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Summary

A molecular field theory is developed for the inverse spinel ferrite Fe304 which
takes into account the disorder arising from the random arrangement of two types of
magnetic ions in the B sublattice. It is shown that the perturbative expansion of the
propagators can be partially summed. A diagrammatic interpretation of the summation
is given. By numerically solving a set of nonlinear equations, the spontaneous magne-
tization curve for Fe30y4 is obtained.

Introduction

In the inverse spinel ferrites, the octahedrally coordinated sites, which form
the B sublattice, are randomly occupied by an equal number of divalent and tri-
valent magnetic ions. Previous studies of these ferrites have not fully treated the
disorder arising from the random arrangement. Kaplan! replaces the two different
spins in the B sublattice with an “averaged” spin and than treats the system as a
normal spinel ferrite. Mills, Kenan and Milford? assume that the two types of ions
are arranged in an orderly fashion amoung the B sites. Klama and Ferchmin?® treat
the random arrangement of one type of ions in the B sublattice as being indepen-
dent of the random arrangement of the other type of ion in the sublattice. Evans*
and others® use the probability function for finding out of the six nearest neighbor
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sites occupied by a particular type of ion of find the statistical averages of various
quantities which can interact with an ion located at a given site.

Magnetite®? is an example of an inverse spinel ferrite. The divalent Fe2*
ions and the trivalent Fe3* ions are randomly arranged in the B sublattice. The
tetrahedrally coordinated sites, which form the A sublattice, are all occupied by the
remaining Fe®* jons. The superexchange interactions between the magnetic ions
located on the nearest neighbor A and B sites, Ji (Fe3*~Fe®*) and Ji; (Fe3t—Fe?t),
should be the dominant interactions since the angle of the A—anion-B link is favorable
for this type of interaction while the A-anion-A and the B-anion-B angles are
not. Stephenson® has shown that a simple molecular field model gives an expression
for the Curie points which can be fitted to the observed Curie points of most of the
spinel ferrites. We shall also assume that the interlattice superexchange interactions
are dominant and that the magnetites can be described by the following Heisenberg
Hamiltonian . _

H = -3 J;j (Fe**-Fe?*) A;-Bjbj — 3 Jjj (Fe**-Fe?*) A;-Cj ¢ (1)
ij 1)
where A; is the spin operator for a Fe3* jon located at the i-th site in the A sub-
lattice; Bj the spin operator for the Fe®¥ ion located in the B sublattice; Cj spin
operator for a Fe?¥ jon; bj is the site occupancy indicator for a Fe®* jon and c;
is the site occupancy indicator!® for the Fe?* jon.

The purpose of this paper is to study the effects of the disorder arising from
the random arrangement of the two magnetic ions in the B sublattice. In the next
section, we obtain the effective molecular field acting on an A site. Because the
effective field is the field inside a spinel ferrite having a definite arrangement of
ions, an average over all possible configuration must be performed. This configuration
averaging is done in the following section. It is seen that the random disorder
gives rise to a local molecular field fluctuation acting on an A site. A diagram
interpretation of the partial summation encountered in this section is then given,
and finally the temperature behavior of the magnetization of FesO, is presented.

Effective Molecular Fields

To obtain the effective molecular fields acting on the three types of magnetic
ions in the inverse spinel ferrites, we introduce the following molecular field approx-
imation o - -

; Jij Ai*Bj = 3 Aj-X J;; <B> + 3 B; 3 Jjj <AD (2)
ij i j j i

where < > denotes an ensemble average. Thus the effective fields acting on the
Xi, Bj, and C; spins are

Heg (A}) = - 3 J;;® <BY bj - 3 J;;®@ <C ¢ 3)
_ J j
Her (B) = - 3 J;; @ <AD 4)
i

and Heg C) = - 3 ;@ <A (5)
i
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where JV = J (Fe3*-Fe3t) and J@ = J (Fe*+-Fe?*). The site occupancy indicators
b; and c; take on the values
b; = 1 if the j-th site is occupied by a Fe®** ion
= 0 if it is not
= 1 if the j-th site is occupied by a Fe?* ion
= 0 if it is not

Since a site can not be occupied by two ions simultaneously, the two site occupan-
cy indicators must be related to each other, i.e., if the site is occupied by a Fedt
ion, it can not be occupied by the Fe?* ion. Thus we have bj = 1 — ¢;. Looking
at the above fields, we see that only the field acting on the Fe3t jon located on
the i-th site in the A sublattice is directly dependent on the arrangement of the
ions in the B sublattice.

It should be understood that the above effective field, Hegr (Ki), is the local
field at the i—th site inside an inverse spinel ferrite having a definite arrangement
of the Fe3* and Fe?* jons in the B sublattice. Since any arrangements of these
ions is possible, the effective fields must be averaged over all possible configurations.
The averaged effective fields are obtained by replacing the ensemble averaged spin
<A?> and the weighted ensemble average spins <B”> bj and <C*> c;j by their
configuration averaged value.

S

The configuration averages of the above spins can be calculated by using a
trick introduced by Kaneyoshill. He pointed out that the ensemble average of a
spin S; being upon by an effective field can be written as

<S> =S f Bs (38E) 6 (E — Heg (i) dE (6)

where Bg( ) is the Brillouin function; S, the spin quantum number; 0 ( ), the delta
function and where B=1/kgT. The delta function can be written as the difference
between two resolvents (or Green’s functions), i.e.,

1 i : I
0 (E — Hep) = 47 el‘_“fo{ E - Heg —ie = E — Heg + i } ™

Substituting this into eqn. (6), we obtain
<8> =S lim3- [ By GFE) Geie MHer() - Girio (Hea)) 4B (8)

where GEg+ie(Heg(i)) are the resolvents II(E — Heg & ie). The configuration aver-
ages can be obtained by takmg of configuration averages of the Green’s function
GE'he(Heff (). ’

Configuration Averages

As was pointed out in the previous section, the effective field at the A site
is the only ones which are directly dependent on the way the two types of ions are
arranged in the B sublattice. Therefore, only the configuration average of the
Green’s function Gg+ie(Heg(Aj)) has to be calculated. The configuration averaging
of the other two Green’s functions, Gg+ie(He(Bj) and Gg+ije(He(Cj), does not
lead to any changes, i.e.,
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Gp+ie(Her (Bj)) = <GEg+ie(Heg (Bj))> 9

and GE+ie(Herr (Cj)) = <GEg+ie(Hex (CP)> ¢ . (10)
The resolvent or Green’s function for the A spin located on the i—th site is

GE (Her(AD) = ' (1)

E+3 J;0<B> - 3 UW<B> — J;0<Co)e;
j j

where we have used the relationship bj = 1 — ¢; By introducing the auxiliary
Green’s function

Go(E) = (E + zZJV<B>)? (12)
where z is the number of nearest neighbors of an A site and which is equal to six
for the spinel structure ferrites, we can rewrite eqn. (11) as

1
Gz(Heﬁ‘(Ax)) = GO(E) 1-— GO(E) 2 (Jij(l) <BZ> - Jij(2) <CZ> )C_] .
i

(13)

Expanding the above equation via the geometric power expansion, we get

GE(Her(AD) = Go(E) { 1 + Go(B) 3 Bify + GolE) X by 0,Gof®) x

z hij,cj, + GolE) z 11,chjl Gy (E) z hIJ iy Go(B) x

Z hjj3C_,3 .+ Gon(E) 3 hlJ1 hlJz h X
J3 -]1-'2 Jn
cjlcjz....cjn+....} (14)
where Hj; = J;;P<B? - J;;®<C?. Introducing the following Fourier transforms
Gglk) = f Gr(Heg(Ap) elkifi dr;
and hjj = 5 3 hk) ek,
k

the Fourier transform of eqn. (14) becomes

GE(K) = GofE) { (k) + Go(E) & 33 6lk—kp h(kp ek ¢
j k

1
+ GE) %2 3 z h(k;) h(ky) 0 (k-kj-kj) eif1 eikarz

jie k
. . G n E) = h(k; ikiri
Cjy Cj, + v ( ) Nn lejn 2 (W ( )) (1_1 )
O (k-ky-kz -+ —kp) cjoj ++rcj + e } (5)

where r; = 1}

The configuration of Gg(k) is obtained by taking the comfiguration averages
of the various products of the indicator operators, i.c., we need to known what the
configuration averages of <ej, €5, c» <¢j, €5, Ci>er oo <Cj Cj, Cj;> c» ---are. Leath
and Goodman!® have pointed out that the configuration average of a product of in-
dicator operators is equivalent to a cumulant expansion of the product. Yonezawa
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and Matsubara'? showed that the cumulant expansion could be expressed in terms
of the site occupancy polynomial Py(c), e.g.,
<c>e = Pi(c)
<lecj2>c = P%(c) + P2(c) 012
<cjc;,Ci>e = P{e) + Pilc)Palc) (O1z + 013 + 023) + Pslc) Oz
<¢j,€3,C5,0j,>c = Pi*(c) + P1%(c)P2(c) (D12 + 013 + Ous + O2s + Oz4 + Oss)
+ P22(c) (012034 + 013024 + 014023) + Pi(c)Pslc) (Oizs
+ Oi24 + O134 + O234) + Pylc) iz (17N
where 012 = 5J~] iy The first four site occupancy polynomials are
Pilc) = ¢
Pao(c) = c-c?
Ps(c) = c-3c? 2¢?
Pi(c) = c~7c? 12¢%-6¢4 (18)
where ¢ is the fraction of B sites which are occupied by the type C (Fe?*) ion. The
generating function for the P, (¢) polynomials is

-] xn
In (l-c+cex) = 3 Pylc) T (19)
n=1
Substituting the configuration averages, eqn. (17), into eqn. (16), we get (up
to the fourth order in the expansion)

<GE(k>c = Go(E) 3(K) { 1 + Go(B) ho) P, + GL(E)

h2(0) P2(c) + Pa(c) - 3 [h(ki)[?) + G(E)
N k
1

(1) P3(e) + 3 h(o) Pa(©) Pole) & 5 Ihlkn) 2
ki

+ Ps(c) %,kz h(ks) hiks) h(-ki-k2)) + G5(E) (h4(o) Pie) +
1ke

+ G b%(0) P}(0) Po(o) 3 3 [h(K)? + 3 (Polc) & 3
ki k

lh(k1)|2)2 + 4 h(o) Pi(c) Ps(c) 3’72 3 h(ki1) h(ks) h(-ki-kz)
kikz
+ Pe) 35 3 (k) hik) hks) h(-ki-ke—ks) ) +} (20)
kikzks |

Neglecting terms containing Tf‘-z S h(ki) h(kz) h(-ki-k2), —;;3 Y h(ki) h(ka)
kikz kikzks
h(ks) h(-ki-kz—-ks) and other higher order terms, part of the series can be summed to

<GEg(k)>¢ = Go(E) zé(h) ’
1 _GO(E)Pl(C)h(C) -GO(E)Pz(C) a E | h{k) lz

1 - Go(E)Pi(c)h(0) - GA(E) P2(c) - S| h(k) [
1= Go(E)P1(c)h(0) — GX(E)---
@n
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Expanding the above continued fraction by the geometric power expansion, we would
have an agreement with eqn. (20) up to fourth order except for the coefficient in
front of the (P2(c) ﬁ S |h(n)[?? term. The coefficient in front of this term in the

expansion of eqn. (21) would be a two instead of the three found in eqn. (20). Reasons
for this difference will be given in the next section.

If we terminate the continued fraction in such a way that only terms up to
second order appear in the denominator of equm. (21), the configuration averaged
Green’s function becomes

<GpW>e = 4 300 { g + 5o | 22)
where E+ = - (2ZJWLKBD b + zJ@ <CB ¢)
+ \/ (P2(c) o 3 [ID(K) <BD . — JAK) <CB,. |2 (23)
k1

Taking the inverse transformation of eqn. (23), we get
1
<Ge(Heg(A)>e = ¥ { 52 + 55— } (24)

Substituting this into eqn. (8), we obtain the following configuration average of the
z component of the spin of a Fe*¥ jon located in the A sublattice

<A%c=18 { By@AE,) + ByBAE) } 25)

where S; is the spin quantum number for the Fe3* ijon. The square root factor in
E+, {Pz(c) i} S IV(K) <B2>c-J@ (k) <C2>c[2}é can be thought of as being the

local molcular field fluctuation which is acting on a Fe®t ion located at a site in
the A sublattice. This fluctuation is due to the fluctuations in the environment
surrounding an A site caused by the random arrangement of the Fe®*t and Fe?* ions
in the B sublattice.

Diagram Summation

A better understanding of why the series, eqn. (20), sums to the continued
fraction, eqn. (21), can be achieved if we examine the graphic representation?® of eqn.
(20). The diagrams shown in Figure 1 are the three diagrams present in the series
of diagrams generated by the cumulant expansion of <cjcyc3> ., whose analytic forms
are Go*(E)P; (c) h (O) Py (c) (1/N) 3 |h(k)|2 The existance of three diagrams. having
the same analytic form accounts for the coefficient three in front of this term in
eqn. (20). Figure 2 shows the six diagrams present in the diagram series generated
by the expansion of <cicyc3cq4> whose analytic forms are Gy*(E)Pj2(c) h2(O)P5(c)
(1/N) 3 /h(k) /2. The three diagrams shown in Figure 3 also appear in the series
generated by the expansion of <cjcacicy> . These diagrams give rise to the Gy*(E)

{Pz(c) (1/N) Sihk) | 2}2 term in eqn. (2). Every term in eqn. (20) can be identified



J. Sci. Soc. Thailand, 5 (1979)

137

Fig. 1. Diagrams generated by the cumulant expansion of <c1 c2 ¢3>>, whose analyticel
expressions are GoS(E)Pl(c)Pz(c)h(O)(1/N)2|h(k)|2. la and 1b are reducible dia-

grams. 1c is an irreducible diagram.
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Fig. 2. Diagrams generated by the cumulant expansion of <c1 ¢z c3 c4>, whose analytical
expressions are Go4(E)P12(c)Pz(c)h2(0)(1/N)Zih(k)|2. 2a and 2b are reducible
diagrams. 2c is an irreducible diagrams.
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Fig. 3. Diagrams generated by the cumulant expansion of <{c1 c2 ¢3 ¢4>, whose analytical
expressions are Go4(E){Pz(c)(1/N)2|h(k)l2}2. 3a is a are reducible diagram. 3b is
an irreducible diagram which is part of series which can be summed to give eqn. (26).
3c is an irreducible diagram which is not part of the series given in Fig. 4.
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Fig. 4. Series of diagrams which can be summed to eqn. (26).
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Fig. 5. Spontaneous magnetization curve for Fe3O4. Solid line indicate the curve predicted
by our theory. Dotted line indicate the curve observed by Pauthenet and Bochirolls.
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with at least one diagram in the series of diagrams generated by the cumulant ex-
pansions. The coefficients in front of each term in eqn. (20) are just the number
of diagrams whose analytic forms are the term in question.

Figures la, 1b, 2a, 2b and 3a show diagrams which can be separated into two
diagrams by *“cutting” one line in the diagram. These reducible diagrams can be
considered as being the cross products resulting when a series of irreducible diagrams is
squared, cubed, and so forth. The diagrams shown in Figures lc, 2¢ and 3b are part
of the series of irreducible diagrams shown in Figure 4. This series of diagrams
can be summed to

. Go(E) <Gg'>¢ Palc) (1I/N) 3 [h(k) |2 (26)
where <GEg > is the configuration averaged Green’s function. If we now neglect
those diagrams containing three or higher order vertex interactions, the self energy
of the configuration averaged Green’s function becomes

P1(0)h(0) + Go(E) <Gg'>¢ Pa(c)(1/N) 3 [h(k) |24 diagram of Fig. 3c (28)
If we drop the diagram shown in Figure 3c from the self energy 3, the diagrammatic
summation of the graphs of eqn. (20) would give

G.(E) S(k)

, 1 - GC(F) > (29)
where 38 = P{(c)h(0) + Go(E) <Gg >¢ P2(c)(1/N) T |h(k) |2 The diagrammatic expan-
sion of eqn. (29) would contain the diagrams of Figures la, 1b, lc, 2a. 2b, 2¢c, 3a and
3b but not the diagram of Figure 3c. Writing out the analytic expression for each
of the diagrams in the expansion, we would get all of the coefficients in eqn. (20)

except for the three in front of the term Go*(E) {Pz(c)(llN) zlb(k)iz}z. The expansion

of equation (29) would contain a two in front of this term since only the diagrams
of Figures 3a and 3b would be present.

< GE(k) e =

The discussion in this section would provide the basis for a Green’s function
description of the inverse spinel ferrites beyond the molecular field approximations
used in the present paper. We shall return to this point in a later paper.

Spontaneous Magnetization

The values of the three types of spins in magnetite at different temperatures
can be obtained by solving simultaneously the three non linear equations

<Az> =} 8, { By, (38E4) + By, (éﬁE_)} , (25)
<B?> = S1 By, 3Bz JW< AZ>) (26)
and <C*> = S; Bs, (3 Bz2ID < A% >) (27

where E+ are given by eqn. (23). The numerical values of J® and J® must be first
obtained. One of the authors (IMT) has previously obtained an expression for the
Curie temperature of a spinel ferrite which has two types of magnetic ions on both
sublattices'4. By fitting that expression to the Curie pointe of lithium ferrite (955° K)
and to the Curie point of magnetite (851°K), we obtained the following values
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JO —_20.7 ks
and J? =154 kg

Substituting these values and the spin quantum numbers of Fe3+ and Fe?t into eqns.
(25)—(27), we were able to numerically solve the above equations using an IBM
360/138 computer.

Substituting the numerical values of the three spins at different temperatures
into the following expression
M(T)IN = Jips < A*> + Iips <B*> 4+ JPup <C2> , (28)
we were able to obtain the spontaneous magnetization curve shown in Figure 5. In
the above equation, g1 and g, are the Lande’ g factor for Fe3* and Fe?*, respectively,
and /s is the Bohr magneton. We have also plotted the experimental spontaneous
magnetization curve for Fe3O4 obtained by Pauthenet and Bochirol's. The magnetiza-
tion curve obtained from eqn. (28) is valid only in the temperature region above
119° K since a structural transition occurs at that temperature. Below 119° K, the
structure of magnetite is orthorhombic while above, the structure is spinel. To obtain
the magnetization curve below the transition temperature, we would have to rewrite
all of the equations obtained in the previous sections so that they would reflect the
orthorhombic structure of Fe3 O4 instead of the spinel structure.

As is seen, the predicted curve lies slightly above the observed curve. Using
a simple Weiss molecular field description, Neel'® was able to obtain a curve which
lied slightly below the observed curve. However, the excellent agreement could only
be achieved if Neel assumed that the molecular field coefficients varied linearly with
the temperature over the entire temperature range from O° K to 851°K. The numerical
value of the linear coefficient term implied that the exchange interactions should
vary as the inverse tenth power of the cation separation. Because the coefficient of
linear expansion of magnetite is not the same over the entire temperature range, we
felt that we were not in a position to incorporate a temperature variation of the
superexchange interaction constants into our calculation.
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