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Summary

This paper gives a review of the theory of noninteracting electrons in the disordered
environment arising from either disordered positions of the ions in the solid or from
impurities substituted at random through out the solid. The discussion is focussed on
the density of states available to electrons in disordered systems. The specific example
considered is the heavily doped semiconductors. A detailed discussion is given concerning
with the methods used to find the density of states both in the main part of the band
and ‘in the tail part of the band. Special emphasis is paid to the method introduced
by one of us (V.S'). An interpolation scheme is proposed whtch combines the high and
low energies to obtain the density of staies at all energies.

_ Introduction

In this review we study electrons in a disordered solid. A heavily doped semi-
conductor is a specific example!. The electrons are the particles of interest and the
disordered environment is due to either disordered positions of the ions in the solid
or to impurities substituted at random throughout the solid. Such a system is called a
“disordered system’2.. There are many other examples of disordered systems, such as
phonons, magnons or polarons in a disordered array of ions or impurities®. Electrons
in disordered systems is a wide field and a subject of intense activity at present. Of
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particular interest is the conditions under which the electrons are “localized” and
non-conducting or are ‘‘delocalized” and can contribute to electrical conductivity*15.
Here we focus on the density of states available to electrons in disordered systems® 4,
The density of states is needed to determine almost all properties of the electrons!.
To begin we consider electrons in an ordered solid.

The Ordered Solid

In an ordered solid the identical ions form an ordered array with no impuri-
ties. The electrons see a potential due to each ion. Since the ions are ordered, the
potential in the solid is an ordered, regular, repeating potential. If we model the
potential due to each ion by a square well, then the electron in the solid sees a
regular, ordered array of square wells. A one-demensional example of this model is
depicted in Fig. la.

If the electron saw only one ion (i.e. the electron was in one square well)
it would have bound states for E < E, and travelling wave states for E> E,. In
Fig. la we have depicted the possible bound state energies (suppose for argument
there are only three bound states) by E{, E; and E3. When the electron is in an
array of these square wells, the electron states spread out into bands of states®17 ag
depicted in Fig. 1b. When we “add” the electrons to the solid, the electrons fill
up the lowest energy bands first. The highest energy band that is completely filled
is called the ““valence” band. Electrons in completely filled bands cannot contribute
to conductivity and therefore are of little interest and we can ignore them for the
remainder of the discussion. =

The unfilled or partly filled band is called the conduction band. In this band
the electrons can readily change momentum states in an applied electric field and
contribute to a net flow of electrons (electrical conductivity) in a crystal. An in-
sulator is a solid in which the valence band is full, the conduction band is empty
and the energy gap Eg between them is too large to excite electrons across Eg. A
metal is a solid in which the conduction band has many electrons in it, but the
band is not completely filled.

In a semiconductor there are only a few electrons in the conduction band or a
few unfilled states (holes) in the valence band which makes only limited conduction
possible. In this last case the size of Eg is most important. If we added to the
semiconductor impurities which attract the electrons (attractive impurities) the at-
tracted electrons have states which lie below the conduction band in the energy
gap. If we add many impurities these “impurity states” themselves form a band
and effectively lower the edge of the conduction band. This substantially increases
the conductivity. The density of electron states in these impurity bands determines
the conductivity of the semiconductor.

To get an idea of the density of states in the conduction band, suppose the
electrons are “classical” in the sense that they cannot have energy E < E, and for
"E > E, they are “free electrons”. From Schrodinger’s quantum mechanics the energy
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Fig, 1. Potential and density of states in an ordered solid.
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Fig. 2. Potential and density of states in a disordered solid.



154 J. Sci. Sac. Thailand, 6 (1980)

of a free electron having wave vector k is Ex = 12k?/2m (measured from E,). The
number of states having energy up to Ey is found by summing over the possible k

values (up to k = (2mEk/ﬁ2)é),

Q -
N(Ey) = 1 = -1 dk
( k) % (27:‘)3 J

with one state per k' vall_x,e. Here Q denotes the volume of the system. Since Ej o<
k? the vector nature of k is not important and

Q k Q 4
N(Ep) = ——I 47k"2dk’ = = k3
B =3 Jo (2m)3 3
Q 4z ,2m 312 _ 32
=2 (3) B
@z 3 " h

The density of states per unit volume, P(E), at energy E is defined as the
number of states per energy interval dE,

1 dNE) _  m3P2 et
Q dE - ‘/271'2}513

This density of states is shown as the dashed line in Fig. Ic and is the
standard free electron density of states. In deriving it we took E, =0 so in fact
P(E) < (E — Eo)%. If we allowed two electrons per state, the density of states for
both spins, we should multiply p(E) by 2. The density of states in the real solid
is shown schematically as solid lines in Fig. Ic.

p(E) = (1.1

The Disordered Solid

In this case the ions or added impurities form a disordered pattern throughout
the solid. If the potential due to each ion or impurity is represented by a square
well, then the potential seen by the electron is shown schematically in Fig. 2a. In
regions of high impurity concentration the potential is deep. In regions of low con-
centration the potential is weak. Because of this random arrangement the electron
states do not fall in well defined bands of energy. Particularly the “‘conduction”
band has a long tail which reaches down into the energy gap toward the ‘“valence
band”. Since conduction is dominated by the properties of the conduction band
we are interested only in this energy region and can neglect the filled states at lower
energy. The density of states in a disordered solid is shown schematically in Fig. 2b.

The electronic properties of a disordered solid depends largely on the “‘tail”
in the density of states depicted in Fig. 2b. For this reason theories of disordered
systems focussed on determining density of states in this tail. Kane!® and others!2-1?
used a semi-classical treatment of the electrons to show that in the tail p(E) oc e—Ez.
To do this, Kane!® assumed that p(E) oc (E — V)% where V, the potential seen by
the electron, fluctuates from point to point in the solid. This is valid only if V is
slowly varying in the solid. Halperin and Lax?® use the full quantum theory of
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Schrodinger to determine P(E). This, however, was numerically very complicated
and both approaches are valid only at low E deep in the tail region of the impurity
band. More recently, Sa-yakanit? proposed a new theory of p(E) based on the Path
Integral formulation of quantum mechanics developed in 1948 by Feynman?2. Sa-
yakanit obtained an expression for @(E) valid at all energies E. Also the p(E)
reduced to a simple analytic expression in the tail region.

The path integral method has the advantage that the electron is treated much
like a classical point particle rather than like a wave. This means many of the ideas
suggested by Kane'® can be employed. The important quantum nature of the electron
is then included although the system is treated classically (for example using numbers
rather than operators). The quantum nature is incorporated by summing over all
possible ‘““classical” paths of the electron.

To anticipate the results we consider first free electrons (V = 0) and find
P(E) o< 4/E as expected Kane’s semi-classical theory is then developed which yields
P(E) OCexp(—E ), valid in practice only for long range potentials. The quantum
theory of Halperin and Lax, which uses the Schrédinger representation and yields
P(E) o< exp(-E") with ¥ <n < 2, is then outlined. They obtained the explicit form

P(E) = a(E) e 2B

where a(E) and b(E) must be calculated numerically. Finally the recent theory
developed by Sa-yakanit using Feynman’s path integral representation of quantum
mechanics is discussed. In this case, the a(E) and b(E) are obtained analytically
and p(E) is evaluated explicitly for a number of cases.

Potential in a Disordered System

An electron in a disordered solid sees a potential V(T) that varies unexpectedly
from point to point in the solid. The V is not zero as in the free electron case,
it is not periodic as in the ordered solid case. The V(T) could be due to the N
ions which make up an amorphous solid so that

N
V(7) = ‘21 v(t - Ry, @2.1)-
1=

where v (T - R;) is the potential at T due to ion at point B;. V(¥) in (2.1) could
also be due to N impurity ions substituted at random in an otherwise periodic solid.
The V(T) is then a fluctuating potential superimposed on a periodic potential.

In the present model we ignore electron electron interactions so that we may
treat one single electron at one time in V(T). (The electron-electron effects can be
incorporated in an effective electron mass and in a shift in band energies in $pecific

A\

applications?*-%.) We also assume the Rl are randomly distributed throughout the
solid. That is, the probability of observing impurity ion i in volume element dR is
just dR/Q where Q 1s the volume of the solid. This also ignores any possible cor-
relation between the RI Thus the model describes best impurities in a solid rather
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than amorphous solids. In amorphous solids there is always some correlation (short
range) in the ionic positions (two ions cannot overlap). Even at high impurity con-
centration the impurities are widely separated so that two rarely are neighbours. In
the case of impurities in an otherwise periodic solid, the electron states are band
states (as discussed in ref. 1) perturbed by the impurities. We consider here only the
electrons in the conduction band. We also assume that the band is parabolic (E o< k?)
so that the electron can be treated as a free electron having an effective mass

2
Exy = (k—h*), m* being larger or smaller than its real mass.

In summary the model is a single free electron moving in a random potential
V() due to N attractive impurity centres located at points Rl distributed at random
throughout the solid.

The potential V(T) in (2.1) will have deep wells where the impurity concen-
tration is high. On the other hand V will be small (nearly zero) where the concen-
tration is low. We can characterize V by its mean value Vg,

Vo = <V(D)> = J‘QB_I L IRNE e R))
dQ e (2.2)
=N Ry -B = R -R
(all impurities identical) and its mean square value §.
=n | 4R V7 - R 2.3)

Here n (= N/Q) is the impurity density.

The V4 and ¢ set the mean and the magnitude of the fluctuation about the mean in
the potential seen by the electron. We willi also nced the correlation of V(T) at
different points in the crystal which we denote by

WTE-T) = <V(QE) V@) > - V2
= nfdR vG - B) v - R)
Clearly from (2.3) and (2.4)
§ = W(o) (2.5)
so that £ measures the magnitude of the correlations.

(2.4)

We also consider the high density limit. This means we have many impurities
lying within the wave function of a single electron. The electron wave function can
extend several hundred angstroms and high concentration begins in practice at n~ 1017
centres/cm>. We also consider weakly attractive impurities (v small and negative)
such that nv2 = constant. In this case nv3<<nv?, for example.

A specific representation of the impurity potential we will consider is the
screened Coulomb potential.

& -Q|7 - R|

vt -R) = - e , (2.6)
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where Q“l' is the screening length and & the dielectric constant. In this case,

2 4
Vo= - nd7 & = pn27e (2.7)

and the correlation function is

WT-T)=2¢ e-er - "l. (2.8)

However for the moment we leave v arbitrary with Vg, § and W -1 parametrizing
its properties.

Free Electron Theory

In this case V =0 and the electron wave functions are plane waves ss’lk' = Q_%'

T .
elK-T corresponding to momentnm A K and energy Ey = 1%k%/2m*. The density of
states per unit volume at energy E is defined as

pE) = Zli S 6(E - By G.1)
K

where the sum is over the free electron energies Ex. Taking Q large we may convert
_ the sum over k to an integral

-8 3
% (2m)3 I ak
and
p(E) = (2;)3 {50 amiac 68 - B
*\3/2
= —(2;7 (2—';:—) / j':" dEy EE 8(E - Ep) 3.2)

To use the properties of the delta function
(ee)
Idx f(x) 6(x — a) = f(a)
-00

we introduce the Heaviside step function

1 E>0 .
H(E) = { (3.3)
0 E<O .
so that
32\ oo ; 3 5
PE) = (m)‘[_w Ex Eg H(Ey) O0(E-Ey)
and

p(E) = f E? H(E) (3.4)
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‘ 4302
f= (- .
( o EE)

1l
Hence p(E) < E* measured away from a potential V = 0.

The Kane Theory

Kane’s theory!® is a semiclassical treatment of an electron in a disordered
solid. This means we ignore the zero point energy of the electron (a quantum

effect). As noted above, the potential V(T) varies from point to point in the solid.
In regions where V(T) is deep, we expect the electron wave function to be narrow
(a highly localized electron). Since the kinetic energy is proportional to the curva-
ture of the electron wave function the kinetic energy will be large in these regions.
Conversely when V(7) is nearly zero and flat, the kinetic energy is small (and slowly
varying with T).

The central assumption of Kane’s theory is to ignore the variation of kinetic
energy with V(7) and assume the electrons can be treated as “free electrons” having
the same kinetic energy everywhere in the solid for all V(7). The V(T) then simply
sets the potential level from which we measure the energy of these ‘“‘free electrons”.
The density of states at point T is then proportional to ¥E — V(¥). Explicity, using
the free electron result,

PEE - V) =f VE -V H(E - V) (4.1)

This p(E — V) can be regarded as a function of V or T (through V(T)). The density
of states for the solid is then (4.1) averaged over all points in the crystal (or equi-
valently all potential energy values V). That is,

P(E) = <p(E - V)>, ' (4.2)
where :
< >y = §advV PV) 4.3)

and P(V) is the probability distribution of V, giving the probability of observing V-
in the range of V to V + dV. With this central assumption it remains only to
determine P(V) to complete the calculation of p(E). Ignoring the variation of the
kinetic energy with V(?) will be valid in practice when V is long range and slowly
varying in space.

To calculate P(V) we use the assumption that the impurities are randomly
distributed throughout the volume Q of the solid. For a random distribution

_ d-ﬁ] d.R’N _ N - _ —).
P(V) = J' S 5V Exm Rp) (4.4)

when the delta function selects out those configurations which lead to a potential
V. Using the integral representation of the delta function
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N
N | oo it(v -3 v(¥ -R))
- - 1=
5(V - izl V(I' - Rl) = TTE— I_oo dte : .
we have :
Employing,

[x]N =01+ (x - l)]N = e,N x -1
where the last equality holds in the limit N — oo, .
dR . - it v(f =R) N jdfi ~itv(7 = K)
L2 e = ex N | =2 (e -1
and R
P(V) = L [t exp{Gitv + nfaR @ VTR )
2T
We now use the fact that v is small to expand e~V in a power series in v.

Since nv3<<nv? we truncate the expansion after the term quadratic in v. It is here
that we use the assumption of weak, dense scatterers. Then

_ 1 . o - = _ 3 _ t2 = .22 _5
P(V) = — \dt exp{ltV itn { dR v(r = R) — — n | dR v¥(r R)}
27 2

i

E‘;jdt exp{ it(V = Vo) - Ezzi} ' (4.5)

In the last equality we have used the definitions of the average V,, and variance,
€, of the potential gived in (2.2) and (2.3). Using

) _ax? b2/4a
j‘ d ax +bx=(_:-_)'}.e

Xe
—00
we have
1 _ _ 2
pv) = ngy T (V-VISE (4.6)
Finally to display the meaning of P(V) more clearly we use
oo 2 .
eyt = [T av et V-Vo IE. @.7)
-00
to write

V- AL

P(V) =
-3 (V= V%

(4.8)

dVe

The expressions (4.6) and (4.8) show that P(V) is a Gaussian distribution about
the mean V,. A potential having this distribution is called a “Gaussian Random
Potential”’. This distribution follows (1) from assuming the impurities are equally
likely to be in any volume element in the solid and (2) from retaining quadratic
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terms in V only. With these assumptions a Gaussian distribution is expected. For
example, in equilibrium statistical mechanics we use the “equal a priori probability
of phase space” assumption. This tells us that the variables T and p are equally
likely to be found anywhere in phase space. This assumption leads to the Boltzmann
disbribution, e 8E (8 = 1/kgT). If E is quadratic in the variables (e.g. E = ¥mv?
for free particles, E = 3kr? for a harmonic oscillator) then we obtain a Gaussian
distribution as in (4.6) for the variables.

Using (4.6) for P(V) in (4.3) (and using the Heaviside function to reduce the
integration up to E) we have
0 —s
P(E) = j_oo dV P(V) f VE-V H(E - V)

2
ot o B oave-ovt VoV )

This is Kane’s result for the density of states.

‘We consider two limits of (4.9). For high energy E>>V we can ignore V
(i.e. set V = 0) and take E — oo. Then

: V2
pB) = £ e B [T av et V-V

— fE? ’ (4.10)

Thus Kane’s result for high electron energies, where V is negligible goes over to
the free electron value—as expected. For E<<V, that is electron energies deep in
the potential region, we substitute z = E — V in (4.9) so that

2
pE) = £ et) ™ [ az ot et B -2 VOH

2 2
_f (Zm.*)'% e—% (E - V)€ j‘g° dz Z-% e—1/27(z - 2z(E - V,))/€

Then using the integral representation of the parabolic cylinder function D_p,

2 2 '
f;o dz P e Pz _ (74P I(p) &F 18a D, (7%), (4.11)

where I'(p) is the Gamma function, we have
(E - Vy)

1.3 —HE-V.)2
PE) = f (278) ¥ § 1 T(';—) e HE-Vo)E D_3) (‘ T)
With I'(3/2) = % I'(}) = \/71'/2,
f 3 -}E-Vv)Ye (E -V,)
. P(E) = mf e D_3p; (— _‘\/‘-T—) (4.12)

Finally, since E — V, is large and negative, we use the asymptotic expression for
D_3j; valid at large argument,

2
Dp(x) = ¥ /4 <P
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so that

/2 4 (E- vo>2/e.

p(E) = JW & (Vg - B~ (4.13)

This is Kane’s central result for the density of states at low energy in the “deep
tail region”. We see that p(E) oc ¢"E? has an exponential tdil at low energies.
This tail falls off as E2 which we shall see is valid in practice for long }ange
potentails v only. The existence of the tail in o(E) is the new feature characterstic
of a disordered system.

Finally, to make contact with Kane’s original expressions we introduce the
dimensionless energy and density of states variables used by him,

E-V
The p(E) in (4.12) is then
2
y = 2111/4 e * 12 D_33 (- +/2x) (4.15)

which is known as ““Kane’s function”. The D_j3;; can be obtained from standard
tables?® and the asymptotic values

exz/ 2 x% x>> 1
D_33 (-4/2x) ~ 2 (4.16)
/ J’e"" 12 )("3’/2 x << -1
lead to the asymptotic forms
Jw/x \ x >> 1

The dimensionless density of states y is sketched in Fig. 3.

The Halperin and Lax Theory

In Kane’s semiclassical theory the kinetic energy of the electrons is assumed
independent of the potential V(7), In fact, in the regions of deep narrow potential
wells the electrons will be highly localized and the kinetic energy of localization will
be large. In regions of shallow or wide potentials the electron kidetic energy will
be small. ‘Hence the complete electron energy states, kinetic plus potential, will in
general be higher than with the kinetic energy ignored, particularly in regions of
deep wells. This is depicted schematically in Fig. 4.

Halperin and Lax? set out to include the kinetic energy in a full quantum
mechanical calculation of the density of states. In this case the expression (4.1)
used' by Kane must be abandoned and replaced by

[
P(E) = 5 2Z<O[E - E; (V)]>y (5.1)
1

where E;(V) are the “‘exact” energy states of the electron in a potential V, including
the kinetic energy. The average is again given by (4.3) and (4.6). In this case we
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Fig. 3. The dimensionless density of states obtained by Kane.
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Fig. 4. a) Semiclassical energy levels,

b) Energy levels obtained using quantum theory
including the zero point energy.
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Fig. 5. Potential wells in a disordered solid.
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Fig. 6. The Halperin and Lax, Kane and free particle density of states.
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use the central limit theorem to justify using the Gaussian potential distribution
function P(V). ’

To evaluate (5.1) Halperin and Lax first emphasize that they are interested
in p(E) for low E in the band tail region. In this case only the lowest possible
energy states found in regions of deep wells in V(T) need be included in (5.1). Also
they include only the ground states of the electrons in these deep wells. Secondly,
at low E only a few states E; will be low enough to satisfy the delta function in
(5.1). As noted these will occur in regions of the crystal where the potential V(T)
has a deep well. However, if V(T) is very deep it will also be narrow so that the
kinetic energy will be large. Thus Halperin and Lax assume that for a given E
there is an optimum well depth to get the most values of low E;. They denote
the wave function ¢;(T) for this optimum well by

g () = £(T -7
where Vi is the centre of f(T — S’i). A one to one correspondence between the E;

and 9’@(?) is assumed and all other well shapes and ;!q('r’) are ignored (assumed to

occur much less often). The f(T — _y’i) is assumed real and normalized. Since the
Hamiltonian of the disordered solid is given by

H=T+ V(T),
where
2.
T=—2h*v2+vo

includes the mean value V, of the random potennal charactenzed by (2.1), (2.2)
and (2.3), the energy corresponding to £(T - yl) is

EG) = [1G =3[~ 2o 0 1@ -90 )a7 + Vo

s ff@-3 v o7
=T+ Vo + Vi(Jp) = 0 + Vg (3. (5.2)
Here only the averaged potential V(y;) depends on S"i-
With the assumption that all E; are given by the optimum E(S;l-) we have
E; = E(y) = 0 + V(¥ (5.3)
and :
PE) = 5 I <E - (0 + ViG> (5.4)

Note that this density of states is effectively the same as used by Kane except that
the kinetic energy 0 corresponding to the smoothed V(y;) is included and must be
calculated for each V(y;). The form of the smoothed potential is shown schema-
tically in Fig. 5.

At this point we do not know the functions f(y;). However since the E(Y;)
are intended to represent ground states E; we can use a variational principle to find
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f(y;). That is E(¥;) will always lie above E;, and the best fit f(y;) will make E(y;)
closest to E;. {(Also since the E(y;) always lie above the true E; the p(E) calculated

using the E(y;) will always be too small at low E. Hence we could maximize p(E)
to find f(y;).) In this variation Slii is treated as a variational parameter. Hence the
optimum values of y; occur when VE(?i) = 0 or, since only V(y;) > in (5.2) depends
on ¥;, then

vvs (S/’i) = 0.
There are many 571- which satisfy this condition and to deal with this we insert a
Dirac delta function in (5.4) so that

p®) = [F <3 aG-F00E-0+ ViDI>v 5.9
After averaging, p(E) is not a function of y, or

PE) = <Y -F) 6 [E - (6 + VG 1>y (5.6)
If we transform from the variable y to VVS(S/') by writing

2 0§ -3 = 6(VVs(¥))|det VIV
1

we have . .
PE) = <BO[E - (0 + V(3] AVVM]|det V7 V(D) [>v (5.7

This expression for p(E) is expressed entirely in terms of V¢(¥). Halperin and
Lax then replace V by Vs(y) in the averging and by a sophisicated analysis of Gaus-
sian averaging obtain
0,0,0; (0 —E) - (0 -E)?

exp |

(B) = 2o
P (2m)2 g2 0] %02

] (5.8)
Here
@ = [P@® 2@ wi-7) of oF

where W(T — T) is the correlation function of the potential given by (2.4). Note
that from (2.5) nW(o) = §. The 0, 0, and o3 are the diagonal elements of V'V
Vs(y).

To find the optimum wave function f, Halperin and Lax maximize p(E).
Since p(E) is dominated by the exponent they approximate this by minimizing the
exponent,

0 8 - E-2 '

o g 1 =0 (5.9)
This leads to a Hartree-Fock like equation for f

TE(F) — pf(T) j' f27) WE-T) dT" = Ef(?) (5.10)

which must be solved numerically. Since E is given, the parameter /¢ corresponds
to the eigenvalue in (5.10) and must be determined in the solution of (5.10). Once
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f is obtained the g,, its derivatives o), g;, 63 and the mean Kkinetic energy ¢ can
be calculated numerically for substitution in (5.8).

Halperin and Lax used the screened Coulomb potential (2.6) in the explicit
calculation of P(E). The result, expressed in terms of the dimensionless energy
v = —(E - Vo)/Eq where Eq = 12k%/2m* is the energy associated with the screened
Coulomb potential, is

3 B b(v)
p(E) =FQ(<2&—'>2 aye 2. .11)
Here
&= & _ n 8wm*27%* ‘ (5.12)
- Eé 'h4Q582 :

is the variance expressed in units of Eq and a(») and b(») are “universal dimensionless
functions™ that Halperin and Lax calculated numerically.

The Halperin and Lax p(E) in (5.11) is sketched in Fig. 3. We see there that
(5.11) is much smaller than the Kane value for a given E. This is because including
the kinetic energy increases the electron energy states so there are fewer low energy
states in the* band tail” region. Hence the density of states in the low energy ‘“‘band
tail” region is reduced. Detailed values of the Halperin and Lax p{E) are shown
in Fig. 7-10 for different values of §'.

From (5.11) we see that p(E) also decays exponentially in a quantum treat-
ment. The exponent of b(») in p(E) is

dln b(¥)
d Iny

Halperin and Lax found that n varies from between % for short range potential
(Q_1 small) to 2 for long range potentials (Q‘1 large). The last value agrees with
the Kane theory result which is valid for long range potentials only. The Halperin
and Lax density of states agreed much better with experiment, particularly n(»).
However, an overall adjustment of 1.5 to p(E) is apparently needed to get agreement
for the optical absorption coefficient®.

n(y) = (5.13)

The Sa-yakanit Theory

Although the Halperin and Lax p(E) agreed well with experiment in the low
energy band tail region and is a substantial improvement over Kane’s p(E), it has
two limitations. Firstly, it requires numerical solution. Secondly, it cannot be
extended to higher energy E. For these reasons Sa-yakanit?! developed a new
theory based on the Feynman formulation of quantum mechanics. The Feynman
formulation is useful since, although a full quantum theory, it expresses the electron
propagation as a sum of classical like paths. This is especially useful in disordered
systems for then the density of states can be calculated in much the same way as
in the Kane theory. Once the Feynman method is mastered this is much simpler
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than the Schrodinger picture of quantum mechanics for disordered systems.  The
Feynman path integral approach was first applied to disordered systems by Edwards?" 28
and has subsequently been explored by others?-33, However, Sa-yakanit®® succeeded
in evaluating the path integrals explicitly and obtained an expression for P(E) valid
at all energies E. In the low energy limit the p(E) reduces to a relatively simple
analytic expression. At high E it reduces to the usual free clectron value (3.4)

The path integral formulation begins with the full expression (5.1) for p(E),
pE) = —S‘ig <B(E - E;(V))>y. | 6.1)
Next the retarded propagator G(_r'z, Ti, t) is introduced which describes the propaga-

tion of an electron from point Ty, to T2. (This G(T, Ty, t)is (—ih) times the usual
retarded Green function.) The 3 §(E — E;) can be expressed in terms of the Dia-

1
gonal element (T; = Ty) of G giving

(= iEt/ - -

p(E) = - Ref dat eBVR <G (3, T1 0>V 6.2)
Th 0
The G is then written as a path integral over all the possible paths betweep T and Ta,
Gy, Ta 1) = I D@ () /B g 6.3)
where SL is the action
t * 52 -
sy = o 07 [% 0 - VE )]

Here V(T(r)) is the potential given by (2.1). The average < >y over G can be
performed exactly as in the Kane theory, giving

dRN
Q

= [ pGw@) é/nS (6.4)

— de
G = <G(Ta, T >y _I G(T2 T1, t)

where
S = IO df{—“ 1'2(7) - Vo + Zh J dr’ W(r(‘t) =T (T))} (6.5)

Note the similarity between the exponent of P(V) in (4.5) and this averaged S.
Essentially in S the kinetic energy is included and & is replaced by w(T - r) the
correlation function of v.

To proceed in calculating G, the full action S is modeled by a non-local
harmonic ‘‘trial” action

o__[dr{—*r (7) - Vo — f dr' [T(r) - T

Essentially W(T — T) is modeled by a single harmonic well. With S replaced by So,
G in (6.4) can be evaluated exactly. In S, w® measures the steepness of the

harmonic well and @? is treated as a variational parameter. With S replaced by
. R ;

S
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So the resulting G constitutes the zero order approximation Go to G- The full G

can also be re-arranged as
G =f D(F(z)) i/ IS =fD ei/fiS, D oI/ B[Sy + (8-S, ]

D eil i So

(6.7)

or in short form

' G =3G,<el/h8-Sd5 (6.8)
where < >, denotes the average with respect to the trial action. The < >0 may
be expanded in cumulants and keeping only the first order cumulant we obtain

Gy = Goexp [ <S - S, >] (6.9)

For a screened Coulomb v(T) for which W(T ~ T") is given by (2.8) the diagonal part
of G; may also be evaluated exactly and gives the density of states, when sub-
stituted into (6.2), of

1 (&o] m* % wt 3
P (E) = ETY Re _[0 dt [( 271kt ) (2sin (te1) )]

. t [oe] 2
x exp |- % (Vo —E) t- 2fo2 § % jo dx_[0 dy ye~QYj (x, y) 732

3 jot wt
t 5 (—2 cot 5 - l)] . (6.10)
where
. hi .oex . wlt-x), . ot
ik y) = [y +t = (smT sin ————/ sin —2—_|

Here the term in the square bracket is G, (0, O, t) while the exponential term is
the first cumulant correction, aside from eiEt/h.

To obtain the limit of p(E) valid in the tail region where E is large and
negative we first take the t — co limit of the integrand in (6.10). ~ This means only
in the ground states??, the lowest energy states, will be retained in o;(E). The integrals
(6.10) can then be performed exactly and, in the reduced units ¥ = —(E - Vo) [Eq,

the result is
by, z)

3 _ v z)
(v, z) ! by,

Here Eq =ﬁ2Q2/2m* is again, as in the Halperin and Lax result (5.11), the energy
associated with the impurity potential and all energies are expressed in units of Eq.
For example, v =(V, — E)/Eq is, as in (5.11), the electron energy measured away

from the mean potential V, in units of Eq and z = (2Eg/hw)? is a convenient reduced

variational parameter, replacing @. In the harmonic model the kinetic (zero point)
*
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energy of electron localization is just 3/4 hw and in reduced units is T = (3/4) ho/Eq =
3/2 z-2. The a(v, z) and b(», z) are again the “‘universal”, dimensionless functions
but now we have relatively simple analytic expressions for them,

2
aw, z) = (T + 3% | 82y2 2 exp (%) D @ (6.12)

2
by, 2) = (T + ¥ v/x | 2¢/2 exp () D3 (@) (6-13)

where Dp(z) is the parabolic cylinder function?s.

The subscript | or @;(E) means that the first order cumulant correction for
the difference between W and the harmonic model has been evaluated exactly. Higher
order cumulants which correspond approximately to the higher order corrections con
sidered by Halperin and Lax!” have been ignored.

In the limit of large b(», z)/§' the asymptotic expression for the parabolic
cylinder function is

2
Dy = X4 xp(1 - R ) (6.14)

If we neglect the term in x~2 in (23) we obtain for pi(v, z),

b(v, z)
28"

3 -
Q w2 e _ (6.15)

P2 = —o
EQE
Now we recover deep tail pi(v, z) in exactly the form (5.11) proposed by Halperin
and Lax with a(y, }) and b(v, z) given analytically in (6.12) and (6.13).

. We may also obtain the semiclassical limit of @1(E) from the full P1(E) in
(6.10). This is obtained by letting t — O in the integrand of (6.10) which corre-
sponds to retaining only high electron energy states’in p(E). The integrals in (6.10)
can again be performed giving

L (E=Vo)? v & |
SCipy = _ gt Y€ o~
E)= ——=§% ¢ D_ — : 6.16
p7~ (E) W 3/2(,1/5) (6.16)
which is the result (4.12) derived by Kane!®. In the limit ]E — V| = oo this becomes
(E - V)2 .
f -3 =b—F— E-V,
—=—§(Vo - E) e § —2 << - 1 (6.17)
pSC(E) ={ 22 ° vE
. E - Vo
f VE-V — >>1 (6.18)
° vE ‘

Here (6.17) is Kane’s well known band tail p(E) while (6.18) is the free electron or
parabolic band value valid for positive E — V, only. Note that (6.16) is indepen-
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dent of the variational parameter. This is because at t — 0 only the free particle
G, survives in (6.10) and the semiclassical P1(E) is independent of the harmonic
model action selected here. It is for this reason that (6.16) agrees exactly with
Kane’s density of states.

The density of states p{(v, z) of (6.15) in the band tail region (with the universal
dimensionless functions a(v, z) and b(», z) given by (6.12) and (6.13) clearly depends
on the variational parameter z. The value of z determines the curvature of the
optimum harmonic well which models W(T — T'). To evaluate P1(v, z) explicitly we
need some variational principle to determine this optimum curvature z.

In 1975 Lloyd and Best® showed that the density of states p;(E) at energy E
should maximize the pressure

B E |
pE D) = dE [~ aE" pE", 2 (6.19)

of a hypothetical free Fermion system. This may be used here to determine the
free parameter z in a band tail expression for p(E, z), since values of p(E'’, z) up
to energy E only are needed. To simplify (6.19) we do an integration by parts,

' ‘EI " e iE E 3 ' '
PE 2 =F | B pE.D | - [ EpE. 2E (620

and use- p(—o0, z) = 0 to writes (6.20) as

E
P(E, z) = I—w (E — E") p(E', z)dE'

In terms of thé reduced energy v = (Vg — E)/Eq, this is

P E2j°°( (] ¥ dl
(v 2)=-Eq) (v - ) p(v, 2) dv. (6.21)

On substituting (6.15) for p(»', z) in (6.21) and maximizing P(v, z) with respect to
z (dP(v, z)/dz = 0) we obtain the variational equation for z,

Jto dv' (v — ") a(y', z) e_b(”’ z)/2€'

- 2D_4(z) T . 1 b(v,2z)rD_4(2) 2z-3
{L+ D_s3(z) (T o 2)J Y2 i--D._3(z) T(T + )

The py(E) with z determined from (6.22) is denoted case 1. Since this is a lengthy
expression we investigate two approximations. If we determine z by maximizing
p((E) itself, the equation for z is obtained by setting the curly bracket in (6.22)
equal to zero. The p((E} with z determined in this way is denoted as case 2.
Finally, since p|(E) will be dominated in the low energy tail region by the exponent,
we can follow Halperin and Lax and obtain z by minimizing b(», z)/2§'. This cor-
responds to their equation (5.9) used to obtain the optimum wave function f. It is
an approximation to maximizing ©|(E). Here the equation for z in this case (denoted
case 3) is obtained by setting the last square bracket in (6.22) equal to zero. The

]} =0 (6.22)
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accuracy of the two approximations (cases 2 and 3) can be tested by comparing
with case 1.

The expression (6.15) plus one of the three methods (case I, case 2 or case 3)
for determining z completely determines the density of states @((E) in the band tail
region. The p[(E) obtained in the three cases are shown in Figs. 7-10 for values of
the dimensionless fluctuation parameter §' = 50, 5, 0.5, 0.05. These graphs represent
the central results of the Sa-yakanit theory®.

To discuss the band tail density of states in Figs. 7-10, we note first that
case 3, with z determined by minimizing the exponent only of p((E), agrees
numerically with Halperin and Lax’s py(E), who also minimized the exponent of
p((E). This provides an excellent point of contact with previous work. For this
reason, case 3 is denoted the Halperin and Lax limit in Figs. 7-10.

Next we note that case 1 and 2 are almost identical. This means that p((E)
with z obtained by minimizing ,(E) itself is almost identical to p|(E) obtained using
the rigorous Lloyd-Best variational principle. It is only case 1 with z determined
using the Lloyd-Best variational principle that has a rigorous foundation. However,
case 2 is clearly a good approximation and we denote cases 1 and 2 as the present
theory. The case 3, however, is not such a good approximation and particularly
shows an unphysical down turn in @;(E) in the range » ~ 0 to 5.

The band tail limit of p{(E) in (6.15) is valid only for low (negative) energy E
in the band tail region (large » = —(E — V,)/Eq). Since p;(E) crosses the Kane theory,
pSC(E), which is valid at higher E, an interpolation scheme is suggested. At low E

"we should use the band tail limit p((E) given by (6.15) with z determined from
(6.22) up to the point where pl(E) crosses pSC(E). Thereafter higher energy use

Kane’s p?C(E) in (6.17). This provides a density of states over the whole energy
range. An examination of corrections to p((E) due to excited state contributions
and to use of the asymptotic expansion (6.14) shows that the present band tail p;(E)
is exact within 5% for low E up to the point it crosses the pSC(E)35.

In future work it would be interesting to check this interpolation scheme by
evaluating the full density of states in (6.10) and by evaluating optical properties of
heavily doped semi-conductors, such as the optical absorption coefficient, for com-
parison with experiment.

Conclusions

In this article we have reviewed the theories and calculations of the density
of states of electrons in disordered systems. The specific example considered was
disorder created by impurities substituted at random in a solid. The electrons
interact with the impurities via the screened Coulomb potential (2.6). For this case
we find the band tail o((E) derived by Sa-yakanit using the Feynman Path Integral
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THE PRESENT THEORY is the band-tail value p,(E) with the variational parameter z
determined by (Case 1) the Lloyd-Best variational principle Eq. (6.22), and by (Case
2) maximizing P2,(E) only. Case 1 and Case 2 are indistinguishable at §'=50. The
HALPERIN AND LAX LIMIT IS po,(E) with z determined by minimizing the exponent in
P£,(E) (Case 3). The KANE AND FREE PARTICLE values are Kane's semiclassical
result (6.17) and (6.18) respectively.
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method and the Lloyd-Best variational principle a substantial improvement over the
original work of Halperin and Lax and of Kane. This band tail o{(E) and the
higher energy semi-classical Kane result can be used to obtain p(E) at all energies.
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