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ABSTRACT: This paper presents a mathematical approach for accurately identifying the iris boundaries in photographic
pictures, specifically focusing on eye position detection. This issue is of significance for several applications, especially
in the field of eye tracking. Suppose that the detected data of the iris combined with eyelids is given. We assumed
that the shape of the detected data is represented by the boundary of a convex body composed of circular arcs that
represent the boundaries of the iris, upper eyelid, and lower eyelid. The objective is to identify the iris boundary
from generated points on the boundary of the convex body corresponding to the position of gaze. We investigate the
geometric properties of convex bodies, specifically focusing on their corners, which are non-differentiable points. An
algorithm is then established to classify points to the iris boundary or the eyelids. This is done by utilizing convex
hull and exterior angle analysis. The set of finite points around the boundary of the iris can be used to approximate
the center of the iris. The experiments were conducted using both ideally generated data and real data obtained from
photographic images of eyes.
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INTRODUCTION

The problem of detecting the desired points from
photographic images is currently being widely studied
in various fields, such as computer vision [1] and
Artificial Intelligence (AI) [2]. In this era, researchers
use advanced algorithms and machine learning models
to classify data sets, focusing on individual data points.
AI, clustering and classification techniques are used,
and ongoing research is designed to improve the ro-
bustness and scalability of the algorithm [3].

A significant application related to data point clas-
sification is gaze position detection, commonly known
as eye tracking, which is crucial to addressing various
medical problems [4]. It helps in diagnosing neurolog-
ical disorders, studying eye movements, and assessing
cognitive function [5]. In estimating gaze position,
circle fitting algorithms are widely used [6]. This
technique involves capturing an image of the eye, iden-
tifying the iris boundary, and extracting data points
from this boundary. Subsequently, these extracted data
points are used in circle-fitting algorithms to find the
best-fit circle.

Currently, many algorithms have been designed
to determine the best-fit circle for a given set of data
points. These algorithms can be classified into two
main types [7]: geometric fitting and algebraic fitting.

As compiled in the previous study [7], the study inves-
tigated the efficiency and reliability of algebraic and
geometric approaches in computational mathematics.
It found that algebraic methods can lead to calculation
problems due to numerical errors, while geometric
approaches offer more robust and efficient solutions.
Geometric algorithms are noted for their clarity, un-
derstandability, and ability to provide better approx-
imations in computations, making them a preferable
choice in certain applications. Especially for an object
with a clearly defined shape, an analysis grounded on
its precise shape would provide more accurate results.

In the case of a convex body composed of circular
arcs, in addition to the consideration of discrete data,
the exterior angle of the discrete curvature can be
used as a mathematical tool to identify the corners
of a convex body. These corner points serve as sep-
arators for classifying the datasets. Once the data
points are determined, an appropriate algorithm can
be employed to fit a circle accurately.

The main purpose of this study is to identify the
boundary of the iris by generating points on a con-
vex body made up of circular arcs. The modeling
assumptions are based on gaze positions, as detailed
in the study [8]. We mathematically investigate the
geometric properties of the convex body, focusing on
its corners, which are referred to as non-differentiable

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2025.s021
http://www.scienceasia.org/
mailto:AsamaCMU@gmail.com
www.scienceasia.org


2 ScienceAsia 51S (2): 2025: ID 2025s021

points. Next, we compute the convex hull of the points
on the convex body to analyze the behavior of the
exterior angles. Finally, we classify the data points on
the convex hull using statistical criteria to extract the
desired data, which is then used to fit a circle to both
ideally generated and real-world data points.

PRELIMINARIES

In this study, we focus on the analysis of geometric
shapes, including fundamental aspects of convex poly-
gons and computations that involve polygons, convex
sets, and convex hulls. Additionally, we explore the
geometric properties for detecting non-differentiable
points of a convex body together with the problem
formulation.

Basic concepts in geometry

The primitive object in discrete and computational
geometry is a polygon, a region on a plane enclosed
by a finite collection of line segments, which forms a
simple closed curve. We define a subset S of the plane
as convex if, for any two points x and y within S, the
line segment x y that connects them entirely within S.
Especially in the case of convex polygon, we consider
that it is a polygon whose each internal angle is at most
π. Essentially, the vertices of a convex polygon extend
outward, with no sides pointing inward.

If the set S is given, we find the convex hull of
S, the smallest convex set that contains S, denoted
as CH (S). It can be seen as the intersection of all
convex sets that cover S. For a given finite point set S,
various algorithms compute the convex hull of S, such
as Graham’s scan algorithm [9] and the divide-and-
conquer algorithm [10]. It is notable that the lower
bound of complexity for computing a convex hull is
proved to beΩ(n log n), where n is the number of given
points. The result of computing the convex hull of S is
a convex polygon containing S.

The relationship between interior and exterior an-
gles begins with the concept of an interior angle, which
is formed by two sides of a polygon sharing a common
vertex. In the case of a triangle, there are three interior
angles, and their measures sum to 180◦. The sum of
the measures of the interior angles of a convex polygon
with n sides is (n−2)180◦.

On the other hand, an exterior angle is formed
by extending one side of a polygon and considering
the angle between this extension and an adjacent
side. The exterior angles form linear pairs with their
corresponding interior angles. Furthermore, a remote
interior angle is an interior angle that is not adjacent
to the exterior angle.

In this study, we focus on the exterior angle of
a vertex of a convex polygon in terms of discrete
curvature. Let P be a convex polygon in R2 with
vertices v1, v2, . . . , vn such that vi = (x i , yi), where n
is the number of vertices of the convex polygon and
assume vn = v0 and vn+1 = v1. At each vertex vi ,

the exterior angle θi is defined as the angle between

consecutive tangent vectors
−→
T i−1 and

−→
T i:

θi = arccos
�−→

T i−1 ·
−→
T i

�

, (1)

where the unit tangent vector at vertex vi is denoted by
−→
T i :=

−→e i

∥−→e i∥
= vi+1−vi
∥vi+1−vi∥

for i = 1, 2, . . . , n, and the vector
−→e i := vi+1 − vi denotes the edge vector from vertex vi
and vi+1.

Modeling assumptions

The aim of this study is to find the best fit circle that
satisfies the shape of the iris boundary, as shown in
Fig. 1 (left).

Based on the observation of the previous study [8],
there are nine positions of gaze as illustrated in Fig. 2.

To simplify this problem, we consider the recog-
nized shape as a convex body composed of circular
arcs, as shown in Fig. 2. We assume that the circle
can be truncated to a maximum of three curves: C1,
C2, and C3. Based on gaze positions, we categorize
the data patterns into four distinct groups, as shown
in Fig. 3. Each group represents a pattern of gaze
behavior observed in our study.

For the assumed shape, the different curves are
composed of the boundary of a convex body, and non-
differentiable points, which are the corners of the con-
vex body, are recognized. We aim to obtain the circle
of the curve C1 whose radius is minimum, that is, C1
has the largest curvature. In practice, the information
obtained from the real world would be discrete data.
Therefore, we propose a deterministic algorithm to
detect the corner points of the approximated convex
shape to obtain the iris circle, both the center and the
radius.

PROPERTIES OF CONVEX BODIES GENERATED BY
CIRCULAR ARCS

In this section, we will explore how convex bodies
are formed and investigate the properties of non-
differentiable points on the boundary of a convex body,
where the boundary is not a smooth curve.

Construction of convex body

We assume that the ideally generated data are pro-
duced on the convex body formed by the composition
of circular arcs. Based on the modeling assumptions,
the selection of the upper and lower eyelids would be
circular arcs with a larger circle compared to the curve
of the iris circle. Additionally, the center of the iris
circle would be located in the region bounded by those
curves. In the examples shown in Table 1, the radius
of the iris circle is chosen as r = 1, while the radii of
the circles of the upper and lower eyelids are r = 2

p
2,

except in case (e) on the left, where the radius of the
upper and lower eyelid circles is r = 3.

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 51S (2): 2025: ID 2025s021 3

Fig. 1 Modeling procedure in this study: (left) an eye captured; (center) a model of the eye captured in geometric pattern;
(right) the shape of convex body based on the position of circle of iris and curve C2. The illuminated boundary represents the
considered boundary of the convex body.

Table 1 An example of choosing the positions of the center in parts of convex bodies: the circle of the iris, the curve of the
circle of the upper eyelid, the curve of the circle of the lower eyelid. Left and right indicate the sub-case of each gaze.

Gaze position in Circle of the circular arc Circle of the circular arc Circle of the circular arc

Fig. 2 of iris of upper eyelid of lower eyelid

left right left right left right

(a) (−1.1,0.4) (−1,
p

7−2) (0,−2) (0,−2) (0,2) (0, 2)
(b) (0, 2

p
2−2) (0, 3−2

p
2) (0,−2) (0,−2) (0,2) (0, 2)

(c) (1,
p

7−2) (1.1,0.4) (0,−2) (0,−2) (0,2) (0, 2)
(d) (−2,0) (−0.75,0) (0,−2) (0,−2) (0,2) (0, 2)
(e) (0, 0) (0, 0) (0,−2) (0,−2) (0,2) (0, 2)
(f) (0.75,0) (2, 0) (0,−2) (0,−2) (0,2) (0, 2)
(g) (−1.1,−0.4) (−1,−(

p
7−2)) (0,−2) (0,−2) (0,2) (0, 2)

(h) (0,−(2
p

2−2)) (0,−(3−2
p

2)) (0,−2) (0,−2) (0,2) (0, 2)
(i) (1,−(

p
7−2)) (1.1,−0.4) (0,−2) (0,−2) (0,2) (0, 2)

(a) Right upward (b) Straight up

(c) Left upward

(d) Straight to right (e) Straight ahead

(f) Straight to left

(g) Right downward (h) Straight down

(i) Left downward

Fig. 2 The nine positions of gaze analyzed in this study.

Investigation on properties of non-differentiable
points

We have assumed that a convex body is composed of
distinct circular arcs with different circle radii. The

(a) The circle of iris is not trun-
cated by C2 and C3.

(b) The circle of iris is trun-
cated by either C2 or C3.

(c) The circle of iris is trun-
cated by C2 and C3, where C2
is connected to C3.

(d) The circle of the iris is trun-
cated by C2 and C3, where C2
is not connected to C3.

Fig. 3 Four distinct gaze behavior patterns based on trunca-
tion of the iris circle.

corner of the convex body is recognized as the non-
differentiable point p that joins two curves Ci and C j ,
as shown in Fig. 4.

To consider some discrete points on these curves,
we assume that there are k1 vertices v1,1, v1,2, . . . , v1,k1

on the curve C1 sorted clockwise and k2 vertices
v2,1, v2,2, . . . , v2,k2

, also sorted counterclockwise. Ad-
ditionally, a point p is the vertex that joins these
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interior angle

Fig. 4 An example of a convex body composed of circular
arcs C1 and C2 used for the proof of Theorem 1.

two sequences, which is known to be the non-
differentiable point of the two curves (or the cor-
ner of the convex body). Remark that each point
in the pair of those vertices v1,i and v1,i+1, and v2,i
and v2,i+1 has the same distance on each curve C1
and C2 with arc length l, where l is chosen suffi-
ciently small. We then define a finite sequence of
data points on the boundary of convex body as Cs =
{v1,k1

, v1,k1−1, . . . , v1,1, p, v2,1, v2,2, . . . , v2,k2
}. From the

sequence Cs, we can derive the corresponding se-
quence of exterior angles:

θs = {θ1,k1
,θ1,k1−1, . . . ,θ1,1,θp,θ2,1,θ2,2, . . . ,θ2,k2

},

where the exterior angle at each point is formed by
the two tangent vectors at that point on the curve,
and the sequence θs describes how the curvature of the
boundary changes at each point.

In contrast to the problem setting, the informa-
tion is obtained from an arbitrary exterior sequence.
Therefore, we aim to find the point p in the given
sequence to distinguish the smaller radius of the circle.
To perform this procedure, it is necessary to investigate
the geometric properties at the non-differentiable point
p. Given a sequence of points on two different circular
arcs (without loss of generality, all points are arranged
in a counterclockwise direction), we detect the non-
differentiable point to choose the appropriate circular
arc for proceeding with circle fitting. In this context,
the central angle θ of a circle is defined as the angle
subtended at the center of the circle by an arc of length
l, computed by θ = l/r, where r is the radius of
the circle. Using this definition, we can describe the
properties of the convex body by the following lemma.

Lemma 1 Given two circles c1 and c2, where c1 has
radius r1 and c2 has radius r2 with r1 < r2. If a given arc
length l on both arcs is equal, the central angle subtended
by arc on c1 is greater than the angle subtended by the
arc on c2.

Proof : Noting that the arc length l on a circle is
determined by the central angle θ and the radius r

of the circle. Let θ1 and θ2 be the central angles
subtended by the arc length l on circle c1 and circle c2,
respectively. Then θ1 := l

r1
and θ2 := l

r2
, which implies

l
r1
> l

r2
, and it is concluded that θ1 > θ2. 2

Lemma 2 If the arc length of a circle is divided into
segments of identical length, then all interior angles
∠vi vi+1vi+2 on the arc of the circle will have the same
measure, and so the exterior angles.

Proof : Suppose that the circumference of the circle
is equally divided into k parts with arc length l. We
define a counterclockwise sequence of points in the
circle by C = {v1, v2, . . . , vk} such that the central
angle ∠viOvi+1 is measured by θ = l

r . Therefore, the
interior angle ∠vi vi+1vi+2 is equal to π− l

r . By equal
subdivision, it is easy to see that the interior angles
∠vi vi+1vi+2 for all i = 1, 2, . . . , k−2 will also have
the same measure. Recall the relationship between
interior and exterior angles, which is given by:

exterior angle= π− interior angle.

Since all interior angles ∠vi vi+1vi+2 are equal by as-
sumption, exterior angles must also be equal. There-
fore, the exterior angles at any point on the arc with
the same arc length of the circle are equal. 2

The following theorem is used to identify non-
differentiable points.

Theorem 1 Let the part of the boundary of a convex
body be composed of circular arcs C1 and C2 with differ-
ent circle radii. Given a sequence Cs of exterior angles,
a point p on the arc C1 and C2 separates the circular
arcs C1 and C2 if and only if the exterior angle of any
arbitrary points on C1 and C2 with the same circular arc
length differs from the exterior angle of p.

Proof : Let C1 and C2 be arcs of circles with different
radii r1 and r2, respectively. We firstly prove the
necessary condition by assuming that p joins curve
C1 of circle c1 and C2 of circle c2. We assume
the sequence Cs as defined in previous part. Recall
thatCs = {v1,k1

, v1,k1−1, . . . , v1,1, p, v2,1, v2,2, . . . , v2,k2
} as

shown in Fig. 4. By Lemma 2, the sub-sequence C1 =
{v1,k1

, v1,k1−1, . . . , v1,1} on the curve C1 generates the
equal angles:

∠v1,k1
v1,k1−1v1,k1−2 = ∠v1,k1−1v1,k1−2v1,k1−3

= · · ·= ∠v1,3v1,2v1,1.

Similarly, we have the same properties in the sub-
sequence C2 = {v2,1, v2,2, . . . , v2,k2

} as

∠v2,1v2,2v2,3 =∠v2,2v2,3v2,4 = · · ·=∠v2,k2−2v2,k2−1v2,k2
.

Without loss of generality, we would like to
prove that ∠v1,1pv2,1 differs from ∠v1,3v1,2v1,1
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and ∠v2,1v2,2v2,3. Lemma 2, it follows that the interior
angles ∠v1,3v1,2v1,1 and ∠v2,1v2,2v2,3 are π − l

r1
and

π− l
r2

such that l
r1
> l

r2
. We are now considering the

form of the angle ∠v1,1pv2,1 by defining

v1,1 = (r1 cosθ1, r1 sinθ1),

p =
�

r1 cos
�

θ1+
l
r1

�

, r1 sin
�

θ1+
l
r1

��

= (r2 cosθ2, r2 sinθ2),

v2,1 =
�

r2 cos
�

θ2+
l
r2

�

, r2 sin
�

θ2+
l
r2

��

.

Then we compute the interior angle ∠v1,1pv2,1 using

cosθp =
−−→v1,1 p·−−→pv2,1

∥−−→v1,1 p∥∥−−→pv2,1∥
, Therefore, we compute −−→v1,1p,

−−→v1,1p= 〈r1 cosθ1, r1 sinθ1〉−
¬

r1 cos
�

θ1+
l

r1

�

, r1 sin
�

θ1+
l

r1

�¶

=
¬

−2r1 sin
�

θ1+
l

2r1

�

sin
�

−l
2r1

�

, 2r1 cos
�

θ1+
l

2r1

�

sin
�

−l
2r1

�¶

.

Also

−−→pv2,1 =
¬

r2 cos
�

θ2+
l

r2

�

, r2 sin
�

θ2+
l

r2

�¶

−〈r2 cosθ2, r2 sinθ2〉

=
¬

−2r2 sin
�

θ2+
l

2r2

�

sin
�

l
2r2

�

, 2r2 cos
�

θ2+
l

2r2

�

sin
�

l
2r2

�¶

.

From−−→v1,1p and−−→pv2,1, it follows that ∥−−→v1,1p∥ and ∥−−→pv2,1∥

equal to 2r1

�

�

�sin
�

−l
2r1

�

�

�

� and 2r2

�

�

�sin
�

l
2r2

�

�

�

�, respectively.

Therefore, the interior angle ∠v1,1pv2,1 is

θp = arccos

� −−→v1,1p · −−→pv2,1

∥−−→v1,1p∥∥−−→pv2,1∥

�

= arccos
�

¬

sin
�

θ1+
l

2r1

�

,− cos
�

θ1+
l

2r1

�¶

·
¬

− sin
�

θ2+
l

2r2

�

, cos
�

θ2+
l

2r2

�¶

�

= arccos
�

− cos
�

3
2

�

l
r1
− l

r2

���

.

To prove that θp is different to θ1 and θ2, we claim
that θp ̸= θ1 and θp ̸= θ2, where θ1 = π−

l
r1

and θ2 =

π− l
r2

. We assume to choose l such that θp = θ1 but
θp ̸= θ2 or θp = θ2 but θp ̸= θ1.They are trivial and
follow directly from Lemma 1, i.e. if we choose l such
that θp = θ1 or θp = θ2, it follow that θp ̸= θ2 or θp ̸=
θ1, respectively. We then choose l such that θp ̸= θ1
and θp ̸= θ2. Remark that l1, which yields θp = θ1,
satisfies

l1 =

( 4πnr1 r2
r2−3r1

, r2 ̸= 3r1 and n ∈ Z
4π(n+1)r1 r2

5r2−3r1
, 5r2 ̸= 3r1 and n ∈ Z.

and l2, which implies θp = θ2, is considered by

l2 =

( 4πnr1 r2
3r2−5r1

, 3r2 ̸= 5r1 and n ∈ Z
4π(n+1)r1 r2

3r2−r1
, 3r2 ̸= r1 and n ∈ Z.

By considering θp = θ1 and θp = θ2, we can
conclude that l can be chosen arbitrary, excepted in the
case of l1, l2. Therefore, the interior angle ∠v1,1pv2,1
differs from ∠v1,3v1,2v1,1 and ∠v2,1v2,2v2,3, which im-
plies the exterior angle also.

Conversely, it must be shown that if a value in the
sequence of exterior angles differs at point p, then p is
a separated point of curves C1 and C2.

From a given finite sequence Cs = {v1,k1
, v1,k1−1,

. . . , v1,1, p, v2,1, v2,2, . . . , v2,k2
}, assume that each con-

secutive pair of points on the curve C1 and C2 has an
arc length equal to l. Since the exterior angles at any
point on the curve C1 are all equal, and the exterior
angles at any point on the curve C2 are all equal, the
curvature on the curve C1 and C2 are equal to l

r1
and

l
r2

, respectively. Without loss of generality, assume that
l
r1
< l

r2
. Then there exists a real number θp such that

l
r1
< θp <

l
r2

which differs from l
r1

and l
r2

. Therefore,
p separate the boundary of convex body to arcs C1 and
C2 as claimed. 2

ALGORITHMS DESCRIPTION FOR DETECTING
CORNER POINTS ON CONVEX BOUNDARIES

In this section, we present an algorithm to detect cor-
ner points in convex bodies formed by the composition
of circular arcs. We assume that a set of discrete
points S, which represents the boundary of a convex
body, is given. It is important to note that the real-
world data may not be perfectly convex. To address
this, we compute the convex hull of S, denoted as
CH (S). Next, we focus on identifying the corners of
the shape. The goal is to classify the points into three
categories: corner points, points on the eyelids, and
points on the iris boundary. This classification is based
on Theorem 1, which enables the identification of
changes in exterior angles within sequences of exterior
angles. The algorithm is outlined in Algorithm 1.

In this study, the number of points is determined
by the pixel count along the circumference of the iris
boundary. In all cases, the unit length is set in centime-
ters, with the iris radius fixed at 1 cm, corresponding
to approximately 179 pixels along the circumference.
For example, in case (e) left, the iris circle is complete
and thus contains the full set of 179 points. In other
cases, the point count depends on the arc length of the
iris boundary, which varies according to gaze position
(see Eq. (2)).)

We note that the choice of d from the set θs in
Line 6 of Algorithm 1 depends on the features of the
set. The default value is the third quartile (Q3) of
the set θs, which helps to effectively distinguish the
sub-sequence. In practice, the detection of corner
points might not be perfect, as proven in Theorem 1.
However, it is promising to detect points where the
exterior angles change.

Once the set θs is classified, we can obtain the

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


6 ScienceAsia 51S (2): 2025: ID 2025s021

Algorithm 1 The Points Classification
Input: Sequence of boundary points S
Output: Set of corner points P, Set of sub-sequences of
the eyelids E, Set of sub-sequences of iris boundary I .
Comment:
1. The positive number d depends on the set θs
2. Mean and SD are the average and standard devia-
tion, respectively.

1: Construct CH (S).
2: Sort the point to the set Cs counterclockwise.
3: Append the first three members of Cs to Cs.
4: For each three adjacent points in Cs, compute

exterior angle θi using (1), and append to the set
θs.

5: Compute mean θ̄s, SD, d of the set θs.
6: Compute Threshold := θ̄s + d ·SD
7: for each θi ∈ θs do
8: if θi > Threshold then
9: Add θi to set P (corner points)

10: else if θi ⩾
l
r1

(in terms of pixels) then
11: Add θi to set I (iris boundary)
12: else
13: Add θi to set E (eyelid points)
14: end if
15: end for
16: Return the sets I , P, E

corresponding vertex sub-sequence of Cs. We primar-
ily focus on the set of iris boundary points to find
the best-fit circle with respect to these points using
existing algorithms, such as the least squares methods,
RANSAC, and Pratt’s method [7]. In this study, we
simply employ the fitting using the fact of constructing
the circle through three non-collinear points. Then, we
choose any three points from the set I and construct the
circle with respect to those three points. After that, we
average the circles, including the center positions and
radii, to obtain the appropriate circle.

EXPERIMENTAL RESULTS

Data

Given a set of points S in the plane, we first construct
the convex hull CH (S) of these points in the experi-
ment. Next, we sort the coordinates and calculate the
exterior angle at each point of the convex hull CH (S)
using the formula (1). Then, based on the statistical
criteria mentioned in Algorithm 1, we separate the
points. Therefore, the data points that are candidates
for fitting a circle are obtained.

From the application viewpoint, a photo of the
iris boundary is extracted as pixels instead of points
on the plane. Therefore, we compute the reasonable
number of points needed to generate the data points
along the edge of the convex body. First, we calculate

the number of ideally generated data points n. This
involves determining the quantity of data by counting
the pixels through which the circumference passes. To
facilitate this calculation, we consider a circle with a
radius of 1 centimeters, representing the iris, a circle
with a radius of 3 (only in the case of (e) left), and
2
p

2, which represents the upper and lower eyelids.
Using Wolfram Mathematica for the conversion of cen-
timeters to pixels (1 inch = 72 pixels), the number of
pixels along the circumference Cpixels, is given by:

Cpixels = 2πr ×
number of pixels per inch

number of centimeters per inch
. (2)

Therefore, the number of pixels along the circumfer-
ence of a circle with radii 1, 3, and 2

p
2 is approxi-

mately 179, 504 and 535 pixels, respectively. For the
frame of the ideally generated images, we assume that
1 cm ≈ 28.5 pixels, and the frame is 4×4 centimeters.
Thus, the frame for each case is 114×114 pixels.

For real data, we extract data from eye images,
focusing on the iris boundary and the curve of the eye-
lids. The data obtained consists of (x , y) coordinates
in pixel format, with the frame size depending on the
size of the collected images.

Experiments

For the case of ideally generated data, we first generate
the data based on the cases identified in Fig. 2, which
includes 18 sub-cases. We construct convex bodies and
focus on the circle of the iris boundary in each case.
Although the set of points on the circle is finite, the
finite points of those parts are chosen based on the
method mentioned above. The radius of the circle of
the iris boundaries is the same, but the positions of
these circles are chosen differently in each sub-case.
In addition, the arcs of the eyelids in each sample
are scaled according to the choice of the circle of iris
boundaries.

We used Wolfram Mathematica 14.0 and em-
ployed the ConvexHullMesh command to compute the
convex hull. Then we sort the coordinates, calculate
the exterior angles to identify the corner points, and
classify the data points into the iris boundary and
the eyelid(s). The following figure shows the results
obtained from fitting a circle to the ideally generated
data after classifying the data.

To obtain the best-fit circle, we applied the average
of circle passing through three points method, in which
we computed the average of all circles uniquely defined
by every combination of three distinct points from the
set of iris boundary points.

For the case of real data, we collect the images
[11] and detect facial features using Facial Keypoint
Detection [12]. From the detected eye keypoints, a
mask is created to isolate the eye region in the image.
The Canny Edge Detection technique is then applied to
extract the contour of the eye region, and the contour
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(a) Right upward (b) Straight up (c) Left upward

(d) Straight to right (e) Straight ahead (f) Straight to left

(g) Right downward (h) Straight down (i) Left downward

Fig. 5 Illustration of the nine positions of gaze analyzed in this study. Red points represent the points on the iris boundary
obtained through classification.

Table 2 Comparison of initial and new center and radius values.

Gaze position in Fig. 2 Initial center New center Initial radius New radius

(a) left (25.65,68.4) (28.6884,68.6586) 28.5 28.4481
(a) right (28.5,75.42) (30.3741,74.5569) 28.5 27.7394
(b) left (57, 80.6) (57.2964,79.6017) 28.5 27.7290
(b) right (57, 61.9) (57.0775,61.8975) 28.5 28.3623
(c) left (85.5,75.42) (85.1940,74.9435) 28.5 28.1055
(c) right (88.35,68.4) (88.9411,69.0086) 28.5 29.3245
(d) left (0, 57) (2.89641,57.3362) 28.5 28.1723
(d) right (35.625,57) (36.9830,57.3792) 28.5 28.2237
(e) left (57, 57) (57.6126,57.3874) 28.5 27.9871
(e) right (57,57) (57.5380, 57.5916) 28.5 27.7276
(f) left (78.375,57) (77.5685, 57.0601) 28.5 27.5620
(f) right (114,57) (119.2640, 57.6741) 28.5 34.4820
(g) left (25.65,45.6) (28.4980, 46.5952) 28.5 27.6684
(g) right (28.5,38.58) (30.3466, 38.8884) 28.5 28.5162
(h) left (57,33.4) (57.6558, 33.9775) 28.5 28.4314
(h) right (57,52.1) (57.4745, 52.2943) 28.5 28.3334
(i) left (85.5,38.58) (85.0845, 38.6054) 28.5 28.8066
(i) right (88.35,45.6) (88.4231, 46.1163) 28.5 28.6845

coordinates are retrieved as pixel pairs. After obtaining
the binary (black-and-white) image, Mathematica is
used to extract the data points corresponding to the
white regions, which represent the target data. These
extracted points are subsequently processed following
the steps described in Algorithm 1, similar to the
procedure used for the ideally generated data. An
example of fitting a circle to the classified data points
is shown in Fig. 6.

Results

From the experiments, the center and radius of the
data were measured using a circle fitting algorithm.
For the ideally generated data, we compared the so-
lutions using Root Mean Square Error (RMSE). Let

Fig. 6 An example of some process for fitting a circle to data
points extracted from the image.

the initial center denoted by ci = (x i , yi) with radius
ri , and the corresponding new center and radius be
ĉi = ( x̂ i , ŷi) and r̂i , respectively, for i = 1, . . . , N , where
N is the number of all cases. The RMSE for the center
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location is defined as

RMSEcenter =

√

√

√ 1
N

N
∑

i=1

∥ĉi − ci∥
2
2

=

√

√

√ 1
N

N
∑

i=1

[( x̂ i − x i)2+( ŷi − yi)2]. (3)

Similarly, the RMSE for the radius is given by

RMSEradius =

√

√

√ 1
N

N
∑

i=1

(r̂i − ri)2. (4)

The results yielded RMSE values of 1.97538 for the
center and 1.50166 for the radius, indicating that the
model provides a fairly accurate estimate of both. The
higher RMSE for the center suggests a small error in
its location, while the lower value for the radius shows
good accuracy in size estimation. For real data, it is
possible to fit a circle to the dataset. However, it is not
possible to evaluate the error of the fitted circle relative
to the size of the iris boundary, as the initial size of the
iris boundary and the precise location of the center of
the eye are unknown.

CONCLUSION REMARKS

This study modeled data points along the boundaries
of convex bodies based on gaze positions and analyzed
geometric properties to detect the corners of convex
bodies. For data classification, the proposed method
classified the data points into three categories: corner
points, points on the iris boundary, and points on the
eyelids. Regarding the circle-fitting algorithm, two
types of data were considered: ideally generated data
and real data. For the ideally generated data, the
method performed well in fitting a circle due to the
completeness of the data points. However, for the real
data, some undesirable points were included in the
approximation after classification. Thus, it was neces-
sary to clean the data before applying the classification
process.

For future work, we plan to validate this frame-
work by applying it to real data obtained from the
edges of the iris boundary. This will involve acquiring
a dataset of actual iris images and addressing chal-
lenges such as undesirable points, lighting variations,
and occlusions. The empirical validation will aim to
refine the framework by improving data cleaning and
classification processes, identifying limitations, and
evaluating the performance of different circle fitting
algorithms. These efforts will help provide informed

recommendations for selecting the most suitable algo-
rithm for practical applications in iris recognition.
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