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Abstract

The monomer self energy in dilute mixed molecular crystals is obtained by
considering a set of diagrams which when summed yields a self energy expression in the
form of a continued fraction. Using some theorem concerning Sturm sequences, the
analytic behavior of the exciton propagator is obtained. The bandwidth of the impurity
band in dilute C 10 D8 /C 10 H P mixed naphthalene crystals is determined by examining
the branch cut appearing in the exciton propagator.

Introduction

Three interrelated problems face the diagram approach to the study of random
disorder systems such as mixed molecular crystals and binary alloys. First of all, there is
the problem of which diagrams should be considered. Next, there is the problem of what
are relative weights of each diagram. The weighing of the diagrams arises from the con-
figurational averaging of the random varibles which define the disorder in the system.
Finally, there is the problem of whether the partial summation of the diagrams considered
will yield expressions which have the correct analytic properties. For mixed molecular
crystalsl, the physical interpretatioﬁs of what the monomer states, dimer states, trimer .
states, etc. are, dictate which diagrams should be considered. Since the monomer states
are interpreted as arising from the multiple scattering of an exciton of the host crystal
by a single impurity molecule, the self energy corrections due to the monomer states
would be the sum of the irreducible diagrams which have a single vertex in them. Inter-
pretating the dimer states as arising from the multiple scattering of the exciton by two



64 J. Sci. Soc. Thailand, 9 (1983)

impurity molecules with the added condition that the repeated scattering by one impurity
molecule is interrupted by a scattering by the other imputiry molecule, one finds that the
dimer self energy is the sum of the irreducible 2-vertex diagrams. Similar interpretations
of the trimer states and other higher-order states lead to the self energy corrections due
to these states being the sum of the irreducible 3-vertex, 4-vertex and higher-vertex
-diagrams.

In the dilute limit, the solution to the second problem is to assign the same
weight ¢ (the impurity concentration) to each vertex in every diagram. In general, the
configurational averaging of the random variables leads to each vertex being weighted
by the cumulant function®. In two recent papers on mixed molecular crystals of arbitrary
concenlration3, one of the present authors (IMT) used the full cumulant functions in the
summations of the monomer and dimer diagrams. Leath and coworkers* have pointed
out that the use of the full cumulant functions in the calculations of the configuration
averaged self energy corrections will lead to inconsistencies since the formulation of the
full cumulant functions require that the contributions of all diagrams be taken into account
but the evaluations of the self energy corrections require that many diagrams be neglected.
To prevent the inconsistencies from arising, Gaspard and Cyrot—Lackman5 introduced
the modified cumulant functions p—Pn (c). The modified cumulant functions, which are
to be used in the evaluations of the self energy corrections due to one-vertex diagrams,
two vertex diagrams, .... and p-vertex diagrams, are evaluated by taking into consideration
only those diagrams which contain p or less vertices. In this way, self consistency is
obtained.

Nickel and Bulter® have shown, however, that in some cases, self consistency
was achieved at-the cost of the partially summed self energy expression being non analytic.
In particular, the configuration averaged Green’s function was found to have off-real-
axis branch points on the physical sheet of the complex energy plane. Recently, Mills and
Ratanavararsaksa’ introduced the ““traveling cluster approximation’’ which preserved
both the self consistency and analyticity requirements. Their method required that the
only graphs which should be summed are those which preserved the Herglotz property
in the resulting propagators. The Herglots property is just the set of properties required
for the propagators to have the desired analytic behavior. Odagaki and Yonezawa® have
shown that the desired analytic properties can also be achieved by a homomorphic parti-
tioning of the Hamiltonian which describes the disordered system. Their homomorphic
cluster coherent potential approximatipn was recently used by Friesner and Silbey9 to
renormalize both the site energy and exciton bandwidth in an exciton-phonon interaction
model system.

The purpose of this paper is to study the monomer states in dilute mixed molecular
crystals by considering a set of diagrams which when summed yields a continued fraction
representation of the exciton propagator. By refering to some theorems regarding Sturm
sequences,10 it can be established that the branch cuts of the exciton propagator appear
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on the real axis. Finally, we give the results of our numerical calculations of the concent-
rational dependence of the impurity bandwidth in dilute C,,Dg/ C,, Hg mixed naphthalene
crystals.

Diagram Summation

In the mixed molecular crystals such as naphthalene—ds/ naphthalene-hy crystals,
where some of the host C1 0 D8 molecules on random sites are replaced by DlO HO molecules,
the isotopic substitution will lead to diagonal disorder. Since the excitation modes of
the guest molecules are different from those of the host molecules, the excitons of the
host crystal as they are moving through the crystal will experience a perturbation whenever
they encounter a guest molecule. The nature of the perturbation and the disorder are
easily seen if we write down the Hamiltonian for the system

A . B
H=1I Ej + intermolecular potentials + I, (B~ -
j i

EiA) (n

where EA(B)

over j is over all the sites of the lattice and the summation over i is only over those random

is the excitation energy of the host (guest) molecule and where the summation

sites which are occupied by the guest molecules. Since the intermolecular potentials are
invariant under isotopic substitution, we have not separated them into potentials between
host molecules, between guest molecules and those between host and guest molecules.
The first two terms are,just the Hamiltonian for the host crystal. The third term can be
viewed as being a random perturbations which are acting on the exciton described by
the first two terms.

The self energy correction will be the sum of all the irreducible diagrams which
.«can arise from the perturbation. Since the above Hamiltonian is for a particular arrange-
ment of the guest molecules in the host crystal, a configuration averaging has to be done
in order that the results correspond to those of a real mixed crystal. The configurational
averaging leads to each vertex in the diagrams being weighted by a cumulant function.
Once the averaging has been done, the self energy diagrams are oftenrearranged as follows

‘ = . + L + L o ererireeens 2)
self energy  monomer  dimer  trimer

where Zmo . is the correction due to the monomer state and is the sum of all 1-vertex

Nnome:
diagrams like those shown in Figure la ;2 dimer’ the correction due to the dimer states
and is sum of all irreducible 2-vertex diagrams of the types shown in Figure 1b ; and

where the higher order corrections are4he sums of higher order vertex diagrams.
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In the dilute limit, Pn (c) = c for all values of n no natter how the cumulant
functions are calculated and so the same weight is assigned to every vertex. Hong and
Kopelmanll were able to formally sum both the monomer and dimer series represented
by Figures 1a and 1b. However, not all 2-vertex diagrams were inclued in the dimer series
considered by Hong and Kopelman. In their summation of the 2-vertex diagrams of the
types shown in Figure 2a, they started at r = 2. This meant the 2-vertex diagrams of the
types shown in Figure 2b. were left out. In fact, these diagrams (and many more) would
be completely left out in the rearrangement of diagrams indicated by eqn. (2). Instead
of including the 2-vertex diagrams of Figure 2b. in the dimer series, we propose that they
and other higher order vertex diagrams which contain multiply scattering processes which
are not interrupted by a a scattering by the initial impurity molecule, be included in the
monomer series. This would, of course, be equivalent to replacing the bare propagators
in the diagrams by dressed propagators.

The summation of the ‘‘dressed’” monomer diagrams results in the configuration
averaged monomer self energy being in the continued fraction form
monomer 'l_f_A—‘A C A

1 e
G, - & A
-1 —u

G, s

z

3)

where /\ = EB - EA, G o (E) is the bare propagator (the exciton propagator for the pure
C] 0 Ds crystal). As was pointed out by Hong and Kopelman, the singularities lying outside
the density of states band of the bare propagator are the zeros of the denominators of
the self energy expression. By terminating the continued fraction at the first appearance
of ¢ in the denominator, the second appearance, the third and so on, we find that the
singularities are the zeros of the following sequence of polynomials which are the deno-

minators of the first convergent, the second convergent, etc.)

F, (E)

I—AGO(E)
FZ(E) =(1—AGO(E)( F](E)—CAGO(E)

FS(E) =(1—(1—C)AGO(E)) FZ(E)—CﬁzGO(E) FI(E)

F(E) =(1-(1-¢) AGy(E)F,  B)-c/A>Gy(E) F,(E) @)
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The first polynomial in this sequence gives the location of the singularity determined by
Hong and Kopelman. The above squence of polynomials is know as a sturm sequence10
Since every zero of the n-th polynomial in a Sturm sequence lies inbetween two of the
zeros of the n+l polynomial in the sequence, the singularities of eqn. (3) should not move
off the real axis and the branch cuts which would appear as higher and higher order
polynomials.are considered would be on the real axis.

‘The continued fraction can be terminated by writing the self energy as

- t(E) - CA

z monomer VA

1 -
-1
G, (B - U(E) (5

The solution for eqn. (5) is

1- - 4 G, (E
L) - (I-¢ (A GyE)-1 i c /A G, (E)

2G,, (E) (-0 A G ®)-1)

The negative sign is used in order to insure the proper behavior as E goes to inifinity.
As we see, the analytic expression for the self energy has a cut in the E-plane. This cut
will manifest itself as an impurity side band in the exciton band' spectrum of the dilute
mixed molecular crystal.

Impurity Bandwidth

To be able to apply the results of the previous section to the determination of
the impurity bandwidth in dilute C;; D¢/C,, Hg crystals, the difference in the excitation
energies of the two types of molecules and the values of the exciton propagator in the
host C,o Dg crystal at different energies must be known. For the C,0Dg’Cyp Hy system,
the energy difference is equal to 115 cm™! which is the deepest trap possible for any of
the mixed naphthalene crystals. The values of the exciton propagator can be calculated
using the spectral representation

O(E' .
G, (E) = f _PE) 4
(7

where O(E) is the density of states function for the excition in the pure naphthalene—d8
crystal and which can be calculated from the dispersion relation given in ref. 11. In our
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Figure 1. la. Diagrams in the expansion of the exciton self energy which appear in the
monomer self energy series. 1b. Some of the diagrams which appear in the dimer self
energy series.
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b

Figure 2. 2a. Some of the higher order diagrams which appear in the dimer self energy
series. These diagrams are of the Sr,n1 type treated by Hong and Kopelman in ref. 11.
In these diagrams, the repeated scattering of the exciton by the first impurity molecule
is interrupted by the repeated scattering by the second impurity which inturn is interrupted
by scattering by the first molecule and so forth. 2b. Some of the dimer (2-vertex) diagrams

which are left out is the summation of Sr r is started at r=2.
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Figure 3. Concentrational dependence'of the bandwidth in dilute C,o Dg/ C10 Hg mixed

naphthalene crystals. ( ) gives the dependence predicted by egn. (8). (.......... ) gives
the (c - cz)'/2 dependence obtained by Hoshen and Jortner in ref. 13. and by Bellows and

Priglsad in ref. 14.
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calculation of the density of states, we have used the set of parameters values given as
Set I in refs. 11 and 12.

The bandwidths for a given value of ¢ was determined by substituting the
numerical values of /\ and Go (E) into the square root term appearing in eqn. (6) and
then look for the values of E for which

2(CAGO(E))V2
(1-c) A Gy(B)-1

\
+
—

-1 <

@®

The bandwidth of the impurity band would be the difference between the values of E
which satisfied the upper and lower bounds. The results of these calculations are plotted
in Figure 3.

The concentrational dependence of the bandwidth of the impurity band in the

exciton spectrum of various isotopically mixed naphthalene crystals has been determined

by Hoshen and Jortner'? using the coherent potential approximation approach. They

found that the bandwidth goes as (c - cz)l/z. We have plotted this dependence on Figure 3.
for comparison with our results. More recently, Bellows and Prasad'* have used the
average t-matrix approximation to determine the concentrational dependence of the
impurity band in the phonon spectrum of organic alloys in which the disorder is due
primarily to the presence of the mass defects at the sites and not to the existance of
chemical changes arising from the presence of different types of molecules in the system.
They also found that the bandwidth varies essentially as (c - ¢ )l/2 for small values of c.
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