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Abstract

A mathematical model is proposed for the analysis of maximum depths of daily
rainfall in the northeastern part of Thailand, using a Poisson distribution for annual
exceedances and a shifted exponential distribution for the magnitudes of hazard events.
These assumptions are justified by suitable statistical tests. An important relationship
between the return periods of the annual maxima series and the partial-duration series
is established, allowing investigators to relate the analysis based upon one series to that
based upon the other. With this model, the Gumbel distribution is shown to be the
distribution of annual largest exceedances when the average number of annual exceedances
is equal to 1.

Introduction

The distribution of the maximum depths of daily rainfall is very important
to the irrigation and drainage of agricultural lands. A sound understanding of this
distribution is essential for the efficient use of available water and also for the design
of drainage systems.

The analysis of the maximum depths of daily rainfall can be carried out using
the annual maxima series and/or the partial duration series. The annual series consists
of the maximum values in different years, one value per year. The use of this series
is very convenient because of the fact that annual maximum values are readily available
in most hydrological yearbooks. However, since it takes one value, and only one,
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each year from the record concerned, the second, third, etc... highest values in a
particular year are disregarded even though they are higher than the annual maxi-
mum values in some other years. This disadvantage can be remedied by the use
of the partial-duration series which comprises all values of the record exceeding some
base value.

For the northeastern part of Thailand (hereafter referred to as the Northeast)
where drought conditions last for several months and severe floods occur during periods
of heavy rainfall in August and September’?, the analysis of the maximum depths
of rainfall is even more important because the resulting information may be useful
to the design of reservoir storage and to flood forecasting. However, only a few
studies on these extreme values have been carried out, and the annual maxima and
partial-duration series have been seprately dealt with. In this study, an attempt is
made to develop a mathematical model for the analysis of these two series. Finally
several rainfall records in the Northeast are used to show the applicability of the
developed model.

The Model

Let X be the random variable representing the depth of daily rainfall and
Xo be a particular value of X. In the following, x, is treated as a base value so
that any possible value x of X must be compared with x,. When x < x,, this value
is automatically disregarded. When x > x,, one has an exceedance, and X is then
an exceeding event. In terms of damages, an exceeding event is normally called a
hazard even:. Only the exceeding events are considered.

For the analysis of extreme values such as the maximum depths of daily rain-
fall, an annual basis is commonly adopted. The proposed mathematical model then
consists of the following two assumptions:

(i) The number N of exceedances in each year follows a Poisson distribution:

~2
"P[N=nl=e¢ 2%n!,n=0,1,2 .. ()
in which 4 is a constant, called the exceedance rate.

(ii) The magnitudes of the hazard events are independent and identically
distribution with a distribution function F(x):

P[X < x] = F(x), x > x4 2)
In (1) and (2), P stands for probability. From (l), it is seen that
E(N) = 4, (3)

where E is the expected value operator. In other words, 4 is the average number of
exceedances per year.

For the magnitudes of the hazard events to be independent, x, should be
rather higher. In practice, it is selected in such a way that the number of exceedances
over the length L of a record will be in the range from L to 5L. Once x, has been



72 J. Sci. Soc. Thailand, 7 (1981)

each year from the record concerned, the second, third, etc... highest values in a
particular year are disregarded even though they are higher than the annual maxi-
mum values in some other years. This disadvantage can be remedied by the use
of the partial-duration series which comprises all values of the record exceeding some
base value.

For the northeastern part of Thailand (hereafter referred to as the Northeast)
where drought conditions last for several months and severe floods occur during periods
of heavy rainfall in August and September®?, the analysis of the maximum depths
of rainfall is even more important because the resulting information may be useful
to the design of reservoir storage and to flood forecasting. However, only a few
studies on these extreme values have been carried out, and the annual maxima and
partial-duration series have been seprately dealt with. In this study, an attempt is
made to develop a mathematical model for the analysis of these two series. Finally
several rainfall records in the Northeast are used to show the applicability of the
developed model.

The Model

Let X be the random variable representing the depth of daily rainfall and
Xo be a particular value of X. In the following, x, is treated as a base value so
that any possible value x of X must be compared with x,. When x < x,, this value
is automatically disregarded. When x > x,, one has an exceedance, and X is then
an exceeding event. In terms of damages, an exceeding event is normally called a
hazard event. Only the exceeding events are considered.

For the analysis of extreme values such as the maximum depths of daily rain-
fall, an annual basis is commonly adopted. The proposed mathematical model then
consists of the following two assumptions:

(i) The number N of exceedances in each year follows a Poisson distribution:

.y}
P[N=nl=¢ "n!,n=01,02 .. ()
in which 4 is a constant, called the exceedance rate.

(ii) The magnitudes of the hazard events are independent and identically
distribution with a distribution function F(x):

P[X < x] = F(x), x > xq (2)
In (1) and (2), P stands for probability. From (1), it is seen that
E(N) = 4, (3)

where E is the expected value operator. In other words, 4 is the average number of
exceedances per year.
For the magnitudes of the hazard events to be independent, x, should be

rather higher. In practice, it is selected in such a way that the number of exceedances
over the length L of a record will be in the range from L to 5L. Once x, has been
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selected, the distribution function F(x) may be determined from the resulting partial-
duration series which consists of all x > x,.

Using this model, i.e. the two assumptions, one can establish several important
results in the following sections.

Number of Exceedances with a Higher Base Value

Let x > Xo, and M be the number of exceedances with reference to x in a

year. Then
N
M = z B;, 4)

i=l
where Bj is the Bernoulli random variable associated with the ith hazard event. In
other words:
1 - .
0if X < x,
These Bernoulli variables are independent and identically distributed with the follow-
ing probability mass:

P[X > x] = I-F(x) for b = 1,
g(b) = P[X < X] = F(X) for b = 0, (5)
0, otherwise.

From the result obtained by Shane and Lynn2, one can write:

o0
PIM =m) = S P[N = n] [g(m)]"", (6)

n=m

in which [g(m)]“*is the nth convolution of g(m) with itself. One has:

[t = () 1 - Fl™ [F1™ ™, M
where
n n!
(m) “mlio-m?"

Using (1) and (7), one obtains

PIM = m] = exp(-2) GL=FOLT R [@FopR—m
m: n=m (n-m)!

L

which can be reduced to:

_ {al - F1p™

PIM =m] = — exp {-4[1 -F(x)1}. (8)

So the number of exceedances with reference to any base value x > xg also follows
the Poisson distribution. In this case the exceedance rate is:

EM) = 2| )
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where
A = A1 -F®x)1, (10)
which clearly depends upon 4 and F(x).

Largest Exceedances

Due to assumption (ii), the largest exceedances in different years are inde-
pendent and identically distributed. Let X be the random variable which has the
common distribution of these largest exceedances. Then the distribution function
of X can be written as follows:

o) L n
Hx) = Plx < x] = 3 PIN =n] {P[x <x]} , (11)
n=0
Since X is among the hazard magnitudes,

P[% < x] = F(x). (12)
Substituting (1) and (12) into (11) gives:

oo n
H(x) = exp (-=4) 3 [AF(x)] /n!,
n=Q
which reduces to:
H(x) = exp {—l[l—F(x)]}. : (13)

This result is very important in establishing the relationship between the return
periods T and T which are based upon the partial-duration series and the annual
maxima series, respectively.

Relationship between T and Tj,

The return period (also called the recurrence interval) of an event of a given
magnitude is the average length of time between successive occurrences of that event.
Now let x be a given magnitude with x > x,. Since the mean number of exceedances
per year is 4', that in T years is A'T. When this is equal to 1, the corresponding
value of x has a return period T. Therefore, one can write:

T = 1/4, o (14)
or in view of (10):

T = {A1-Fl}'. (15)

This return period is based upon the number of exceedances with reference to x.
In other words, it is based upon the partial-duration series.

Now let Tp denote the return period of magnitude x corresponding to the
annual maxima series. In statistical analysis, this series is treated as consisting of
independent and identical random variables. This treatment is also adopted here,
so that the maximum value in one year has the same distribution as the maximum
value in another year. Since the largest exceedance in a year when it exists must
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be the maximum value of that year, the above treatment leads to the conclusion that
the distribution of the largest exceedances obtained in (13) is also the distribution
of the annual maxima. Hence the return period T can be obtained from its usual
definition as:
Ta = I/P[X>x] = [1 - HX)]!,
In view of (10) and (13), one can write:
Ta = [1 —exp (1)1,
which after using (14) becomes: .
Ta =[1-exp (-1, - (16)

or
T=10nTs - In(Tp - DI}, (17)

This result was obtained by Chow* using an approximate method. Using this result,
one can easily verify that the two return periods are significantly different only at
Jow values (less than 5 years).

New Approach to the Gumbel Distribution

The extreme-value type-1 distribution commonly referred to as the Gumbel
distribution, is most widely used in fitting annual maxima series. For those series
in Thailand and Laos, its applicability has been proven® %7, So far, there have been
two approaches, one by Gumbel® the other be Jowitt® to arriving at this distribu-
tion. In this study, the Gumbel distribution is shown to be obtained by a suitable
choice of the distribution used for the magnitude of the hazard events and by an
appropriate selection of the base value x,.

First, in view of (3), the distribution of largest exceedances can be rewritten as:

H(x) = exp {- E(N) [I - F(x)]} (18)
Now, assuming that F(x) is the shifted exponential distribution, i.e.

F(x) = 1 -exp[-(x—x0)/8], \ (19)
where £ is the paramater, and that the exceedance rate is equal to unity:

E(N) = 4 =1, (20)
then (18) becomes:

H(x) = exp {- exp [~(x - x,)/8}, 2n

whis is the Gumbel distribution with x, and 8 being the location and concentration
parameters, respectively. This result shows that the Gumbel distribution is the dis-
tribution of the maximum exceedances in different years when the base value x, is
determined so that the two conditions expressed by (19) and (20) are both satisfied.

Application to Actual Data

In the foregoing theoretical analysis, serveral assumptions were made. Of
course, the derived formulae hold only when these assumptions are valid. Like any
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other mathematical model which aims at solving some practical problem, the present
model is not always applicable. However, for the rainfall in the Northeast, it is
realistic and very satisfactory, as it can be seen from the analysis of some typical
sets of data listed in Table 1. To start with, the two basic assumptions must be
verified.

TABLE 1: LIST OF RAINFALL STATIONS EMPLOYED

Station Location Period of record used
S1 Chum Phae. Khon Kaen 1952 — 1976
S2 RID office, Khon Kaen 1955 — 1977
S3 Huai Kha Khang, Maha Sarakham 1954 — 1977
S4 Nong Sun Agricultural Station, Nakon Ratchasima 1955 — 1977
S5 Muang, Nong Khai 1952 - 1977
S6 Muang, Roi Et 1952 - 1977
S7 Agricultural Experimental Station, Roi Et 1952 — 1977
S8 Amnat Charoen, Ubon Ratchathani 1952 - 1975
S9 Warin Chamrap, Ubon Ratchathani 1952 - 1977

On the Poisson Assumption

Normally, the base value x, should be high enough. Once x, has been selected,
the validity of the Poisson assumption may be assessed using the resulting partial-
duration series which consists of all daily rainfall depths exceeding x,. Let nj be
the number of exceedances in successive years of the record, i = 1, 2, ..., L, then
the assumption is tested using the following chi-square statistic:

K
22 =3 (0j - E)*E; (22)
=l
where Ojand Ej are respectively the observed and expected frequencies at point j.
The value of K is selected as the maximum value of n;:

K = max{nj}, i = I, .... L. (23)
Define

Np = § nj, (24)
i=l
then the expected frequency E;jis computed by
Ej = Np P[N = j] = Ny A exp (- Dfj!. (25)
Since 4 has to be estimated, the above statistic has K-2 degrees of freedom.

The chi-square test may be used for any distribution. In the present situation,
for the Poisson assumption, the Fisher dispersion test can also be used. This test
makes use of the following statistic
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L .3 o -
d= 3 (nj- 474, (26)

i=l

where 4 is an estimator of A. When 2 is sufficiently large (4 > 5), d is approximately
distributed as a chi-square variable with L-1 degrees of freedom. However, as indicat-
ed by Sukhatmgm, this approximation is still acceptable provided that L > 5if 1 > |
and L > 15if 4 < 1.

For all the data sets under consideration, L is greater than 20,Aand the Fisher
dispersion test may be readily applicable to all possible values of 4. The results
of such evaluation are summarized in Table 2 where x, may vary from station to
station. These clearly show that the assumption is valid.

TABLE 2: STATISTICAL EVALUATION OF THE POISSON ASSUMPTION

Stati *o 7(2 d
ation
(mm) () @ 3) (1 (2) @)

S1 62 8.367 4 9.488 32.909 24 36.415
S2 74 4.696 3 7.815 31.241 22 33.924
S3 70 0.320 1 3.841 17.696 23 35.172
S4 80 2.551 2 5.991 17.533 22 33.924
S5 84 4.006 2 5.491 18.333 21 32.671
S6 80 2.826 2 5991 18.889 25 37.652
S7 80 4.131 3 7.815 31.047 25 37.652
S8 102 1.339 2 5.991 32.000 23 35.172
S9 82 5.478 3

7.815 22.588 25 37.652

Notes: (1) Computed Value
(2) Degree of freedom
(3) Critical value at 5% significance level.

On the Independence Assumption

The independence assumption for daily rainfall depths exceeding x, is even
more acceptable than in the case of daily streamflows (see Ref. 3). However, to
provide a rather comprehensive analysis, this assumption is assessed by using the turning
point test. In the observed series x¢, t=1, ..., Np, a turning point occurs at t=i if
xj is either greater than x;_; and X4, or less than these two adjacent values. The
turning points in a sequence consisting of Ny, values may be approximated by a normal

distribution with mean # and variance ¢? given by'!:
0? = (16N, — 29) /90,
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Thus the randomness (or independence) assumption can readily be evaluated. Typical
results are shown in Table 3. These result indicate how high x, must be for it to
be accepted. It should also be noted that the validity of the Poisson assumption does
not have any implication on the randomness of the resulting partial-duration series.

TABLE 3: TYPICAL RESULTS OF A STATISTICAL EVALUATION OF
THE INDEPENDENCE ASSUMPTION

Station Computed Values
S2 2.590*(70) 1.936 (72) 1.365 (74)
S4 2.452%(78) 1.942 (80) 1.743 (82)
S6 2.380*(78) 1.921 (80) 1.681 (82)
S8 2.110*(100) 1.678 (102) 1.546 (104)

Notes: In parentheses is selected value of x,, case with (*) is rejected at 5% significance level.

On the Shifted Exponential Assumption

As previously indicated, the distribution to be used for the magnitudes of
hazard events is determined from actual data. However, in order to show that the
Gumbel distribution is indeed the distribution of largest exceedances subject to a
constraint on the exceedance rate it has been assumed to be the shifted exponential
distribution. To justify this assumption, the Kolmogorov-Smirnov test can be em-
ployed. The procedure is as follows:

1. Estimate the parameter 3 by

,§ =X - Xq, 27
where
Np
X ! 2 X, X3 D> X (28)
X =T is Xj .
Np = 1 1 (] ,

2. Arrange the sequence xj, i=1, ..., N}, in ascending order x; < x; < ... < xn,
and assign the rank i to xj.

3. Compute the following statistic:
/\ = max } F(x) — i/Np
i = l, ves s Np

’ (29)

where F(x;) is the value of F at x;, with ﬁ having been inserted into (19).

4. Compare this statistic with the tabulated critical value A\, at the selected
significance level (in this study, it is equal to 5 per cent). If A <A, the assumption
is accepted. The value of A, is available in most statistical books as well as in
Yevjevich!? and Haan®®.
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As summarized in Table 4, the magnitudes of hazard events can be fitted very
well by the shifted exponential distribution.

TABLE 4: RESULTS OF FITTING THE MAGNITUDES OF HAZARD EVENTS BY THE
SHIFTED EXPONENTIAL DISTRIBUTION

Station s1 S2 S3 S4 85 S6 7 S8 9
X, 62 70 70 78 80 78 78 98 78
N, 33 32 23 35 37 41 51 30 41
A 0.089  0.081 0187 0177 0073 0152 0139 0111  0.060
VANS 0.231 0.234 0.275 0.224 0.218 0.208 0.187  0.242 0.208
Xo 64 72 72 80 82 80 80 100 80
N, 32 30 20 30 35 36 42 27 39
a\ 0.082  0.087 0.222  0.144  0.083 0.168  0.124 0106  0.091
AN 0.234 0.242 0204 0242 0224 0221 0205 0254  0.213
Xo 66 74 74 82 84 82 82 102 82
N, 28 29 18 25 33 32 39 24 34
YAN 0.107  0.106  9.249  0.119 0093 0.8  0.30  0.09  0.065
A¥* 0.250  0.245 0309  0.264 0.231 0.234 0.213 0269  0.227

(*) at 5% significance level

Estimation of Exceedance Rate

In the verification of the Poisson assumption, 4 must be estimated from the
number of hazard events. This can easily be obtained by taking

i=N,/L, (30)

where Ny, is the total number of exceedances and L is the length of record in years
as previously defined. When a base value x, is selected, 4 is estimated by using (30).
However, for any new base value x > X,, the corresponding exceedance rate should
be computed by using (10):

s = 2[1 - F(X)]-

However, if this was not known, and (30) was used instead (with N, being the cor-
responding total number of exceedances), the resulting value for ' may be quite
different as shown in Table 5.

Notes: (1) In Table 2, the value of x, has been selected so that the Poisson, inde-
pendence and shifted exponential assumptions are all satisfied.

(2) From the results shown in Tables 2—4, it can be seen that at a given

station, the shifted exponential assumption is justified even for relatively

small values of x,. The independence assumption is most difficult to

justily.
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TABLE 5: DIFFERENCE BETWEEN ESTIMATED AND THEORETICAL
VALUES OF A' (STATION S1)

X, 64 66 68 70
eatimated 1.280 1.120 1.080 1.000
theoretical 1.065 0.850 0.630 0.632

Remark on the Gumbel Distribution

Since in this study, the magnitudes of hazard events have been shown to be
independent and fitted by the shifted exponential distribution, one should expect that
the Gumbel distribution can satisfactorily represent the maximum exceedances in dif-
ferent years of records when 4 is 1. However, 4 is only determined after a base
value has been selected. Therefore, 4 is obtained from its estimator shown in (30).
By varying x,, one may expect that when 4 is close to I, fitting the sequence of
maximum exceedances by the Gumbel distribution, with predetermined values for the
parameters Xo and @ is acceptable. The results shown in Table 6 clearly support
this idea, and thus the situation can actually be realized.

TABLE 6: TYPICAL RESULTS OF FITTING THE SEQUENCE OF MAXIMUM EXCEEDANCES
BY THE GUMBEL DISTRIBUTION (EVALUATED BY THE KOLMOGOROV -
SMIRNOV TEST)

Station (1) (2) (3) (1) (2) (3)

S1 1.080 0.210 0.318 1.00 0.208 0.327
S2 1.087 0.231 0.361 0.913 0.242 0.375
S4 1.087 0.320 0.337 0.957 0.312 0.349
S5 1.045 0.294 0.349 0.955 0.310 0.369

Notes : (1) Value of 4
(2) Value of the Kolmogorov-Smirnov test (/\)
(3) Critical value at 5% significance level

Remark on Relationship between T and Tp

The relationship between T and T, as expressed by (17) was obtained by
arguing that the largest exceedances and the annual maxima have the same distri-
bution. In most situations, one actually has two samples, one for the maximum
exceedances and the other for the annual maxima. Obviously the former sample is
a part of the latter. They are identical only when the base value x, is selected so
that the number of exceedances in any year of the record is not zero. To justify
that they have the same distribution, the simplest way is to verify that the annual
maxima also fit the distribution derived in (13) for the maximum exceedances. The
computed values of the Kolmogorov-Smirnov test (Table 7) assert such a fitting.
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TABLE 7 FITTING THE ANNUAL MAXIMA SEQUENCE BY THE DISTRIBUTION
OF MAXIMUM EXCEEDANCES

Station X, VAN A,
S1 62 0.097 0.264
S2 74 0.264 0.274
S3 70 0.157 0.269
S4 80 0.137 0.275
S5 84 0.088 0.281
S6 80 0.099 0.259
S7 80 0.116 0.259
S8 102 0.126 0.269
S9 82 0.079 0.259

Summary and Conclusions

In this study, a mathematical model which consists of a Poisson distribution for
the number of exceedances and a shifted exponential distribution for the magnitudes
of the hazard events has been proposed for the analysis of the partial-duration series
of (exceeding) depths of daily rainfall in the Northeast of Thailand. With this model,
an important relationship between the return periods which are based respectively
upon the partial-duration and annual maxima series is analytically derived. More-
ever, the Gumbel distribution is shown to be obtained as the distribution of the
annual largest exceedances when the number of exceedance is 1 on the average.

All the assumptions involved have been justified using suitable statistical tests
and actual rainfall data, and thus the model is readily applicable to the investigation
of the maximum depths of daily rainfall in the region.
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