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Abstract
Oscillations in the cells and substrate concentration in a two-tank continuous

fermentation system are shown to be Hopf bifurcation in the underlying system of four
ordinary differential equations. It is shown that, if other parameters are suitably fixed
and the first tank yield is assumed constant, then a low first tank yield will result in a Hopf
bifurcation to a periodic solution to the system. On the other hand, if the first yield
depends linearly on the substrate level a more complex situation may develop. When the
bifurcation parameter under consideration varies beyond a certain value, the existing
periodic solution becomes unstable and a secondary bifurcation from this periodic
solution occurs. This leads to an appearance of solutions on a torus in the four
dimensional phase plane.

Introduction

Sustained oscillations in the cell concentration X and the substrate concentration
S have been observed in continuous fermentation processes even though the feed
concentration of substrate Sj, the dilution rate D, and other environmental conditions are
kept constant!. Several mathematical models have been developed to investigate the
continuous system, one of which consists of the system of ordinary differential equations:

dX

= = Xlu- D}, X(0) = X (1a)
‘Z_f = D[Sy - S] - ‘-‘}TX s()=s" (1b)
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where Y is the cell substrate yield and  is the specific growth rate. Extensive analysis of
this model has been carried out®® with M being approximated by the Monod equation,
i.e.,

p= BmaxS
K, +8

where W ., the maximum growth rate, and K, the saturation constant, are positive
constants, and the yield is assumed to depend linearly on S:

Y(S) = C; + CoS.

Here C; and C, are positive constants.

It was shown’ that the model admits sustained oscillations in the X, S phase
plane. Heinzle et al.* showed experimentally that the oscillations were dependent on the
oxygen tension. However, the factors that determine the direction of the oscillation
trajectory in the phase plane are still not well understood, although oxygen tension or
aerobic/anaerobic consideration is most likely a candidate. Experimentally, both
clockwise and counterclockwise oscillations have been observed. The data of Finn and
Wilson® and Heinzel et al.* show counterclockwise oscillations, while that of Borzani,
Gregori, and Vairo? indicates clockwise oscillations.

It was shown’ that the model (1) leads only to clockwise oscillations, and a
criterion was developed which differentiated between clockwise and counterclockwise
oscillations. The analysis lead the authors® to propose a system which possesses
counterclockwise oscillations, consisting of two connected continous flow tanks, each
containing cells and substrate, (X 1 Sih (X, S,) respectively. It is assumed that the first
tanks receives substrate at a concentration Sf In this first tank, the dynamics of the cell
mass X,, and substrate S,, are modelled by the following system:

dX

S = Xi[ui(S1) - D), X0 =X;  (2a)
ds, m(S1) _os
7=D(S/—Sl)—m)\1, 51(0)—51 (Zb)
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Here, D is the dilution rate, Y ,(S,) is the yield and 1, (S,) is the specific growth
rate, described by the Monod equation:

Hmax, S,

m($) = g =g

In the second tank, cells are allowed to be digested to produce substrate so that the condition
for a counterclockwise cycle, dgés) < 0 (found in ref. 9), is satisfied. The substrate enters
the tank at a concentration S,(#) and cells at concentration X, (¢). Thus, the model for this
second tank is essentially (2) with X and S reversed. This is equivalent to reversing the
time and hence the direction along the limit cycle. The model equations for the second

tank are

dX, pa2(X2) .
T, D( 1 XZ) y2(X2) 52’ XZ(O) XZ ( a)
dS; .
—dT = Szluz(XZ) - D] + D8S,, 52(0) =8, (3b)
where
Bmexy; X2
X,) = Fmara2
"I’( 2) Ksz + XZ
and

Y2(X32) = C3+ Cy X3

A computer simulation of (2) and (3) is shown in Figure 1, which shows a
counterclockwise limit cycle in the phase plane. In this paper, such oscillation in the
two-tank system 1s shown to be a Hopf bifurcation in the underlying system of four
ordinary differential equations. The cae where Y, is assumed constant is first
considered. It is show that, if other parameters are suitably fixed, a low yield Y, in the
first tank results in a Hopf bifurcation to a periodic solution in the second tank.
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Figure 1. Computer simulation of (la), (1b), (2a), (2b) with max1 = 1-14, K, = 0.14,
Y max2 = 0.3, K82 = 1.75, (:1 = 0.5, C2 = 0.01, C4 =0.03,D = 0'14, and Sf = 20.
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When the yield Y, is allowed to depend in a linear fashion on the substrate level
S, according to the equation

Y1(5) = C1 + CaS2

a more complex situation may develop. When the parameter C, decreases past a certain
value, the existing periodic solution in the second tank becomes unstable and a secondary
bifurcation from this periodic solution occurs. This leads to an appearance of solutions
on a torus in the four dimensional phase plane. Further bifurcations are believed to lead
to turbulence. This is when the time dependence of the solution becomes complicated,
irregular and chaotic. Such behavior, although commonly observed in nature, is generally
difficult to analyze and model. Our system, however, possesses sufficient degree of
symmetries that the phenomenon can be explained by bifurcation theory.

Hopf Bifurcation in the Second Tank

Introducing dimensionless variables, = 2%, v %}, w= %2 ;= g?, T = Dt,

l

Sy S;0
and dimensionless contants, o = 2%, 8 = %, v=tme e = %1, A=C,B=
C3Sy, E = C3, H = C4Sy, (2) and (3) become
du . _ X"
7 = ufg{v) — 1], u(0)=u" = 5; (4a)
dv _ g(v). .5
ar - TV T am” V0 =v =75, (4b)
dw h(w) =z . *
—_— - _— = = —= 4
oUW A 0)=w 5, (4c<)
Sy p
%% = z(h(w) — 1) + v, 2(0)=2" = -srlj- (44d)
where
av
g(v)= (5)
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hw) = == (6)
Gi{v)=A+ Bv (7

and
Ga(w) = E + Hw. (8)

To locate a critical point (w0, vo,wo, 20) of the system (4) in the first quadrant, we set
du _ du _ du _ de _

F=F=5=% We find the resulting nonlinear equations decouple to

B

o ©)
up = (-8 "all(«f + Bug) (10)
hlwo) , _
w°+G2(wg)z° =1up (11)
and
2= T h(wo) (12)

Using (11) and (12), we arrive at the following cubic equation in wyq:

H(1 =~ v)wd + {H[e — uo(1l — v)] + E(1 — v)}wi

+ {Ele — uo{l — v)] — euoH + vvplwo — €uoE =0 (13)

where u is given in (10). Equation (13) gives wq, once 4, B, a, 8, and € are specified.
The Jacobian matrix of (4) about (u, Vo, Wy, zg1) 1S



J. Sci. Soc. Thailand, 12 (1986) 177

(uo,vo,wo,zo) =
r 0 uog'(vo) 0 0 8

ey - ('GET), (vo)uo 0 0
1 0 —1- (&) (wo)zo  Frieed ()
o 1 20! (wo) h(wo) =1
The eigenvalues of this 4 x 4 matrix are
Az = —ri\/r2—4 [(“"1)2;ﬂ(a"l)ﬁ” (15)
where
F=1+(a—1)(:ﬁ—1-5) _ Affii;)ljgﬂ (16)
and
A34 =0 +1/1(0) a7
where
o= % [—1 - (%)I (wo)zo — %ﬂ (18)
and
1(6) = "(“(’;"2)58"’) o+ 'z’—z 1+ (—G%)’(wo)zo ~ ez (19)
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With 6 as the bifurcation parameter, a bifurcation to a periodic solution will
occur at

=0 (20)

if

I(©=0)= EE"G"T)(";'S’L)ZO + 'z’—z [1 + (é‘;) (wo)zo] > 0. (21)

If (20) and (21) are satisfied, then the system (4) has a family of periodic solutions whose
eriods are approximatel 27__ . Further, if
p PP y 7;=(=0=)

r'>o0 (22)

then the eigenvalues A, , have negative real parts, and there is a neighborhood N of the
point, (u,v,w,2,0) = (ug,v,wp,0) in R* x R* such that any closed orbit in N is one
of those above.

At this point, assuming that (22) is satisfied, we make the following observations:

- a) If G, is constant (G,(w ) = E, H = 0) then

8 = - |-2{2 - h(wo)} — (G_:ZJZTO)Z—E <o0. (23)

B =

Therefore, the system does not admit a Hopf bifurcation in the case that G, (the dimensionless
yield in the second tank) is constant.

b) If the dimensionless specific growthrate A( w Jisconstant(h(w ) = v, ¢

=0),thenh’'(w ) = 0 and when & = 0,

1(0) = — (;(;)2 <o. (24)
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This means that, for the case that the dimensionless specific growth rate function in the
second tank is constant, the condition (21) is not satisfied and we do not have a Hopf
bifurcation to a periodic solution at 6 =

¢) If the yield term G, in the first tank is constant (G (v) = A, B=0), then
we find from (11) and (12) that

wo — 1
20 = o (25)
A(h(wo) — 1) — Fleeks

using (9) and (10). Assuming that (21) holds in a neighborhood of © = 0, we have bifurcation
when © > 0, that is,

u)o - 1 GL}%:‘%}S Ehﬁ%ﬁy 2 h(wo
4<@= A{wo)) (2 ~ h(0)) (26)

Condition (26) tells us that, once wg, v , ¢ , E, and H (and hence Q) are specified, then a
bifurcation to a periodic solution occur when the yield G, = A decreases beyond the value

Q.
Variable Yield G1

Here, we consider the case when G, depends in a linear fashion on the substrate
level S, according to (7) with both A and B nonzero. We will investigate the effect of the
parameter A on the oscillatory behavior of the two-tank system. For simplicity of the
following analysis, we assume that £ = 0 (thatis, G,(w ) = H),and v = L

A. Primary Bifurcation

We first consider system:

e gogn 0= (#r2)
& = (W)= 1) +v, 2(0)=2" (27b)
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which are in fact equations (4¢) and (4d) with (u , v ) setequalto (uo , vg ), thecritical
point of (4a), (4b). The critical point of (27) is still (wo , 20 ), as givenin (11), (12). The
Jacobian of (27) about (wo , 2o ) is

1o (-c"—,) (wo)zo  ZoER) (28)

Comparing (28) with the matrix J ( ug , vo , wo , 2o ) in (14), it is clear that the eigenvalues
of Ji(wo, 20) are exactly A 34 given in (17), (18) and (19). Thus, we have a Hopf
bifurcation to a periodic solution for the system (27) when (20) and (21) are satisfied. For
the case that E = 0 and v = 1, (20) becomes

vo > (wo + 2€)eH. (29)
Equation (13) becomes
Hew? — (eugH — vo)wo = 0 (30)
Solving for wy in (30), we find
vo
=ug— 0 31
Wo = o — oo (31)

Using (31) and (10), (29) becomes

_ Z(UO-GZH)
A+ By < P= GH(I-—Uo) (32)
or
A<p-B5 (33)

a—1
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This means that if a , 8, €, and H are given, then we must be in the region below the line
A + Bug . = Pinthe (B, A) parameter plane for a bifurcation to occur in the second tank (see
Figure 2), with the first tank running under the conditions sach that the cells are fed into
the second tank at the constant concentration wuo, and the substrate at the constant
concentration vg.

In other words, if (21) and (33) are satisfied then there is a periodic solution
(@(T), % (T)) to the system (27).  Since (uo , vo) is a stationary point of (4a) and
(4b), the periodic function (uo, vo , @ (T), 2 (7)) is a solution to the system.(4). Figure
3 shows a computer simulation of (4) with ( v*, v*, w* 2") = (v, v w', z*)
and A + Bvo < P, showing a bifurcating limit cycle in the ( w, 2 ) phase plane (the
second tank).

B. Secondary Bifucation

We have seen above how a fixed point ( uo , vo wo, 20 ) of (4) may be replaced
by a closed orbit p(T)= (uo >, vo @W(T) Z ( T)) when the parameter A decreases beyond
the value P - Buvp (see Figure 3). We consider now the next bifurcation. It is quite
concievable that for A4 close to P - Bvo , the closed orbit might be stable, but for smaller
A it might become unstable and a stable torus takes its place. To investigate when this
might happen for system (4), we note that the periodic solution p(T) = (w0, v, @ (1), 2
(T)) to (4) occurs at the stationary solution ( uo , Yo ) of the system (4a), (4b). Thus we
only have to investigate the stability of the stationary solution ( uo , v, ) of (4a), (4b) to
find the condition for secondary bifurcation of the closed orbit p(7) into a torus in the
four dimensional phase plane. To do this, consider now the system (4a), (4b). The
Jacobian of this system about ( ug , vg ) is

0 uogl(vo)

' (34)
oy 1 (&) (wolue

Ja(uo,v0) =

Comparing (34) with the matrix in (14), it is clear that the eigenvalues of (34) are exactly
A given in (15), (16).

The stationary solution ( ug , vo ) (and hence the periodic solution p(T) will be
stable if

>0
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when the eigenvalues of J,( uo , vo ) both have negative real parts. The stationary
solution ( uo , vo ) loses its stability at T' = 0, resulting in a bifurcation for the system
(4a), (4b) ““on top of’’ the basic periodic solution which bifurcates from the stationary
solution of (4). This, therefore, represents a bifurcation in the 4-dimensional coordinate
space (v, v , w , 2z ). Using (16), we have a secondary bifurcation when

A . op(l-B)~B1+A)
B <= =17+ A (38)
or
A< RB, (36)

assuming that a > f3 + 1 (sothat X | 2 are non-real). In orther words, when

A < min{RB, P — Byy) (37)

there exists a family of bifurcating tori in the 4-dimensional phase plane. This means that
in the (B, A) parameter space, the point (B, 4) must be located in the region below both
linesA + Bvy = Pand A = RB (see Figure 2). where P, Rand v are fixed once « ,
B, € and H are given.

Figure 4 shows a limit cycle bifurcating from the stationary solution ( uo , vg)
in the first tank when (37) is satisfied. Such bifurcation on top of the original periodic
solution (shown in Figure 3) results in an appearance of a torus in the four dimensional
phase plane. The projection of the torus onto the ( w , z ) plane is shown in Figure §, in
which both (33) and (36) are satisfied (corresponding to the shaded region in Figure 2).

CONCLUSIONS

In this paper, it is shown that oscillations in the two-tank continuous system is a
Hopf bifurcation in the underlying system of ordinary differential equations. When G,
(corresponding to the yield term in the second tank) is contant, we observe that the system
does not admit a Hopf bifurcation if the paramters © , 8, A, and Baresuchthat ' > 0.
Also, we do not have two pure imaginary eigenvalues when [* = 0 if the specific growth
rate in the second tank is constant. Thus, no bifurcation to a periodic solution occurs.
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Figure 2. Plot of the lines A+ Bvg = P and A = RB, showing the shaded region in the
(B, A) plane where a secondary bifurcation to a torus is possible.
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Figure 3. Computer simulation of (la), (Ib), (2a), 2b) with V= 1, E = 0,E = 4.0, 0. =4.0, B =
0.5, €= 1.0,H = 1/13, A = 0.1407, B = 15.95, and (u*, v* w* 2% =( Yo, v,
w*, z*) = (2.33255,0.1667, 0.155, 0.191), showing a limit cycle in the ( w, z ) plane.
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Figure 4. A plot of a limit cycle in the ( «, v) plane after secondary bifurcation has
occured for the system (1a), (1b), (2a), (2b), with v=1,E =0, 0. =4.0,8 = 0.5, €=
1.0, H = 1/13, A = B/114.8, B = 1595 and ( u*, v* w*, 2*) = (2.347, 0.1667,

0.155, 0.191).
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Figure 5. The projection onto the ( w, :) plane of the bifurcating torus, v=1,E =0,
0 =4008=05 €=10,H=1/13,A =B/144.8,B = 15.95,and ( u*, v* w,* z%)

= (2.347, 0.1667, 0.155, 0.191).
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The constant yield term G =4 in the first tank is shown to play an essential
role in the bifurcation of the system. When Wg €5 V,E, and H are fixed, Q is given in
(26). When G, (equivalently A) decreases past the value Q then a Hopf bifurcation
occurs.

On the other hand, if o, 3, € and H are fixed, in the casethe V= land E =
0, then Pis given in (32). In this case, a Hopf bifurcation to a periodic solution occurs when
A satisfies the inequality

If A is allowed to decrease further, past the value RB, then a further bifurcation is
expected from the basic closed orbit to a torus in the 4-dimensional phase plane.

Beautiful examples of periodic oscillations have been observed in chemical
systems of biological origins. The physical phenomenon where the time dependence
appears complicated, irregular and chaotic, however, might be easily overlooked in the
chemical system as ‘‘messy, unusable data.”’ In fluid dynamics, the phenomenon of
turbulent fluid motion has recieved various mathematical interpretations. It was argued
by Leray!! that it leads to a breakdown of the validity of the Navier Stokes equations
used to describe the system. Ruelle and Takenslz, however, argued that while such a
breakdown may happen, it does not necessarily accompany turbulence. We hope that it
has been demonstrated here that the phenomenon is, in fact, perfectly respectable and
might have physiological-or pathological-significance in biological systems.
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