the damaged region are given in Table 3 and Table 4. The percentage of the stress
convergence is no worse than 99.65% and 99.92% for the points that are close and far
away from the damaged region.

For the load increases 1.24% of the critical load, there are eight points in the
damaged region at the positions 14, 22, 31, 32, 41, 42, 52, and 64 as shown in Figure 4.
These have been calculated by using the first iteration. For the second iteration, there are
two more points brought into the damaged region at the positions 7 and 77. For the third
iteration, after taking these two new points into account and recalculating stresses again,
it is found that there is one.more point at the position 92 brought into the damaged region.
This point has very low crack intensity, so it gives very large fracturing strain increment
and this will give a large effect when this point is considered as a new pseudo-body force
for the fourth iteration. After the fourth iteration has been carried out, it is found that
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there are quite a few points near the damaged region which move into the damaged
region. This means that the damaged region starts growing very rapidly and becomes
larger and larger. The shape of the growing region is observed to grow in both horizontal
and vertical directions. Finally, this region has a great effect on the stress field in the
undamaged region as follows. The stress at points along a specified vertical line in the
elastic region remains in a tension-compression state, and is consequently more likely to
fracture, whereas the stress at points along a specified horizontal line changes from the
state of tension-compression to compression-compression. Therefore, it is less likely to
fracture. The stresses become divergent as shown in Table 5. The fracture propagation is
now an unstable propagation. Thus, it can be concluded that the calculated stress is
accurate up to the load increment less than 1.24% of the critical load.

The stress path for a particular point such as at the position 93 is concave upward
from the straight line before it passes outside the elastic surface as shown in Figure 3. This
is the result from the stress correction for every loading increment from 3.215 1b/ in2 to
3.255 Ib/in2.

Conclusion

It has been clearly demonstrated that the Boundary Integral Element method
provides a very useful technique for carrying out the analysis of the penetration problem.
The method can also apply for any failure criteria of the material and other constitutive
laws for fracturing strain. It can be extended to the solution of problems concerning
drilling in 3-dimensional solids such-as those found in geotechnical engineering.
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