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Abstract

The microscopic theory of He II has been developed, accounting for the Bose-Einstein
condensation by the existence of off-diagonal long-range order " (ODLRO) in the reduced
density matrices. The derivation of a closed set of thermo-hydrodynamic equations, for the
condensate and the depletion of He II in the bulk system, was thus attempted.

Introduction

Einstein' was the first who referred to the phase transition of non-interacting quantum
gas obeying Bose statistics as the Bose condensation. Later, London? proposed that the
mechanism responsible for the Bose-Einstein condensation would also account for the lambda
(quantum phase) transition and for the unusual dynamic properties (e.g., superfluidity)
of superfluid helium (He II). This paper attempts to elaborate on London’s idea that the thermo-—
hydrodynamic equations of He II can be derived from the microscopic theory, in which

macroscopic dynamics is introduced and discussed in terms of reduced density matrices.
The thermo-hydrodynamics of superfluid helium was found to be strikingly different from,

*This work has been presented at the Asia Pacific Physics Conference held on June 12-18,
1983, National University of Singapore, Singapore.
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and more complex than, that of the condensed ideal Bose gas. This work on He II, of course,
must reduce to the ideal Bose gas when the interaction is switched off.

Yang 3 has shown that there is an off-diagonal long-range order (ODLRO) of the
reduced density matrices, first suggested by Penrose™ in the coordinate space representation
for the many-body system of interacting bosons. Frohlich® has been successful in obtaining
the Navier-Stokes hydrodynamic equation as an exact result from the properties of reduced
density matrices. These confirm that reduced density matrices must provide a capable tool
in solving the superfluid helium problem. In the next section the definitions and some properties
or reduced density matrices will be reviewed briefly, only for the purpose of this work,
and some more hydrodynamic equations will be shown. More details on reduced density
matrices have been presented in our previous works®.

Reduced Density Matrices and Conservation Laws

Since a complete description of the quantum system in the mixed state is assumed

to be contained in the density matrix7,
Dy & X 67, %0 0 - >: R AR LAY (1)
where w is the stat15t1ca1 welghts or the quantum statlstlcal probablhty that the system is
characterized by state i, and V) is the N-particle wave function which could be obtained exactly
by solving the Schrodinger equation, h a'f‘dw'i = H‘wi. The operator H is a Hamiltonian
operator of the N-body system of identical particle,
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where the particles interact in pairs via the spherically symmetrical two-body potential V (r).
The combined quantum and statistical expectation of an observable, such as the average
density<p (x) > of the system of N point particles, is

N
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where Vis the number of states in the system.
The development in time of the density matrix is contained in the Schrddinger equation

and is the quantum Liouville equation or
N
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Although quantum statistics is described by the density matrix, it is far too difficult to
solve explicitly. The reduced density matrices, for equal times, are thus defined as follows :
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etc., for Qn the nth order reduced density matrix. Its coupled equations of motion follows

from equation (4) by mathematical induction :
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The equations of motion forQI and Qz can thus be written :
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These last two equations are important for deriving the macroscopic laws of mass, momentum,

and energy conservation.
From equations (1), (3), and (5), the mass density of fluid at point Xis

PR = Q& ©)

Use of equations (7) and (9) leads to the mass conservation law

0, v.3 - o, (10)

where the momentum density,

>, P,
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is equivalent to the expectation value of the operator,
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From the equation (7) of motion for {2 1 and equation (11), the momentum conservation
law is obtained

<>
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and the stress tensor is defined via
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From the Hamilton_i»an H of the N-body sys em, equation (2), the energy density €, which
is defined via<<H (x) == J€dX, can be written as

2
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Substituting equations (7) and (8) into the time derivative of equation (14) yields the energy
conservation law

>
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Frohlich’ has derived the Navier-Stokes equation as an exact result from the reduced
density matrices, with neither continuum assumptions nor intermediate -‘master ‘equations’
required,

o LoV MV =P +n, VPV n 7xV T, an
where P is the pressure, and ny, ny are the coefficients of viscosity. For a non-interacting
system, a derivation of the Euler equation can be obtained from equation (7) immediately,

The conservation laws, equations (10), (12), and (15), are not yet closed. To obtain
the closed set of these laws, the off-equilibrium behavior of {2, and an expression giving § 5
as a function of Q]must be known for substituting into equatlons (11), (13) and (16).
However, for a non-interacting system, the expression for 92 is not necessary.
Thermo-hydrodynamic Equations of He II

To obtain the thermo-hydrodynamic equations,we will discuss the reduced density
matrices and ODLRO, and the macroscopic quantities for He I1. The He II systems is consi-
dered as an interacting Bose system, but the concept of its‘‘condensation”is more complicated
than the ideal Bose gas. When the condensation has occurred, every atom contributes both
to the condensate spreadmg throughout the volume occupied by the system in the presence
of strong interaction between the 4He atoms and to localized regions of higher density
(localized to within about the average interatomic spacing, 4.5 A). Many theoretical estimates$,?
for the condensate density p. of He II at ‘0 K are between 8% and 25% of the total density
0, and these have been confirmed by many experimental works 19, The condensate density
pc must therefore be distinguished from the superfluid density pg. The superfluid density
ps is equal to the total density at O K. Both the condensate density and superfluid density
decrease with increase of temperature from (0 K and vanish at the lambda transition temperature,

TX Therefore a two-fluid model was proposed 11512 for He II as the condensate and depletion
model: the total density

0 =pctoaq (18)

where pq is called the depletion density, and p is equal to the total density p at Ty Penrose?
hase pointed out how a condensate could be meaningfully defined in liquid 4 He by using
the reduced density matrices. He has suggested that the first order reduced density matrix
Q2 1 can be factorized for the Bose condensation. Yang3 has called the existence of factorization.
off diagonal long-range order’ (ODLRO) in the reduced density matrices. The appearance
of the factorized part in 9-1 for the condensation in Hell system is:

QG5 = e @G + A EHEY, (19)
->, > —b”
where A, (x‘; x“ =+ 0 when X-x"> o
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Liquid 4He as well as a “quantum liquid” is differentiateg> from ordinary liquid at
belgw 1:1 by the appearance of n_1+acroscopic wave function @ (x). The wave function
@ (x) is the statlstlcal | average <Wy(x)> over an-ensemble such that it has a defmlte phase
and amphtude \y(x) is the spmless boson annihilation operator for He atoms.
| ¢ (x) | is thus defined as the “condensate’ den51ty Per below T, }\, and & (x) is referred
as the “condensate (macroscoplc) wave function:

g - [, (x)] exp [i0 (¥, (20
where P, (x = ' ) (x)l The condensate velocity is thus defined via

> >
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The “depletion” density p d is then given by
> > >
Py = A (x5 x), (22)

. >
and A1 is then wrltten m terms of two real functions : an even function P4 (x’;;") and
an odd function X (x ; X “,

+/ ’, +1 > . >
A &5x) = py (5 x) exp [iy (x ;% I, (23)

where the phase xvanishes when_;(‘ = X", The depletion velocity is defined via the depletion
current density

> >/

Py = -2%1 gri 2 v'-v" A x5 x0). (24)

The condensate current density is also defined as

> h lim

Pe¥e = mi x> %" (V-v) ¢+ &) 6 (). (25)
Thus the total current density of the Hell system is

> > -> >

J eV = pcvc * pdvd' (26)

In the bulk system, the depletion ‘bulk’ density which is spatially independent is defined via

A G5XY = A (X-X = p b (% -3 exp GX(X'-Xl, 7)
where h(r) is real function and approaches zero at 0K when r is much greater than the
average interatomic spacing.

Yang has also shown that the factorization of .Q (x DX ’) in the hmlt lx ”| —

implies the factorization of the second order reduced den51ty matnx 2 (x' X5 3('1",—"’)
of the Bose system. A very plausible form®, 14 of Q 2 which shows the presence of ODLRO

may be written as

VIR
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where $ (r) and $2 (r) are the screening factors for the “core” condition. The function
h (r) and the screening factors § (r) can be obtained from the work of Mchllan8 The
function A.2 is required to satisfy all conditions analogous to the conditions® of Qz.

Now we will presént the thermo-hydrodynamic equations of motion for the bulk
system of 4He I. Use of the form of $and 27 from equation (20) and (28) in the equation
(7), after taking the limit as % - x”| > o and separating the sear plart and imaginary part
along with the definition of macroscopic quantities, gives the equations of motion for v,

Pc and Py:

> - ~ P> >
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Since equation (10) becomes
3P + Vipevetpdvd) = O ' ‘ (31
at
we thus obtain, from equations (30) and (31)
_g_od + Vlogve) = & V.[Pcpd(va-vo)] (32)
t P
whereli(pe,0g) = PciVOB(d3r + PdASV()S8d3r + PASV(S(Dh(r)d3r, (33)
m m m
and a = m p IVE8yoh(r) r2d3r. (34)
- 3h2

Since the hydrodynamic equations of the two-fluid model must be based on the
hydrodynamic equations of a single fluid, the Navier-Stokes equation (17) as derived microscopi-
cally by Frohlich can thus be written for Hell as. N

0cdve + PelVeVIVe + pdg_vd + pgvgVvg = - VP +n glvg (7a)

ot
in the bulk system.

Inserting equation (29) into the last equation, one obtains the equation of motion

for vq :
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One can also obtam the equation of motion for the momentum dens1ty j, from equation (26),
j = Qch + pdVd and equations (29) - (35),

EJ + V,P = 2& [V.{pcpd(vd-vc)}](;’)d-_\yc) + 1N Vz‘_':j, (36)
dt P
where o 5 > N N
VP = [pc(vc.V)vc + pd(vaVIvd +{V.ocvo)lve +{’V-(OdVd)}~Vd] + VP.
(37

To find the equation for the energy conservation law, one can first obtain the energy density
£ per unit mass, from equations (14), (19) - (28), as follows :

€= 1/zpcvc2+ 4P gvg2- _pfgd) (Vd vc) + € 5PesPd)s (38)
where B= mp [ V(r)82(r)h(r) r2d3r, (39)
and €O= 233; § v(r)SZ(r)d3r + P Ddf V(r)SZ(r) [1+h(r):|d3r
21’12 lim v2 |S21(r R)I (40)
m I'

The last term of equation (40) is the mtemal’ kmetlc energy den51ty whlch is mdependent
of the macroscopic flow velocities. We have user r = Xl X"l R= ( X' + x"l) and
only terms up to quadratic in the velocity difference v v4- vc terms are retained. After taking
the time derivative of the energy density ¢ in equation (38), the trivial equation for the
energy conservatromn law can be obtained, but the derivation will not be presented here.

General Discussion and Conclusion

Equations (10), (12), (15), and (17) which have been presented in the second section
are just the usual hydrodynamic equations involving the interacting potential. In the last
section we have obtained equations (29), (30), (31), (32), (35), and (36). They are not yet
a complete set of thermo-hydrodynamic equations of Hell; more investigations are needed
on the equations of motion for the entropy density and energy density. It is obscure whether
the condensate density or the depletion density carries the entropy. Derivation of these equa-
tions was unsuccessfully attempted ten years ago'%. However we have attempted to derive a
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closed set of thermo-hydrodynamic equations which the numerical values of ‘ﬁ’ ,0, and B
can be estimated from the interacting potential V(r), such as the Lennard-Jones (12-6) potential
or the HFDHE2' potential 151t has been believed widely over thirty years that the appropriate
potential for the description of the interaction between neutral helium atoms is the L-J (12-6)
potential proposed by the Boer and Michels 16 Therefore other microscopic theories of super-
fluid Hell, such as the Bogolubov model!” which involves the Fourier transform of the interac-
ting pototential, give divergent results of Fourier Transform of L-J (12-6) potential into
momentum space. But the L-J (12-6) potential may not be the appropriate potential for
He II system as discussed by Bogolubov and Kurbutov!®, The HFDHE? potential proposed
for helium by Aziz et al.?5 will serve the Bogolubov model as well asssuggested by H.R.
Glyde (private communication).

Our discussion will not be completed unless we mention Landau’s successful micros-
copic theory 19 Landau’s theory was based on a two-fluid model with the normal density
pn and the superfluid density pg, where the normal density arose from the elementary excita-
tions or the quasi-particles as called the phonons and rotons. Although he used the Bose statistics
for the phonons and rotons, he never took the Bose-Einstein condensation into account
for Hell.

Bogolubov!7 has shown that the Bose-Einstein condensation occurs in a weakly
interacting Bose system and has obtained the energy spectrum which agrees with Landau’s
microscopic theory. Bogolubov has then taken the condensate density p., the normal density
pn and the superfluid density pg for a model of He II. Up to now, the microscopic theories
of superfluidity has made a little progress. Bogolubov’s microscopic theory also needs more
investigation. Even though Landau’s microscopic theory is very successful in predicting
the existence of the second sound, known as temperature (entropy) waves, and other macroscopic
properties of He II, it is still irrelevant to the problem of what causes the superfluidity.
Therefore the connection between Landau’s two-fluid model and the condensate depletion
model was attempted® 12, since it may yield the solution of the superfluidity. Our closed
set of thermo-hydrodynamic equations is also our attempt to find the solution, and it
will hopefully at least yield the expression for the velocity of second sound as well as Landau’s
microscopic theory.
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