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Summary

Assuming that the annual inflows to the reservoir under consideration are distri-
buted as independent normal variables and the annual outflows are equal to the sample
mean of the inflows, the distributions of the water content in various years, the maximum
amounts of water in surplus and in deficit, and the storage capacity were investigated
under the condition that the reservoir allows neither spillage nor emptiness during its
lifetime. The water contents in various years were found to be distributed as normal
variables; the maximum amount of water in surplus or in deficit has a probability mass
at zero and a probability density function elsewhere, which was fitted by the Type I
Pearson curve; and the storage capacity was fitted by the Type Ill curve. All the fittings
were assessed by using the Chi-square test of goodness of fit.

Introduction

The planning and design of a reservoir always involves the determination of
its storage capacity, which depends upon the conditions imposed. Suppose that the
annual flows to the reservoir in different years, denoted by Xy, come from the same
population distribution. Suppose furthermore that during a lifetime of n years, the
annual outflows are constants equal to the sample mean )—(n:

n
Xp = kEI Xi/n ' (N
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The problem is to determine the reservoir size or the reservoir storage capacity in
order that during the lifetime the reservoir never spills and never runs dry.

Let S#; denote the storage of the reservoir or the water content in the ith
year with reference to the initial level, for i =0, 1, ..., n, where S:=0, then by
means of the continuity equation

ST - Si*—l =Xi - _Xn
it follows that

1
* —
Si = 2 (X -X
1 k‘—"l(l n)

i
Let S; = kzl Xk, the partial sum of Xy; it can be seen that

S =8 -+ Spi=12 0 )
In this form, S;k is called the adjusted partial sum.
Define
* ¥* *
My = max (0, S, ..., Sp)
* . * *
my, = min 0, S, ..., Sp) (3)
and

* * *

Rn = Mn — Mp,

M; is called the adjusted surplus, mz the adjusted deficit, and R; the adjusted
range. To satisfy the stated conditions, the storage capacity of the reservoir should
be optimally equal to the adjusted range R:. The random variables M: and m: are
then the maximum amounts of water in surplus and in deficit over n years, respectively.
The random variables S?, M;, m:: and R:, illustrated in Fig. 1 are therefore of im-
portant interest in the field of water resources development.

Hurst! collected a large amount of statistical material relating to water levels
and other phenomena, and came to the conclusion that the observed adjusted range has
a mean proportional to n®, where ¢ varies from 0.69 to 0.80, with a mean of 0.729
and a standard deviation of 0.092. This finding, commonly referred to as the Hurst
phenomenon, has been a stimulant for a great deal of research. Recently, it has been
considered to be related to the rescaled adjusted range?.

Feller® derived the asymptotic distribution of R: and its asymptotic mean and
variance. For independent variables of zero mean and unit variance, the results are
E(Rp) = (zn/2)"* (4)

Var(R}) = =(%/6-1/2)n (5)

Solari and Anis? introduced the random variable U: called the maximum of
adjusted partial sums which is defined by ‘
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* *
U, = max (Sq, ..., Sp)
and derived the exact formulas for its first two moments as follows :

1 n 1/2 n—1

E(Up) = 5 ()

—1[2

(n-i) 2 (6)

i=l1

= . -1 i-1
%{ L ‘/ S 3 iien) (i) o)) "2} )
i=2 j=1

E(US)
forn > 2

Salas-La Cruz® obtained the expected value of the adjusted range for the case

of independent standard normal variables. The result was:
n 1 ogn-int2

* n
E(Rn) = (E)llz zl _____nW_ (8)

Later, Boes and Salas-La Cruz® and Salas-La Cruz and Boes’ derived the expected
value of R: for the case where the outflow is only a fraction of the sample mean
in. They also investigated the asymptotic behaviour of E (R:) in connection with
the Hurst phenomenon.

Sutabutr®, based on computed values of the Pearson criterion from simulated
samples, suggested the use of the Type III curve of the Pearson system to fit the
*
distribution of Ry,

As seen before, the random variables adjusted surplus, adjusted deficit, and
adjusted range are very important in the storage problem. An attempt is made in
this study to obtain their distributions when Xy are distribution as independent
normal variables.

Expected Values of M:, m: and R;

It should be noted that for n = 1, X, = X{, hence ST =0, and consequently
Mr = mf = Rr =0. This case is excluded from the following analysis. For n = 2, the
sequence Yy, Y2, ..., Yy where Yy = Xg — X, is exchangeable®; thus the following
equation® holds

n
EMp) = 3 E(V)/i )
i=l
where . . .
Vi =max 0, S;) = IS;| /2 + S; /2 (10)
Observe that since
* * *
mp = min (0, §;, ...,S,)

= -max (0, —Sr, sy —Sz)
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Fig. 1. Definition of the adjusted partial sum S*, adjusted surplus M*, adjusted deficit me.
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and adjusted range R:.
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it follows that

n
E(mg) = - 3 EW) /i (11)
1=
where ,
W; = max (0, =S;) = [Si| /2 - S] [2 (12)
From the definition of S;,
ES) =0
thus, E(V) = E(Wp = E(S{]) /2 (13)
and from (9) and (11),
E(Mp) = —E(mp) (14)

The definition of R; leads to:

*, *, *
or E(R, D = 2E(Mn) (15)
Equations (14) and (15) are abtained using the fact that E(S ) =0, which in turn
results from the condition E(Yg) =0, k =1, ..., n, where Yy = Xg - X, is called
the net input in the kth year.

These equations state that the expected values of the adjusted surplus and
adjusted deficit have the same magnitude, and the expected value of the adjusted
range is double of the adjusted surplus, provided that the expected value of the net
inputs in different years are identically equal to zero.

For the case of independent normal inflows with mean # and standard deviation @.

E(S;)

g E(X k) 1/"

i
and Var§) = 2 Var(Xy) = io®

The expected value of Si is zero, and the variance can be written, using (2), as
Var(S;) = Var(S;) + (i/n)? Var(Sp) — 2i Cov(S;, Sp) /n
Since Cov(S;, Sp) = ia®,
Var(S; ) = i(n-i)6® /n. (16)
It should be noted that Xn is a normal variable, so is Yg, and therefore S is a
normal variable. The knowledge of the expected value and variance of Sl thus com-
pletely determines the distribution of S,.

In summary, the storage of the reservoir in the ith year, i < n, is distributed
as a normal variable with zero mean, and variance given by (16). The expected
*
value of [S;| can be easily shown to be

E(S; ) = )" lita-i)/n]'"? @
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Substituting this expresssion into (I13) yields

E(V) = EW) = @m) 7 [i(a-)/n]"’e an
The expected values of M: and m: are obtained using (9) and (11), respectively
and the expression of E(V;) and E(W;) in (17):

* *
EM,) = -E(my)
n
— -i.1/2
= @ 3 5 | (18)
and the expected vallic of R; is g-iven by (15)

n|1I2

ER,) = Q)" ¢ 2 (T - (19)

Second Moments of M:, m: and R;

Forn = 2,
* * *
M, = max (0, S, S3) = Vy
*
because S; = 0. Thus
¥, *.
E&Mzz) =EV) =ESH 2 =04 (20)
Similarly, mj . = -Wy, and
E(my®) = E(W)) = E(Sl %) /2 =d /4 @rn

For n = 3, the second moments of Mn and mn can be obtained from the formula
of Solari and Anis?, by notmg that the random variable

Un = max (Sl, Sz, cers n-la n)
correspondmg to the condmon Sn =0 becomes ~
Un = max*(Sl, Sz, oo Sn -1, 0) = Mn (22)
The second moment of My is then dernved from (7)
*2 0'2 \/n = l il —1/2
B = L S 2 iei-n) (-0 617 ] e
for n > 3.

Equation (23) obviously can apply to the second moment of m: for normal variables.
* *
Based on the identification between U, and My, one can show that the expected

value of M; derived in (18) is equivalent to the expected value of U; obtained by
Solari and Anis* in (6) for the case ¢ = 1.0.

The exact formula for the second moment of R; can be obtained for n = 2.

It is clear that R; = S’;, thus
ERy) =0d* 2 - (24)
For n = 3, the Monte Carlo method was used to compute the variance of R:; from
simulated samples. It was found that for a size of 5,000, the values of E(M: %
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TABLE I: VARIANCE OF R: FOR THE CASE OF INDEPENDENT NORMAL VARTABLES

(0 =1.0)

n From approximate formula . Simulated values
4 0.3589 0.3672

6 0.5071 0.5063

8 0.6553 0.6491
10 0.8035 0.8145
15 1.1740 1.1738
20 1.5445 1.5530
25 1.9150 1.9097
30 2.2855 2.2863
35 2.5660 2.6596
40 3.0265 3.0198
45 3.3970 ) 3.3985

50 3.7675 3.7662

computed in this method were close to those computed from the exact formula of
(23), thus for each n, a sample of size equal to 5,000 was used. From the computed
values, the variance of R; was found to be approximated by the following equation:

Var(Ry) = (0.0741n + 0.0625) ¢ (25)
A comparison between the values of Var (R::) given-by (25) and those computed from
simulated samples is shown in Table I for the case ¢ = 1.0. It should be noted that
for n approaching infinity, Var (Rn) given by (25) approaches 0.0741n.0%,  the asymp-
totic value given by Feller3.

Third and Fourth Moments of M: and m:

The third and fourth moments of M; and m; can be shown to be given by
EM5Y) = -E(my) = (4m)~*72 ¢° (26)

and E(M,Y) = E(m>Y) = 30* /3. ' e
For n > 3, the Monte Carlo method was used to compute the third and fourth
moments of Mz. - The computed values of these moments can be approximated by
¢3 = 0.03077 (n-1)"**"2¢g° (28)

and ¢4 = 0.05923 (n-1)"*"% ¢* (29)
where p3 and 4 denote the third and fourth central moments of M:, respectively. The
constants in (28) and (29) were obtained by means of the non-linear least squares
method. It should be noted that (28) and (29) also apply to the third and fourth

¥*
central moments of —m,. A comparison between the simulated values and the values
computed from the approximate formulas for these moments is made in Table II._
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TABLE II: THIRD AND FOURTH CENTRAL MOMENTS OF M:FOR THE
CASE OF INDEPENDENT NORMAL VARIABLES (0 = 1.0)

s Hy
n Approximate Simulated Approximate Simulated
formula values formula values

4 0.14899 0.14481 0.47743 0.47922

6 0.31023 0.32797 1.25994 1.23965

8 0.50290 0.54035 2.38750 2.39696
10 0.72142 0.73380 3.84841 3.83481
15 1.36044 1.38171 8.90832 8.89604
20 2.10908 2.09347 15.91265 15.86346
25 2.94956 2.94701 24.80150 24.83179
30 3.87039 3.86099 35.50378 35.52419
35 4.86336 4.87649 48.06576 48.07655
40 5.92222 5.90418 62.37755 62.36756
45 7.04204 7.03930 78.44182 78.46499
50 8.21882 8.20401 96.23752 96.19436

Distribution of M:
Having obtained the first four moments of M:, the moments ratios By, B> and
the Pearson criterion &£ can be computed fiom the equations
By = #3lr
Ba = ralts
By (By + 3)°
428 - 3B - 6) (482 — 38

where #,, r = 2, 3, 4 are the rth central moments of the random variable.

and

The results are listed in Table III. For these values of By, B, and «, the
most *appropriate frequency curve to be selected in approximating the distribution
of M, is the Type I curve of the Pearson system'®!!. The general equation of the
Type I curve, also referred to as the beta distribution, is

TABLE III: NUMERICAL VALUES OF THE MOMENT RATIOS AND OF THE PEARSON

CRITERION
n B ) K
5 0.34649 2.96955 ~0.25882
10 0.42126 3.34278 —0.60521
15 0.44183 3.42851 —0.78652
20 0.44789 3.44436 —0.82205
25 0.44872 3.43680 —0.79315
30 0.44735 3.42036 —0.74523
35 0.44501 3.40050 ~0.69571
40 0.44225 3.37960 —0.65032
45 0.43933 3.35879 ~0.61042

50 0.43638 3.33846 —0.57559
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pl-P—a

f(x) = m (a; + x)P~1 (a3 - x99, a; <x < ap (30)
where P, q = two parameters,

aj, a3 = two terminals,

b = aj + ay,

and B(p, q) is the beta function of p, q, defined by
1 5 _
B(p,q) = f 7?7 de
o

Among the three cases listed by Pearson and Johnson!?, only the first can apply. For
this, the procedure of determining p, q, a; and aj is as follows. Letting
. 6(By— B+ 1)
T 381-282+6

72

4+ + B (r+ 2T+ 1)
it can be shown that T = p+q and & = pq, so that p and q are the roots of the
quadratic

ZZ-tZ+e=0 31

e =

In this case #3 > 0, p is then the smaller or the two roots. The value of b
can be expressed’! as

b = ey (v + /el (32)
Locating the origin of the coordinates at the mode of the frequency curve allows
a; and aj to be determined from

i . b __b

p-1 = gq-1 T p+q-2 T -2
The determination of p and q from (31) and a; and a; from (33) constitutes the

process of fitting the distribution of M: The fitted curve can be located using the
knowledge that the distance from the mode to the mean (expected value) is deter-
mined by

bp

9= 5ig
For any value of n, the distance § from the start of the curve to the mean, bq/(p+q), is
quarter than the expected value ¥; = E(M:) of M:. This implies that the frequency
curve starts at a point to the left of the initial or zero level (Fig. 2). The area
under the curve between the start —a; and the initial level X, = d-v; then repre-
sents the probability mass of the adjusted surplus at zero:

Pr = Prob (M;'E1 =0 =I, (pq) = _ﬁi.q_) J' ::0 tp~l (1—t)‘1‘l dt  (35)

(33)

-2 (34)

ag + Xo

b (36)

where Xo =
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Fig. 2. Graphical representation of symbols used in describing the distribution of Mfl,
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The integral Iy  (p,q) is the incomplete beta function which was tabulated
and first edited by Karl Pearson in 1954 (see Ref. 12). With the origin at the inital
level, the probability density function of M, is deduced from (30) as

fix) =C) + x)P1(ay - x9 0 <x € a} (37)
S bl-P-a
in which C = m

aj = aj] + X

aj = az + Xq

At zero, Mz has a probability mass given by (35). Table IV lists the values of the
parameters and other related constants describing the distribution of M:.

TABLE IV: CHARACTERISTICS OF THE DISTRIBUTION OF THE ADJUSTED SURPLUS
FOR INDEPENDENT NORMAL VARIABLES (¢ =1.0)

n 10 20 30 40 50

p 3.84795 4.32210 4,09144 3.81221 3.57050
q 16.09100 22.00731 19.52161 16.66923 14.48116
b 12.01064 20.69107 23.53264 24.68230 25.39018
a, 1.90678 2.82529 3.36601 3.75575 4.06586
a, 10.10385 17.86577 20.16661 20.92653 21.32420
) 0.41111 0.57124 0.71150 0.83836 0.95605
C 0.43544 X 10716 0.44539x 10728  0.36867x10~%% 096788 x10™2%  0.58324 X 1020
X, —0.98377 —1.64657 —2.13685 —2.54132 —2.89154
Xo 0.07685 0.05697 0.05223 0.04920 0.04625
Pr 0.06430 0.03459 0.02441 0.01893 0.01535
a 0.92301 1.17872 1.22916 1.21443 1.17431
a, 11.08762 19.51233 22.30345 23.46783 24.21585

TABLE V: COMPUTED VALUES OF X2

n 10 20 30 40 50

X1 23.682 16.722 16.117 25.189 31.872

Finally, a Chi-square test of goodness of fit was used. The computed values
of the Chi-square statistic shown in Table V, indicate that fitting the distribution
¥*
of M, by the Type I curve is acceptable.

Distribution of my

. - * . . .
For normal variables, the random variable —m, has the same distribution as
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V(Rp)
05 |-
04 |
03
02}
ol +
Rh
0 H
(o] 16
Fig. 3. Approximate probability density functions of R;’; for n=10 (10) 50
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M;; consequently the distribution of m, can be readily deduced from that of M:
Thus m: has a probability mass at zero and a probability density function g defined
as follows: R

Prob (mp) = Iy, (p.Q)

g(m:) = f(—m:;), -a) < m: <0
in which I (p,q) and f are given by (35) and (37), respectively.

Distribution of R,

Following suggestion of Sutabutr®, the Type III curve was used to fit the distri-

* .. *
bution of R;. From the definition, Ry, > 0, the two-parameter Pearson Type III curve,
which is commonly known as the two-parameter gamma distribution, can be used.

The probability density function of R; is then written as:
*

H(Rp) = ﬂ'“(R,ﬁ)“"e'R“" 4 /T(@), Ry = 0 (38)
where [(a) denotes the gamma function of «. The two parameters « and S are
determined from the expected value and variance of R,: by

a = [ER)T [Var (R})

B = Var (Rp) [E(Rp)

TABLE VI: RESULTS FROM FITTING THE DISTRIBUTION OF R:

n a B x?
10 9.68608 0.28802 5.267
20 12.73857 0.34820 5.785
30 14.19927 0.40120 17.129
40 15.09630 0.44775 9.818
50 05.71841 0.48958 16.351

NOTES: Significance level = 0.05
Number of degrees of freedom = 29
Critical value = 42.557
Sample size used = 1,000

Numerical values of these parameters given in Table VI. Also shown in Table
VI are the computed values of the Chi-squre statistic at various n. These values
indicate the acceptability of the fitting. The approximate probability density func-
tions of R: for n = 10(10)50 are shown in Fig. 3 for the case ¢ = 1.0.

Summary and Conclusions

For a reservoir allowing neither spillage nor emptiness during its design life-
time of n years where the outflows in different years are equal to the sample mean
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over n years of the annual inflows, the storage capacity was found to be optimally
equal to the adjusted range. Under the above conditions, the adjusted partial sum,
the adjusted surplus and the adjusted deficit represent the water content of the re-
servoir, the maximum amount of water in surplus, and the maximum amount of
water in deficit, respectively. For the case where the inflows are distributed as in-
dependent normal variables, the water contents in different years were found to be
distributed as normal variables; the maximum amount of water in surplus or in deficit
was found to have a probability mass at zero and a probability density function else-
where, which was fitted by the Type I curve; and the storage capacity was found to
be fitted by the Type III curve.

List of Symbols

The following symbols have been used in this paper:

ag, az = terminal of the beta distribution;

aj, as = terminals of the distribution of the adjusted surplus;

b = distance between two terminals of the beta distribution;

B(p,q) = beta function of p and gq;

C = constant in the distribution of the adjusted surplus;

Cov (.,.) = covariance;

E(.) = expected value;

f = probability density function of the adjusted surplus;

g = probability density function of the adjusted deficit;

Iy, (p:@) = incomplete beta function of p and q;

m: = adjusted deficit (maximum amount of water in deficit over n
years);

M: = adjusted surplus (maximum amount of water in surplus over
n years);

n = reservoir lifetime in years;

oX¢| = parameters of the beta distribution;

Pr = probability mass at zero;

R: = adjusted range (reservoir storage capacity);

S; = partial sum;

ST = adjusted partial sum (water content in the ith year);

U; = maximum of adjusted partial sums;

Vi = positive part of S:;

Var(.) = variance;

Wi = negative part of ST;

Xk = annual inflow in year k;

Xn = sample mean;



J. Sci. Soc. Thailand, 5 (1979) 87

Yk = net input in year k;
a = shape parameter of the gamma distribution;
B = scale parameter of the gamma distribution;
B, B> = moment ratios;
() = gamma function;
0 = distance from the mode to the mean of the beta distribution;
e = P%
K = Pearson criterion;
© = mean of normal variables;
e = central moment of order r;
¢ = probability density function of R;;
o = standard deviation of normal variables;
T = p+q.
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