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Summary

A relationship between sediment discharge and streamflow was used in this paper
either as a scheme for generating sediment data from streamflow record or as a trans-
formation of variable. Assuring that the generated sediment sequence or the streamflow
sequence follows some widely used models for correlated variable, an attempt was made
to derive the formulas for the expected value and variance of the sediment volume
accumulated over a time span in a reservoir having them as inflows.

Introduction

In a previous paper, Phien and Arbhabhirama®' have presented a statistical
approach to estimating the accumulated volume of sediment in reservoirs over their
design lifetime. The technique presented in that work was based on the relationship
between the total sediment discharge, S, and the streamflow, Q, of the form:

S = aQb ’ (1)

where a and b are two constants. Since streamflow normally has longer length of
record, (1) can be used in two different ways: (1) to generate a sequence of sedi-
ment discharge from the streamflow; (2) as a transformation of variable, thus, the
distribution of the sediment discharge is deduced from that of the streamflow. The
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analysis can be then based on the generated sediment sequence or on the transfor-
mation of the streamflow distribution.

To continue that work which has dealt with the case of independent varia-
bles, the present paper aims to derive the exact formulas for the expected value (or
mean) and variance of the accumulated volume of sediment in a reservoir, assuming
that these two sequences follow some typical models for correlated data.

General Consideration

Let & be the trap efficiency of the reservoir under consideration, then e is
normally considered to be a constant in the interval (0, 1). The volume of sediment
accumulated in the reservior over a given time span of N years is

VN:.-ESSi:SES (2)
i=l i=l

where S; is the annual sediment volume which flows into the reservoir in year i,

i=1 .., N. It is clear from (2) that the distribution of Vy is readily obtained
N

from the distribution of the sum ,El S;, which is the value of Vy corresponding
1=

to the case €=1.0, where all sediment inflows are trapped in the reservoir. Therefore,
in the following analysis, it is sufficient to consider this case, and (2) becomes

N
VN = ,ZX Si 3)
1=

Since the annual values of sediment discharge volume are used, it is appropriate to
assume that the sequence of the §;, or the S—sequence, is a stationary process, with
mean g and variance Qs

E(S) = &
Var (S) = Q3
where E and Var stand for expected value (or mean) and variance, respectively.
It follows immediately from (3) that
E (VN) = N g (4)

which is always valid irrespective of the fact that the S—sequence is either inde-
pendent or dependent.

The variance of Vy is obtained from (3) as

N N-l1 N
Var (V) = 2 Var (S) +2 2 I Cov (S, Sitx) (5)
i=l i=l j=i+l

where Cov denotes the covariance of S; and S;1x. After some algebra, it becomes
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N—-l1
Var (VN) = 05 [N+2 3 (N-K) Ry] ©)

Where Ry is the autocorrelation at lag k of the S—sequence. If Ry =0, (6) reduces
to the expression for the case of independent variables:

Var (VN) = N Gg

Analysis Based on the Generated S—sequence

In modelling of stationary processes, the appropriate models are the autore.
gressive process, moving average process and mixed autoregressive-moving average
process. For the detailed treatment of these models, it is referred to the work of
Box and Jenkins? It should be noted that in this part, both the mean and variance
of S can be estimated from the generated sample and thus they are treated as known
parameters. Only the variance of the accumulated volume Vi needs to be derived
according to the different models employed while its expected value remains unchanged.

A. Case of Normal Variables.

(1) Autoregressive Processes. As applied to the modelling of the S-sequence, the
autoregressive procese of order m, denoted by AR (m), is written as

Zi = Pi Zj_] + oo + By Zi—m + V)]

where z; = S; — #. The random shock t; is independent of zj_y, ..., zj—py, and is

identically distributed as independent normal variables of zero mean and variance

g%. The stationarity condition is that the roots of the characteristic equation

¢ B =1-¢;B— ...~ ¢,B"
must lie outside the unit circle. In (7), &, ..., $y are the model parameters.
For this process, the autocorrelation at lag k is given by
Rk = ¢1 Rk—l + ...t ¢m Rk—-m, k>0 (8)
and the varirance of z; is
02 =02 (1 R{ $; — ... - Ry 6py)

In this case, 0, = 0g ia known, thus the variance of t can be expressed in terms of
the variance of S and the parameters of the model as:

0> = 6% (1 - Ry 61 — ... — Ry &)
For the estimation of the model parameters, it is referred to Box and JenkinsZ

Substuting (8) into (6) yields the expression for the variance of Vy:
N—-1 m
Var (VN) = 05 [N + 2 121 El (N-K) é; Rkl 9)
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The most frequently encountered case is the AR (1) process, for which,
Ry = Rk
Where R is used in place of Rj. For this model, the variance of Vy is obtained,
after some simple manipulations, as

I+R 2R (I-RN)

Var (VN) = N 0§ [1-:{{ T N (-R)? 1o

(2) Moving Average Processes. The moving average model of order n, denoted by
MA (n), is as follows

Zp =t - O tig ~ ... — Oyt (an

where z; = S; - pg, and t; are identically distributed as independent normal varia-
bles with zera mean and variance O'tz. No restrictions are needed on the parameters
0,, ..., 0, of the model to ensure stationarity.

The variance of the process is
2 2
0'3—_-(1 + 07 + .+ (ig) o,

which allows 0 to be determined by 0, — Og and the model parameters. The auto-
correlation at lag k is given by

n—k 5 2
(= O0c+ 3 0; 0400 1 (1 +07+ ... +0) k=12, ....,n
Rk :{ i=] (12)
0 k>n

In practice, the order n of the process is much less than N, therefore, a sub-
stitution of (12) into (6) yields

. n n—k
Var (V) =63 [N+ 2 (1 + 02 4 .+ 0§)—1k21 (N-K) (-0 + 5 0; 0401 (13)
= 1=

For the first-order model, z; = t; — 0; t_y,
Ri=-0;/U+ 6

Ry=0, k =2
and (13) gives:

Var (VN) =03 [N -2 (N = 1) 0,/ (1 + 6D)] (14)
For the second-order model,

R,=_01(1—02)/(1+0§+0§)

Ry=-06,/ (1 + 0%4— 0%)

Rg=0,k >3

and (13) becomes:

Var (Vi) =05 {N =2 (1 + 07 + )T [(N- 1) 0, (1 -6 + N-2)6,]}  (15)
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(3) Mixed Autoregressive—~Moving Average Processes. The model is

Zj = 0121 4 . + Oy Zien + t; — Oy tiog — . = O tiy  (16)
which is often denoted by ARMA (m, n), where m and n are the orders of the
model.

An ARMA Process of considerable importance in practice is the first-order
autoregressive —first-order moving average, ARMA (I, 1), process. It is commonly
written as

zi - @ zi-] =t — P i (17

and is also referred to as the ARIMA (I, 0, 1) process {See O’Connell® and Sen?).
For this model,

R =651 (6 - 0) (1 - g0) (1 + 0> 280), k > 1 - 8)

In view of (18), the variance of Vy in (6) can be written as

N-1
Var (V) =02 [N +2(6-0) (1 =90 (1 + > - 071 5 (N -k ¢ (19

k=1
It can be easily shown that
N-1
S (N-k gkl o NU-9-a-dY
k=l (1 - 92

whence (19) becomes:

Var (Vi) =03 {N+ 2800980 1qi g _a-¢M} o
(1 + 02 - ¢th (1 - ¢)?

B. Case of Lognormal Variables.

When the S—sequence is found to have a skewness coefficient which is signi-
ficantly different from zero, the above models can no longer be used. In this case,
lognormal distribution should be attempted. By extending the definition of Vincens
et al%, a sequence of lognormal variables is said to follow a model if the sequence
of the logarithms follows that model.

The expected value of Vyy is still given by (4). Further derivation is needed
for the variance.

Let ry denotes the autocorrelation at lag k of the s—sequence, where s; = In
S;, then it follows from the Appendix that

T
Re = [(1 + 7 ¥ =11/ 7§ @1

in which ng = og/#g is the variation coefficient of the S-sequence. Substituting (21)
into (6) yields:

n—1
Var (Vi) = 02 {N + 272 S (-0 [+ D% -1} @2
k=I
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(1) Autoregressive Processes. The model of (7) now applies to the variables z; =
Sj — M5, where pg is the expected value of the s-sequence. This expected value can
be expressed in terms of g and o [See Yevjevich®] as follows:

s = (1/2) In [ | (4} + 02

The autocorrelation ry is given by
m
k= 3 @i Tk—i
2
Where ¢; are the model parameters which can be estimated from the logarithms of
the S—sequence by the method described by Box and Jenkins?

For the first-order autoregressive model, 1y = X, where r is used instead of
ri. Equation (22) then becomes:

N-1 k
Var (VN) = 03 {N + 2757 S (N -k [( + 727 - 1)} (23
k=l
(2) Moving Average Procresses. For this model, the expression for ry is

n—k
(=l + 3 0i01+k)/(1+0%+...+0I21)k:1,...,n
0 k>n
wher ), ..., 0, are the model parameters as applied to the sequence of s; — .

For the case of the first-order model, MA (1),

fo=— 0/ + 6
k=0 k=2
and (22) gives

2.
Var (Vi) = 62{N + 2752 (N = 1) [(1 + )70/ T 700 _ 41 (o

(3) Mixed Autoregressive—Moving Average Processes. For the case of the ARMA
(1, 1) or ARIMA (1, 0, 1) process,

=6 (-0 (1-90) ] (+06 208, k> o0.
Substituting this expression into (22) results in

N—1 k—1 2
Var (Vi) =02 {N + 2752 5 [(1+ 7509 @ -0 a -6 a+6°-209)
k=1

Analysis Based on a Transformation of the Streamflow Distribution

The case of normal variables must be excluded from the analysis to ensure
that Qb is defined. Thus, in the following, the annual streamflows are assumed to
follow the lognormal distribution.
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If Q is a lognormal variable, then (1) shows that S is also a lognormal variables.
The expected value and variance of S have been shown (See Phien and Arbhabhira-
ma!) to be expressed in terms of the expected value and variance of Q, denoted by
#Q and 0‘6, respectively, as follows:

s = a pQ? D (1 + o) D12

2
of=a? (L apP T e )Y -] (26)
where ng = 0Q / #q is the variation coefficient of Q.

The expected value of Vpy is therefore given by
E(VN) = N pq°@® (;u%2 + aé)b(b‘” I2 @7
which is independent of the model employed.

In order to obtain the variance of Vi, one can substitute (26) into (6). However,
the autocorrelation Ry in (6) is obtained from S, but not from Q, it is necessary to
establish the relationship between the autocorrelations at the same lag of S and Q.

Let ¢ = In Q, and s = In S, then the basic relationship between S and Q in (1)
gives:
s =1Ina + bqg
Consequently the standardized variables of s and q are equal:
(s — 1) [ 05 = (@ — pg) | 0g

with obvious notation. This relationship shows that if q, qj, ... have the same
distribution as q, and s{, s, ... have the same distribution as s, then

Cov (si, Sj+k) / 0'§ = Cov (q;, Gj+k) / aé

In other words, the autocorrelations of s and q are equal at any lag. The autocor-
relation at lag k of g can thus be denoted by ry, the autocorrelation at lag k of s
as employed before. Since both S and Q are lognormal variables, eq. (A. 3) in the
Appendix can be applied to both the two sequences, resulting the following important
conclusion: The autocorrelations of S and Q at the same lag are equal. This result
permits the use of Ry to denote the autocorrelation at lag k of Q as well. With
this in mind, a substitution of (26) into (6) yields:
N-1
Var (VN) = f (@, b, Q [N +2 3 (N - k) Ryl
k=1
Where f(a, b, Q) = a'é as given in (26)

In view of (A.3) in the Appendix, this can be rewritten as:

N—-1 r
Var (Vi) =f @, b, Q {N+272 3 (N-K [ +23)X-11} (28)
Q % Q

(1) Autoregressive Processes. The model of (7) now applies to the variables
zi = qj — Y. The autocorrelation ri is given by
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m
Ik = 3 P Ix—
i=1

where the parameters ¢; are determined from the logarithms of the streamflows.

For the AR (1) model, ry = rX, r being employed in place of r;, and (28)

becomes:

N-1 k
Var (Vi) = f (&, b, Q {N + 2757 5 [+ 7)" - 1]} (29
k=1

(2) Moving Average Processes. The model of (11) applies to the variables z; = q; — #g,
by which the autocorrelation rg is given by

n-k
(<O + 3 0; 04i) I (1+ 02+ .+ 0)k=1,...n
Ty = { i=1
0
For the MA (1) model,
n=-0/ 0+ 0%)
Tk = O, k>2
Thus, (28) gives
2
Var (V) = (a. b, Q {N + 2 (N = D 7201 + 23~ 0+ 11} 30

k>n

(3) Mixed Autoregressive— Moving Average Processse. For the ARMA (1, 1) or
ARIMA (1, 0, 1) process,

=01 (-0) (1 —g0) /(1 + 6%-240), k> 0

_in which, the model parameters ¢ and 0 are of course estimated using the logarithms
of the streamflows. Substituting this expression of ry into (28) gives:

N-1 —
Var (Vi) = (a.b, @ {N 42752 3 [ 4738 $-00-90)/1+82206) )
k=1

Application

From several samples of suspended sediment and streamflow of the Pasak River
at Kang Khoi station (Thailand), application of the least squares method yields the
following equation which relates the suspended load, G (in tons/day) to the stream-
flow, Q (in m3/s):

G = 10.60 Q!0

Assuming the bed load to be 20% of the suspended load and a unit weight of 80
Ib./ft> which are commonly experienced in this country, one obtains a relationship
between the total sediment discharge and the streamflow as follows:
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S = 3.62 x 10° Q1'% (32)

where S is in m3/year and Q is in m3/s.

Analysis Based on the Generated Sequence

At the considered station, data for Q have been made available for 63 years
(1914-1976). Using(32), 63 annual values for sediment discharge are generated. For
this generated sequence, only the first-order autocorrelation, being equal to 0.343 is
found to be significantly different from zero at 5% probability level (student t-test).
In addition, the skewness coefficient is 0.487 which is also significantly different from
zero, thus the first-order autoregressive model for lognormal variables may be em-
ployed.

The expected value and standard deviation of S, and the first-order autocor.
relation of InS have the following estimates. '

ts = 3.48 x 10° m3/year 05 = 1.40 x 10° m3/year r = 0.270

For a reservoir to be designed based upon the data available to Kang Khoi, the
expected value and variance of the accumulated sediment volume in N years,
N = 10(10)100, can be computed by using (4) and (23). The results for ¢ = 1.0
are shown in Table 1.

TABLE 1. EXPECTED VALUE AND VARIANCE OF SEDIMENT VOLUME COMPUTED
FROM DATA OF PASAK RIVER.

N Mean (10 m3) Variance (10'2 m®)
Years (1 2) (1) (2)

10 3.484 3.484 0.313 0.316
20 6.969 6.967 0.644 0.652
30 10.453 10.451 0.975 0.987
40 13.938 13.934 1.306 1.322
50 17.422 17.418 1.637 1.658
60 20.907 20.902 1.968 1.993
70 24.391 24.385 2.299 2.328
80 27.875 27.869 2.630 2.663
90 31.360 31.352 2.962 2.999
100 34.844 34.836 3.293 3.334

Note: (1) based on the sediment sequence
(2) based on the streamflow sequence

Analysis Based on the Streamflow Sequence

Only the first-order autocorrelation of the annual streamflow (0.344) for the
Pasak River is found to be significantly different from zero at 5% probability level.
With a high value of the skewness coefficient (0.435), the first-order autoregressive
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model for lognormal variables is used. The estimated values of the expected value and
standard deviation of Q, and the first-order autocorrelation of InQ are respectively as

ro = 7116 m%s 0 = 29.54 m¥s  r = 0.270

The expected value and variance of Vy are then computed using (27) and (29).
The results are also given in Table 1.

Discussion

(1) As seen in the analysis, when Q is lognormally distributed, S is also
lognormally distributed, and hence the same model should be used for sediment
discharge and streamflow sequences. In the present case, the first-order autoregres-
sive model for lognormal variables is employed, mainly because of its simplicity and
popularity.

(2) The results in Table 1 show that the two different approaches provide close
values for the expected value and variance of the accumulated sediment volume. This
may indicate the appropriateness of the model in use.

Summary and Conclusions

The present paper investigates the distribution of the accumulated volume of
sediment in a reservoir over N years through derivation of the expressions for its
expected value and variance corresponding to the case where sediment inflows are
correlated. All the three models, namely, the autoregressive, moving average, and
mixed autoregressive-moving average models are considered and due attention is paid
to their most commonly used forms; i.e., the AR(l); MA(!), and ARMA(l, 1) or
ARIMA(l, 0, 1) models. All the results are presented in a from which is ready
for use. Since there are several sequences involved in the analysis, some repetition
is made to specify clearly the sequence and the model under consideration in each
case.

The expected value of the accumulated volume of sediment is independent of
the model considered, while the variance depends upon the autocorrelation of the
inflow sequence. The expressions for the variance corresponding to different models
are given. The contribution of the persistence in the inflow sequence, expressed by
its autocorrelations, is explicitely indicated in these results.

To obtain the accurate estimates of the expected value and variance of the
accumulated sediment volume over a given time span, sediment and streamflow se-
quences must be correctly modelled. This could be achieved by following the three
stages recommended by Box and Jenkins® and by incorporating recent experiences
and developments in improved Box-Jenkins methods.
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List of Symbols

The following symbols have been used in this paper:

a, b = constants in the relationship between sediment and streamflow
E = expected value (mean)

f (a, b, Q) = variance of S in terms of a, b, mean, and variance of Q
G = suspended load

In = natural logarithm

m = order of the autoregressive process

n = order of the moving average process

N = time span in years

Q = streamflow

q = an

Ri = autocorrelation at lag k of Q (and S)

Ik = autocorrelation at lag k of q (and s)

S = sediment discharge

s = lIns

ti = random shock (independent normal variable)

zj = correlated variables used in a model

VN = volume of sediment accumulated in a reservior over N years
Var = variance

€ = trap efficiency

7 = variation coefficient

0, = parameters involved in moving average model

Iz = expected value (mean)

g = standard deviation

b = parameters involved in autoregressive process
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Appendix

Relationship between the autocorrelations of Y and InY for lognormal variable.

Let {Y} = {Y1, Yz, ...} denote a stationary process of lognormal variables
with mean g, standard deviation ¢. If {Y} is the (stationary) stochastic process of
Y1, Y2, ... where Y; = InYj, 1 = 1, 2, ... then for any k = 0,

Yi Yitk = exp(Yy) exp(Yirx) = exp (Y; + Yi+w)

Since Y; and Yj4x are normal variables, Y; + Yjj;k is a normal variable, and thus
Y; Yi+x is a lognormal variable. The expected value of Y; Yjix can then be ex-
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pressed in terms of the expected value and the variance of Y as follows: (see
Yevjevich®, p.p. 135-136)

E(Y; Yi+x) = exp [E(Y; + Yi+x) + (1/2) Var (Y; + Yit+1)]
exp [2E (Y) + (I + r) Var (Y)] (A.1)

where ri denotes the autocorrelation at lag k of the Y sequence. Expressing E (Y)
and Var (Y) in terms of # and o, eq. (A.l) yields:

4 2 2
E(Y; Yi+x) = exp [in (ﬁ) + (1 + rp) In (ﬁ—;z—a~)]

+
_ 2 2
=exp [In #° + e In (I + %% ]
or

E(Y] Yiu) = 2 (1 + 2k (A.2)

i

where # =0/p is the variation coefficent of Y.

The autocorrelation at lag k of Y is given by
E(Yi Yi+k) - E(Yi) E(Yi+k)
Var (Y)

Ry =

which, in view of eq. (A.2), becomes

il

Ri = 2 (1 + 7k _ p2] ) o2

or r
Rp=[(1 + Pk~ 1]/7 (A.3)

Equation A.3 establishes the relationship between the autocorrelations of the
lognormal variables and their respective logarithms at the same lag. For k =1, eq.
(A.3) reduces to the result given by Matalas’.
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