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Summary

Using the pseudo potentials proposed by Humphries, James and Luckhurst in a
Bethe-Peierls- Weiss cluster approach, the partition functions for a binary mixture of
nematic liquid crystals are obtained. By taking the partial derivatives of the logarithms
of the partition functions with respect to various parameters, a functional expression
for the nematic-isotropic transition temperature is obtained and is used to reconstruct
the nematic isotropic phase boundaries of p-azoxyanisole (PAA) and p-p'-di-n-hexyloxy-
azoxybenzene (PHAB) mixtures and of p-azoxyanisole and p-p’-di-n-pentyloxyazoxybenzene
(PPAB) mixtures. :

Introduction

The thermodynamic properties of binary mixtures of nematic liquid crystals
have been studied extensively!®. However, the development of a theory which could
explain some of the observed properties of the binary mixtures has been relatively
lacking. The first step in this direction was taken by Chandrasekhar and Madhus-
udana* who proposed an empirically based relationship between the order parameter
of the mixtures and the order parameters of the constituents in the mixtures. One
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of the first attempts to formulate a theory was by Humphries, James and Luckhurst®,
Using Maier-Saupe type dispersive potentials® as the pseudo potentials acting on the
different types of nematic molecules in the mixture, they were able to obtain an
expression for the Helmholtz free energy. By numerically evaluating the Helmholtz
free energy to find the temperature at which the free energy goes to zero, they obtained
a set of values for the transition temperatures which appeared to obey the empirical
relationship,

Tmix = xT; + (1 - X)Ty (1)

where x is the mole fraction of the constituent having a transition temperature T,

and (1-x) is the mole fraction of the constituent with transition temperature T,.
To be able to obtain numerical values which would fit the above empirical relationship,
a “‘geometric mean approximation” had to be assumed. However, to achieve a fit of
some experimental data’ to the transition temperatures required for their Helmholtz
free energy to go to zero, it was necessary for a derivation from the geometric mean
approximation. In other words, the observed transition temperatures’ did not follow
the linear compositional dependence predicted by Eqn. 1. The linear dependence is
only valid when the geometric mean approximation holds.

The purpose of this paper is to derive the compositional dependence of the
nematic-isotropic transition temperatures of binary mixtures. It should be pointed
out that Humphries et al.° were not able to derive any functional relationship be-
tween the mixtures’ transition temperatures and the transitions of the constituents.
The starting point of our approach will be the pseudo potentials proposed by Humphries
et al.® modified later by Humphries and Luckhurst.® Our method differs from theirs
in that we will be using the Bethe-Peierls-Weiss cluster approach® used to investigate
ferromagnetism. We will show that the partition functions for the two clusters re-
quired in our approach can be expressed in terms of the confluent hypergeometric
functions. Then by differentiating the log of the partition functions with respect to
certain parameters and imposing some self consistency conditions, we will be able
to obtain an expression for the nematic isotropic transition temperature. The Bethe-
Peierls-Weiss approach has previously been applied to pure nematic liquid crystals,10-12
The self consistency conditions imposed by Krieger and James'® and by Madhusudana
and Chandrasekhar!! are different from the ones used in this paper. Our conditions
are similar to those used by Ypma and Vertogen!2 '

The Partition Functions

-

We begin by picking out a type 1 and a type 2 nematic crystal molecule
located anywhere in the mixtures. These two molecules will now be considered to
be the central molecules in two clusters of z+1 molecules each. By assuming that
the mixture®is homogeneous, all other clustering of z+1 molecules in the mixture
must be the same as one of the two clusters we have just formed. This assumption
. of homogeneous mixing means that we have not allowed for any compositional fluctu-
ations in our theory. As in the Bethe-Peierls-Weiss approach to magnetism, we shall
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assume that the central molecule within each cluster interacts with the other z mole.
cules in the cluster and with an applied external field (a stress field T, in our case)
while the z surrounding molecules with a mean field which arises from the applied
field, the other molecules in the cluster and from other clusters in the mixtures.

We now assume that a type 1 central molecule interacts with its z neighboring
nematic molecules through pseudo potential

&
Up = (x 2L < Pyfeos 01)> + (1 - )2 <Py(cos 0)>)Ps(cos 0)) (2a)

while a type 2 central molecule interacts with its z neighbors through the pseudo
potential

e e
Uy = (x % < Py(cos ))> + (1 + x)—‘llz— <P(cos 8,)>)P,(cos 0,) (2b)

In the above expressions, the subscripts refer to its being for a type 1 or 2 mole-
cule and < > denotes an ensemble average, v is the molar volume of the
mixture, and x is the mole fraction of constituent 1 in the mixture. The quantity,
€1 is proportional to the strength of the dispersive interaction between a type 1 and
type 2 molecule. The two other constants €17 and €53 are proportional to the nematic
isotropic transition temperatures of the pure constituent nematic liquid crystals. The
development of the above pseudo potentials for the binary mixtures from a general
type of interaction between two cylindrical molecules is given in references 5 and 8.

Having said the above, we now write down the partition functions for the
two clusters.

+1 +1 n
Z = jo d(cos 0(',)exp—ﬂ(T0P2(cos 00)+U1){jo d(cos 01)exp-B(B;SP(cos 01)} :

x{J‘S‘l d(cos 8;)exp-B(B,SP,(cos 0) )}nz o

+1 +1
Zy = fo d(cos ﬂg)exp—ﬂ(ToP_z(cos 00)+U2){j0 d(cos 0))exp-B(B{SP;(cos 0}91

+1
x{jo d(cos 0y)exp—B(BSPy(cos 0,) )}n2 (3b)

In the above expressions, 0, 12 js the angle between the long axis of the central
molecule of the cluster 1 (2) and the applied stress field whose direction picks out the
direction of the director of the liquid crystal. As in the Bethe-Peierls-Weiss approach,
the applied (stress) field will be set to zero at a later point. S is the mean field (macro-
scopic order parameter) which will be determined by some self consistency requirements.
B; and B; are constants which indicate how strongly the type 1 and 2 molecules interact
with the mean field. n; and nj are the number of pairwise interaction a central
type 1(2) molecules make with a type 1 surrounding molecule or type 2 molecule.
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The evaluation of the integral

+1 '
fo d(cos 0) exp (~A (3(3 cos’0 — 1) ) (@)
is carried out by first noting that part of the above expression can be expressed as

the probability function A(x)!3. The probablllty functxon A(x) can inturn be expressed
as a confluent hypergeometrlc functlon lFl(z sgy T —) By making a Kummer trans-

formation, the function ,F,(z, 3 — ) can be expressed in terms of a different con-
fluent hypergeometric function. By the above means, we get

j d(cos 0) exp-A( @3 cos20—l))—e 1F1(l, 203 A) (5
Thus the partition functions, Eqns. (4a) and (4b), become

- n
2y = exp( - ByDiFi(l 3. 5 By {exp (- BBi9) 1F1 (1, 3, BB} !

3 3 172
x{ exp(- BBNFi(1, 3, 3 pBs) | (6a)
and
Z = exp(- By \Fi(l, 3, %ﬂyz){ﬂp (- BBys) (1, -;— 3 8B19) }u‘
n
x{ exp(— BBas) Fy(1, 5, 3 ﬁst)} 1 (6b)
where N
11 €12
=To + x4~ <P(cos ) > + (1 - x) -~ <Pa(cos ) > (7a)
and
g1 €
y2 = To + x—~ <P(cos 0) > + (1 -x) —~ <Pa(cos b;) > (7b)

Nematic Isotropic Transition Temperature

The order parameter or degree of ordering in a liquid crystal is defined as the
ensemble average of the second Legendre polynomial Py(cos 8) where 0 is the angle
between the long axis of the molecule and the director which is the average direc-
tion of all the molecules. The degree of ordering of a central type 1 molecule in
the cluster can be obtained by differentiating the log of the partition function Zy
with respect to Tg and then setting Tg = 0, i.e.,

aan|
= <P;(cos 00) > =lim (- kT
Tg— 0 9Ty

) ®)
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while the degree of a central type 2 molecule in its cluster can be obtained by dif-
ferentiating InZ, w.r.t. T and again set To = 0 ie,

2 . aanZ
Sy = <Py(cos j) > =lim (- kT
To — 0 aTO

) 9)

The self consistency conditions are that the order parameters of the central molecules
be the same as the order parameters of the molecules when they are found amoung
the surrounding sites, i,e.,

"S; = <Pylcos 0> = <Pslcos )> (10)

and

S, = > Py(cos 0(2))> = <Pj(cos 0)> : )
Egns. 10 ana 11 arise since a surrounding site type 1(2) molecule is the central mole-
cule in a different but identical cluster. As was pointed out in the Introduction, these
self consistency conditions are equivalent to those employed by Ypma and Vertogen'?
in their Bethe-Peierls-Weiss treatment of the single constituent liquid crystal.

Performing the differentiation, we get

3 5
‘ 3 1F11(1, Ex X1 1F12, 5, Xy)
Slzl-i———§——=l——*—3—~— (12)
1Fy (4, 5, Xy) 1Fi(1, 5, Xy)
and 1 3 5
1Fy (1, 3, X2) 1F1(1, 55 Xy)
where
1F11 (a,b,x) = g—x 1F; (a,b,%) =%1F1 (@a+1,b+1,x) (14)
and
3 e €12
X]:‘z‘ﬁ()(”{,—sl + (1 -%) 752) (15)
3 €12 €22
X2=%58 (xvv S + (1 -x) vV Sz) (16)

It should be noted that Fqns. 15 and (16) are just eqns. (7a) and (7b) with To =0
and the self consistency conditions, eqns. (10) and (11), employed. By numerically
solving the two simultaneous non linear equations, eqns. (I2) and (13), at different
temperatures, we would obtain the temperature dependence of the order parameters
of a type 1 and type 2 molecule when they are in the mixture.

... . . N
If we approach the transition from the isotropic side, we can expand the con-
fluent hypergeometric function to get
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x & (1=x) €12 .
S1= = 5kgT vV S1 7 sipr v 32 (17a)
e _ e
Sy = - X 12 (1-x) &2 (17b)

5kgT V °17 5kgT Vv 7!

where only the lowest order terms in the expansions were kept. Eqns. (17a) and
(17b) yield non zero solutions for S; and S; only if

e e i
l5k]3Tm+x—\1,—l (l—x)j ‘
det ; P | =0
| 12 _ €20
XY SkgTy + (1 —x) v (18)
Evaluating the determinant, we get
e E4y—E192
25 Th + STl 3 + (1-x) ) + (10 22525 0 (19

If T does not satisfy Eqn. 19, then S; = S = 0 and so the mixture would be in the
isotropic phase. At T = Ty, non zero values for S; and S, would be possible and so
Tm can be considered as the minimum temperature at which the isotropic phase can
exist. To establish the connection between the interaction constants, €;; and €;5, and
the minimum temperatures, T; and Ty, at which the isotropic phase of the two con-
stituents can exist, we note that Ty = Tj for x = | and Ty, = T for x = 0. This
yields

€11

kBTlvl = 5 (203)
and '
€22
kpT,Vs =5 (20b)

Where V; and V; are the molar volumes of the pure constituent liquid crystals.
A similar ratio between the interaction constant and the transition temperature was
obtained by Maier and Saupe except for an inverse dependence of the square of
the molar volume. Substituting (20a) and (20b) into equation (19), we get for the
transition temperature (which we defiine as the minimum temperature for which -the
isotropic phase of the liquid crystal can exist)

s12
x (1 -x) Tsz(_“““) 5
m

Vi \p)
Typ = x (‘\‘,‘)Tl +(1-x) (V_)Tz - V 1)
m m (~—)T1+(l—x)( )Tz

where €13' = €13/5 and Vp, is the molar volume of the mixture and for the purpose
of a later analysis is taken to be the measured molar volume. In Humphries and
Luckhurst® expression for the transition temperature, it was assumed that the binary
liquid crystals mixtures could be treated as an ideal mixture, i.e., V =xV; + (1-x)V2,
However, recent measurements! of the molar volumes of mixtures of p-azoxyanisole
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(PAA) and p-p-di-n-pentyloxyazoxybenzene (PPAB) indicate that these mixtures
exhibit a slight excess volume of mixing. Finally we wish to point out that when
the geometric mean approximation is valid, Eqn. 12 reduces to the expression obtained
by Humphries and Luckhurst®.

As a test of our theory, we attempted to fit the experimental data on mixtures
of p-azoxyanisole (PAA) and p-p’-di-n-hexyloxyazoxybenzene (PHAB) and mixtures
of PPAB and PAA. The nematic isotropic transition temperatures of the PAA-PHAB
and the PAA-PHAB mixtures were observed by means of a Reichert heating stage
microscope. The molar volumes of the PAA-PHAB mixtures were determined by
the standard dilatometric method?® while the molar volumes of the PAA-PPAB were
obtained with the use of an Anton Paar Precision Density Meter, Model DMA 20 D,
The details of the measurements of the PAA-PHAB will be reported elsewhere!®,
The nematic isotropic transition temperatures and molar volumes of the PAA-PHAB
mixtures are listed in Table 1, while the relevant data for the PAA-PPAB mixtures
are listed in Table 2.

TABLE 1 MOLAR VOLUMES AND NEMATIC ISOTROPIC TRANSITION TEMPERATURE
OF PAA-PHAB MIXTURES

Mole Fraction Molar Volume Transition Temperature
of PAA (ml/mole) °K)
Pure PAA 224.66 408.3
0.9 243.25 403.5
0.8 260.67 401.5
0.7 278.28 399.3
0.6 295.99 398.8
0.5 314.11 399.0
0.4 332.00 399.8
0.3 350.31 400.0
0.2 368.21 401.5
0.1 386.09 403.5
Pure PHAB 403.98 403.5

TABLE 2 MOLAR VOLUMES AND NEMATIC-ISOTROPIC TRANSITION TEMPERATURE
OF PAA PPAB MIXTURES

Mole Fraction Molar Volume Transition Temperature
of PAA (ml/mole) °K)
PAA 224.66 408.3
0.9 238.46 402.8
0.82 249.46 397.9
0.20 266.46 394.9
0.58 283.58 393.2
0.50 294.99 397.6
0.42 309.72 392.2
0.30 324.11 392.4
0.20 338.82 393.1
0.10 353.25 394.5

PPAB 368.14 395.9
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Fig. 1. Nematic-Isotropic phase boundary of PAA-PHAB mixtures. The line in-
dicates the boundary determined by Egn. (20) using the numerical value
€2 = 117,648. The dots are the observed nematic isotropic transition
temperature for the PAA-PHAB systems.
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Fig. 2. Nematic-Isotropic phase boundary of PAA-PPAB mixtures. The line in-
dicates the boundary determined by Eqn. (20) using the value &)’ =
109, 451, The dots are the observed nematic isotropic transition tem-
peratures for the PAA-PPAB mixtures.
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A best least square fit of the PAA-PHAB data to Eqn. 21 was achieved with
a value €3 = 117,648 kg ml/mole. This represented a deviation of 4% from the
geometric mean approximation. This value for €5 was then resubstituted into eqn.
(21) to obtain the nematic-isotropic phase boundary for the PAA-PHAB mixtures
shown in Figure 1. A similar best least square fit of PAA-PPAB data was achieved
with €5 = 109,451 kg ml/mole which represented a deviation of 5.3% from the
geometric mean approximation value for €j5’. Using €;5" = 109,451 kg ml/mole in
eqn. (21), the nematic isotropic phase boundary for the PAA-PPAB mixtures shown
in Figure 2 was obtained. The claimed best least square fit of these same systems
by Humphries and Luckhurst® using their approach is misleading since the molar
volumes for PPAB and PHAB were calculated on the assumption that the densities
for PPAB and PHAB are the same as the density of PAA. Measurements of the
densities of PPAB' and of PHAB!® shows that this assumption is wrong.

Conclusion

Our method for determining the minimum temperature at which the isotropic
phase can exist by expanding the partition functions in the isotropic side of the
nematic-isotropic transition and seeing at what temperature it is possible for non
zero values of the two order parameter to exist, is preferable to the method employed
by Humphries et @l.58. They defined the transition temperature as being the tem-
perature at which the free energy goes to zero. It has been pointed out in ref. 6,
that the nemetic isotropic transition in liquid crystal is a first order transition and
not a second order transition as would [be implied by the free energy being equal to
zero at the transition. Our method can also be extended to determine the composi-
tional dependence of the mixtures’ order parameter. However, the various hypergeo-
metric functions can not be as easily expanded since the system would have to be
on the nematic side of the transition. It would be easy to calculate numerically
the resulting equation and will be the subject of a later paper.
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