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Summary

Using the Anderson Hamiltonian with an additional term for the electron-phonon
coupling between the d-electrons to describe the d-band superconductors, the s-electron
current density is calculated by the Green’s function method. It is shown that the
s-electron current density is proportional to a vector potential and is therefore part of
the supercurrent.

I. Introduction

The band structures of the transition-metals (TM) are characterized by the
appearance of a broad s-band and a narrow d-band.! At the Fermi energy, the
density of states of the d-band is much greater than that of the s-band. The s-band
is composed of free electrons which are described by plane wave functions while the
d-band is composed of electrons which are localized about the lattice sites and which
are therefore best described by Wannier functions or d-electron orbitals. Because
the s-electrons are free to move through the metal while the d-electrons are not,
most models? for the electrical conduction in the transition-metals have the s-electrons
as the carriers of the current. Webb® has measured the low temperature behavior
of the resistivity of a very pure niobium wire and has seen temperatures behaviors
which are consistent with Mott’s two band model for electrical conduction in the
transition metals. In Mott’s model, the electric current is carried mainly by the
s-electrons. The main role of the d-band is that of providing a sea into which the
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s-electrons can be scatterred. The existence of this type of scattering process leads
to a T® temperature dependence in the resistivity which was seen by Webb.

It is generally accepted that the mechanism most likely responsible for super-
conductivity is the electron phonon interaction between pairs of electrons having
opposite spins.* Therefore, the mechanism for superconductivity in the pure tran-
sition-metals should be the electron-phonon interaction between d-electron pairs since
they are localized about the nuclei located on the lattice sites and would therefore
be affected by the motion of the nuclei more than the freely moving s-electrons.
Theories® based on this assumption have been worked out and appear to be able to
explain many of the observed thermodynamical properties of the pure TM super-
conductors. In these d-band theories of superconductivity, the electric current and
the other transport currents are carried by the BCS pairs formed by the d-electrons
when the transition metals go into the superconducting phase. One would therefore
expect that the transport currents would show an abrupt change at the critical
temperature T since the s-electrons are the carriers when the transition metals are
in the normal phase, while the d-electrons are the carriers when the transition metals
are in the superconducting phase. However, the observed behavior of the transport
currents® show the changes to be continuous at T.. This points to the likelihood that
the same set of electrons are the transport carriers in both the normal and super-
conducting phases.

The purpose of this paper is to show that in the transition-metals having
some overlap of the s-and d-band (most of the transition-metals fall into this
category), the electric current composed of s-electrons goes into the supercurrent
state even though the mechanism for superconductivity in the pure transition metals
is the BCS electron phonon interaction between d-electrons. We shall show that
the quantum mechanical expression for the s-band electrical current density leads to
a current density proportional to a vector potential A when the d-electrons start to
form BCS pairs. We will then show that a current density which is proportional
to the vector potential is a supercurrent, i.e. a current which exist even when there
is no applied voltage across the metal.

II. Green’s Functions

The double-time retarded temperature dependent Green'’s function is defined as’

KAWMj B> = —i 0t-t) <A, B&OP
(I1.1)

where the operators A(t) and B(t") are products of creation and destruction
operators of Fermion particles or fields in the generalized Heisenberg representation;
0(t—t") is the Heaviside step function; <........ > denotes a grand canonical ensemble
average and { ......... } indicates an anti-commutation of the two operators. Since the
time derivative of the step function is a delta function, we find that the derivative
with respect to the time t of the above function leads to the differential equation
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i <AD; B> = 8—t) <{A®, BH)} + <A, HI; BE)>
(I1.2)

where the commutation between the operator A (t) and the Hamiltonian of the
system of particles arises because

.d At)
1

(I1.3)
in the Heisenberg representation. The reason for calling (II.1) a Green’s function
is that eq. (IL.2) is called the ‘“‘Green’s differential equation”.

If we now introduce the Fourier transform of the Green’s function and

€A; B>, = zl—rj' KA®); B> @t q(et)

(IL.4)
substitute it into Green’s differential equation, we obtain the algebraic equation

wgA; BY, = == <{A, B}> + <[A, H]; B>,
(1L.5)

In general, the commutation of the operator A (t) with the Hamiltonian will produce
a new operator C (t) which will be a polynomial in the creation and destruction
operators of a higher order than the operator A (t). Therefore, the equation for
the Green’s function €A; B> requires that a second Green’s function €C; B>y be
known. However, the equation defining this second Green’s function requires that a
third function be known; the third function requires a fourth to be known and so
on. Thus a hierarchy of coupled equations connecting the Green’s functions of
higher order is obtained.

In order that a “closed form” Green’s function be obtainable, one usually
introduces at some point an approximation which will trunicate the hierarchy of
equations. To trunicate the hierarchy of equations arising in our study, we have
used the Hartree Fock approximation.®

ATBTCD = <A*B*> CD + <CD> A+B* — <A*C> BTD - <BtD> A*C

(1I1.6)

The above approximation is used to treat both the BCS term and the coulomb repulsion

term appearing in the Hamiltonian used in this study. The Hartree Fock treatment

of the BCS term leads® to the same results as those obtained in the original theory

of superconductivity of BCS.* The Hartree Fock treatment of the coulomb term has

been shown? to be equivalent to the neglect of correlations between electrons of

opposite spins. The approximation has also been used to treat both terms simul-
taneously'® in the study of transition metal impurities in simple superconductors.
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II1. Transition Metal Hamiltonian

As was mentioned in the Introduction, there are two or more groups of electrons
(i.e., s, d and f electrons) present in the transition metals. One of these groups,
the s-electrons, behave like free electrons while the others are localized about the nuclei
located at the lattice sites. Anderson has introduced a model Hamiltonian,'' which
takes into account the presence of both free electron states and localized states.
Included in his Hamiltonian are terms for the hybridization of the conduction electrons
with localized d electrons and for the coulomb interaction between electrons of opposite
spins occupying the localized orbital state. While the model proposed by Anderson
was intended for the study of the occurrence of a localized magnetic moments on
iron-group atoms which are dissolved as dilute impurities in nonmagnetic metal, it
contains the essential features of the narrow d-band transition metals.

In its simplest form, the Anderson model is described by the Hamiltonian

+ + +
H = 3 & Cxg Cig + 3 Ejdjg djg + 3 Vij Cig djg
k,o 5o ik,0o

+2VJdeO-Ck0+%U2dﬂdﬂd dj.g
k.o j,o
(ITL.1)
where ¢ labels the spin orientation; Cka and cyy are the creation and destructlon
operators for a s-electrons of momentum k, respectively, and &¢ is its energy; d_,o-
and dj; are the creation and destruction operators for a d-orbital electron or
Wannier function, respectively, and E; is its energy. The last three terms are the
hybridization terms and the coulomb repulsion term. If we now carry out the
Hartree Fock approximation (II.6), we get

H = 3 & Ciy Ckg + S (Bj+ U<ng>) diy dig
k.o io

+,k2 (Vij Ci& dig + Vi dig Cya) - 3 Ag 3 dig dig
J' !a j

*
- i‘ Ad 2 dj-o' ng'
J

(I11.2)
where
Ad = -U <dj_g djg'>
(I11.3)

is the fluctuation due to the coulomb repulsion. As was mentioned in the Section
II, the Hartree Fock approximation leads to an overestimate of the effect of the
Coulomb correlation energy, U, on the production of a localized magnetic moment.
Since the occurrence of a localized magnetic moment precludes the possiblility of
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superconductivity and since we are only interested in those transition metals which
can go superconducting, the criterion for the occurrence of the localized magnetic
moment will not be met in the transition metals we are interested and therefore
should not be of any concern to this study.

Most of the recent theories of superconductivity in the transition metals® 12
assume that superconductivity in these metals arises from the virtual exchange of
phonons between the d-electrons. Appel and Kohn® have shown that the vertex func-
tion constructed with Wannier function representation of the d-orbital electrons exhibit
the singularities which indicate an instability against the formation of Cooper pairs.'3
Bennermann and Garland'? have shown that the electron-phonon matrix element
between localized d-orbitals leads to an expression for the critical temperature which
allows for the variation in T, seen in three transition metal series. They have also
shown that the McMillan equation,'* which is based on the virtual exchange of the
phonons between the d-electrons, can explain the pressure dependence of the transition
temperatures seen in the transition metal superconductors. With the above in mind,
we add to the Anderson Hamiltonian, the term

+ 4+
- %83 djg dj-¢ dm-0 Imo
m,0
(I11.4)
where g is the strength of the electron-phonon interaction between d-orbitals located
on the j-th and m-th site and is taken to be the electron-phonon coupling constant
in McMillan’s work. We have called (II1.4) Hpcg since it is similar to the term
in the BCS theory which leads to the formation of Cooper pairs in simple metal
superconductors.

Applying the Hartree Fock approximation to eq. (III.4), we obtain the
following Hamiltonian.

H = I g Ck$ Co + 3 (Ej + V<ng>) dj}'} djg
k,0 jo

+ *
+_l>(;0(vkj Cxg dig + Vi dig Cxg)
Jl »

! *
- i’% (Ag dj-g dig + Ag dig djg)
J’
(IIL.5)
where

Ag = 8 %_<dj—0' djg> + Ag
j

(I11.6)
For the reasons we have mentioned previously, the above Hamiltonian (I11.5) should
be a fairly good description of the superconducting phase of the transition metals.
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1V. Self-Consistent Solutions.

To obtain the Green’s functions or propagators for the s-electrons, the com-
mutations of the four operators ckg, Cko> dj’g and djg with the Hamiltonian must

be evaluated. Using the relationship

(A, BC] = {A, Bjc - B{aA, ¢}
(IV.1)

where [ ] denotes the commutation and { }, the anticommutation, we obtain

(G H] = - Cg - 3 Vi i
’ (IV.2a)
[Ckg, Hl = & Cyg + 2 Vi dig,
! (IV.2b)
[dig, H) = (Bj + U<ng>) djg - Ag dj-g + 3 Vij Cioy
1 (IV.2¢)
and
[dj-, H} = - (Bj + U<ng>) dj-¢ — Ag djg - 3 V3 G-
l (IV.2d)

where Ag = Ao + Ag. Substituting the commutation relations (IV.2a) and (IV.2b)
into the algebraic equations (IL.5) for the Green’s function G(k, k'), we get

Gk, k) = 3z Golk) S + 3 Golk) Vik, §) KiG, k)
J

(IV.3)
where the matrices G(k, k'), Go(k), V(k, j) and M(j, k) are defined as
. &Cyo; Cue> «Cxg; Cx'-g>
LCk-g; Ckg»> <KCk-g; Cy-0>

(IV.4)

N @ — g (9]

Golk, k) = ( )

° 0] €+ wy

(IV.5)

. Vik o
V(kj) = *
0} ~ V_gj

(IV.6)
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and
<djg; Ck$>> Ldjg; Ck-o> )

MG, k) = (
dj-g; Cg>  <dj-gs Cogg>
(IV.7)

The matrix Green’s function M(j, k) is obtained by substituting the commu-
tation relations (IV.2c) and (IV.2d) into the algebraic equation (IL.5) for M(j, k).
The results of these substitutions is the new matrix equation

MG MG, & = S viG »n 6@, k) -
(IV.8)
where
o — Ej - U<ng> Ag . )

(NI = ( .
N Ag ® + E; + U<ng>
(IV.9)

where ¥7(, j) is the complex conjugate of the matrix (IV.6). Substituting the
matrix equation (IV.3) into the matrix equation (IV.8) we obtain

PO MG O = & V16 0 Gl + > | V17 Gotd 10, K.
, ) ) J
L . ' (IV.10)

To obtain the above, we have used the fact that V(l, j) and Gy(l) commute with
each other since they are both diagonal matrices. Substituting the matrix equation
(IV.10) into the equation (IV.3), we get

Bk k) = % Bo S + 3 Gol) Vikik Mo VT ok

+ 3 Go) Vg Mol 3 3 | Vip|* God Me(i) VL5 Golk)
¥i 1

+ higher order terms
{Iv.11)

where
M = M1 - 3 |V, * Gotw.
1
’ (IV.12)
The matrix equation (IV.11) can be rewritten in the form of a Dyson equation

B T = Bl = Tk, K)
(IV.13)



110 J. Sci. Soc. Thailand, 2 (1976)

where 7(k, k') is the energy correction

Tk, k) = =3 V) Mo(i) V4G, K.
j .

(IV.14)
Letting M,,, M,,, M,, and M,, be the elements of M,(j), i.e.,
0 ( 1 M,,
o.l M, - M,,
(IV.15)
the energy correction matrix is
*
[Vigl* My = Vg Vi My,
7k, k) = 2 \
= Vij Vijx My lv—kjl M
(IV.16)

Substituting (IV.16) into (IV.13), we find that the inverse of the matrix Green’s
function G(k, k') is

A 1 ® — g — %r 2 lej‘2 M, %r 2 |ij|2 M,,
[k, W] = o 7 :
2—71'2.|ij|le o + sk—z,—rZIij| M
J j
(IvV.17)
where we have assumed i\’kj = Vik j Inverting (IV.17), we get
é(k k) 1 (w L 2% 2 |Vk1‘2 M,, - 2177.' 2 lvkjlz M,, )
s X) = pet g1 J J
—;—WZ|VkJ'|2 M,, w‘”k"%:Zlejlz M,
J i
(IV.18)
where
det 67! = (0 — g — o= b lvkj| M) (@ + g — S Iijlz M,,)
J j
1 2 2
- oz 2 [Vigl® [Vig|* My My,
ji :
(IV.19)
Since
@~ Ej - U<og> -3 Myl Ag
M)T™ = ( )
i 2 0B+ Uoo> -3 0

(IV.20)
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we find that
@ + E; + U<ng> - 2 Iv"l
Mll = — W+
det [Mo]™
R (IV.21a)
.M _ Ag
a = det [Mo] ™"
(IV.21b)
- Ag
M = A
2 det [Mg] ™
(IV.21c)
and
[Vy]?
o - Ej - U<ng> ~ 2 Ml
Mzz = w+e
det [M]*
(IV.21d)
where
IS |v1|
det (M5 = (w + Ej + U<ng> - 2 ey
V.
(w - Ej — U<ng> - 21: [wf IAglz
(Iv.22)

By assuming that Vj is a constant and by replacing the summation over Tby an
integration over d°l, the above eqns. (IV.21a) to {IV.21d) become

w4+ B
M =
11 w2 _ BZ _ Aé
(IV.23a)
*
- Ag
M, = /77
12 w2 _ BZ _ A;
(IV.23b)
- D,
M, = ]|/
21 wZ _ B2 _ A;
(IV.23c)
o — B
M, = —/———
22 (.D2 _ BZ _ A;
(IV.23d)
where
2mPp V2| o - wp
B = Ej+ U<ng> + 3— in
(2m)° © 4+ wp
(IV.24)

Because the integral diverges, a cutoff at the Debye frequency has been introduced.
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V. Response Kernel

Starting with the quantum mechanical expression for the current density
operator in the second quantized representation
. 2 =
- _ 1e , o0 _ C" Alx) 5+ A
i® = 5= [Vx Vx.'lx_)x, 9T (x) ¢(x) — ¢ ) $x)
' (V.1)
where ¢+(x) and ¢(x) are the particle field operators for the s-electrons, it can be

easily shown that the above expression leads to the following expression for the
fourier transformed current density

25T

W) == o m

5 3 | ¢ BB Aw0] {Mw(m)wa,(p_) .3 <r>+>3w<p_>} _Ne A(k)
(V.2)

where p+ = p £ %k and #,,(p) and 3,(p) are the continuations of the Green’s
functions <Cpg; Cpg'>w and «Cpg; C_p-g>,, respectively, into the complex @
plane. Procceeding in a manner similar to that of section 37.1 of reference 8, we
find that for our model, the response kernel for the s-electron current density is
given by .

3T o sy an £ NV A2 g %0)
QW = 3 [’ dULde et G, Dot GI_

where V3
[DetGly = (- ey — ;L: I M) G2 - ;’_; IMe) - NV 4] ¢
with (V4
g = g 3 Vk
glio) = - (&® + B 4+ A)).
(V.5)

The integrand of eqn. (V.3) has four singularities in the complex plane. They
are located at

NVZ B

! 27t(m2+B2+A§) b vkf + o 1A+
(V.6a)
NVZ B .
e, = -3 vkB + iWe? + [A'}R + C?
o0 (V.6b)

NV'B . o s
27 (@® + B + A§)+%Vkﬁ+u/w +1aTF+C

(V.6¢c)
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and
NVZ B .
e, = + % vkf - iVw? + (AR + C?
4 (@ + B+ AD f-i 18]
(V.6d)
where
2 2
’ IA’lz b]2 V Ag
o + B® 4+ Aé
v.7
. NV? o N? v*
C =—71'((02+Bz+Aé)—471'2(a’2+B2+Aé)z
(V.8)

and where B is the cosine of the angle between k and v. The singularities, €, and
g, lie in the upper half of the complex & plane, while the singularities, e, and e,
lie in the lower half plane. Converting the & integration from — oo t0 + ¢ into
a line integration over a closed contour enclosing the upper half plane, we get

NV Ag g7%(iw)
sz + IA'IZ + CZ (ng_z +w2+ |A1l2+cz)'

7
Qk) = ¥ T 3|sin® dg
8
w *o
(V.9)

Since most of the transition metal superconductors are type-II or London
superconductors, the integration over the angle 0 gives

N2V4 A2
, , 2
@ +B+ AD* @ +|A) i

T
QW = XT5S f sin®0 do
@

(V.10)

. : 2
In order that the summation may be done, we shall assume that B> v 2’ NV

With this assumption, we may neglect the C? term appearing in the denomlnator
of (V.10). Close to the critical temperature, the Ag and IA | terms appearing in
the denominator may also be neglected. Therefore, close to T, the response kernel is

K = INV:AMS ——
Q(k) 3 Dg ?,:, @ + B &

v (V.11)
If we assume that B® is very small, the summation over @ = (2n + 1)xT gives

QW = ( )(Ag) ¢ o
(V.12)
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where £( ) is the Riemann Zeta function. However, if we assume that BZ is large,
the summation over @ gives

aw = () (A9’ <o

In both cases, the response kernel is independent of k. Therefore, if we take
the fourier inverse of

(V.13)

Fx) Qk) A(K),

(V.14)
we get
J() = Constant Alr)
(V.15)

where the constant is (V.12) if B’ is small and is (V.13) if B? is large.

V1. Supercurrent

In Section V., we showed that the s-electron current density in a d-band
superconductor is proportional to a vector potent1a1 A(x). In one of the first
theoretical studies of superconductivity, London!> showed that if a current is pro-
portional to a vector potential, the current is a supercurrent, i.e., the current can
exist without there being an applied voltage (or an electric field present). We shall
now repeat his argument and show that the s-electron current density, eqn. (V.15)
is a supercurrent.

We being by noting that both the local magnetic field h and local electric
field € are related to the vector potential via

hje = - curl A
(VL.1a)
and
- 1 0A
€e = ¢ -a—t-
(VI.1b)

Since the s-electron current density js (eqn. (V.15)) is proportional to the vector
potential, we get the two London relations

o=l

= —curlA:i-;

(VL.2)
and

ol

é -
= é—t A ]s
(VL.3)



J. Sci. Soc. Thailand, 2 (1976) 115

where A = Q* (where Q is given by either eqn. (V.12) or eqn. (V.13)). Introducing
the total current demsity as the sum of the currents formed by the s-electrons
which form mto BCS pairs and by the s-electrons which remain in the normal
state, mel = js + _]n, we can write down the following to Maxwell equations

- 47 - 4+ 1 3B
curl h = o ol 3 3¢
(VL.4a)
and
curl € = - 1 ?E
u = c at’
(VI.4b)
Taking the curl of eqn. (IV.4b), we obtain
C* curl curl & + 47 2 jom + 5& = O
ur at Jtotal atz - .
(VL5)
Since j, = o € (where ¢ is the normal state conductivity) and a% js = A*
equation (VI.5) becomes
2 - —1 d az
C®curl curl € + 47 A +4‘7fa—~e+£ = O.
(VIL.6)

If we now assume that we have static conditions, then all the terms in the above
equation which involve time derivatives (this includes the first ferm in the above
equation since curl ¢ = — é g—}t‘) vanish. This leaves us with the result that € = O
inside the superconductor even though there is a current density given by eqn. (V.15)

flowing through the superconductor. Thus the s.electric current density is a super-
current.

We finally note that there will be no supercurrent in the normal metal
since Ag vanishes and Q(k) would therefore be zero.
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