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ABSTRACT: Research into sums involving floor or ceiling functions has been a popular focus in number theory. This
paper investigates formulas for sums of the type

∑n
k=1 F

�

pk
q

�

, where F represents either the floor or ceiling function, and
p, q are coprime integers. Generalizing from Palatsang et al’s work in 2021, we could derive explicit simple formulas,
verify their uniqueness, and identify certain conditions of p and q under which these formulas are invalid.
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INTRODUCTION

Given x ∈R, we define the floor function of x , denoted
by ⌊x⌋, as the largest integer less than or equal to x .
We also define the ceiling function of x , denoted by
⌈x⌉ as the smallest integer greater than or equal to x .
It is useful in number theory to study the formula for
the sum of floor functions. For instance, a proof of the
law of quadratic reciprocity [1] by Eisenstein requires
a lemma which states that given an odd prime p and
an odd integer a with p ∤ a, the Legendre symbol can
be computed by the equation

�

a
p

�

= (−1)α(a,p),

where

α(a, p) =

p−1
2
∑

k=1

�

ka
p

�

.

In Apostol’s book [2], there is an exercise asking to
show that for all q ∈ {1,2, . . . , 7}, there exists b de-
pending on q such that

n
∑

k=1

�

k
q

�

=

�

(2n+ b)2

8q

�

(1)

for every n ∈ N. Palatsang et al [3] showed that for all
n, q ∈ N, and r ∈ {0, 1, . . . ,q−1} with r ≡ n (mod q),

n
∑

k=1

�

k
q

�

=
n(n+2− q)− r(2− q+ r)

2q
.

They also proved (1) by choosing b = 2− q and com-
paring each modulo class. Moreover, they also showed
that b must be equal to 2−q. Additionally, if q ∈N such
that q⩾ 8, then the formula does not exist for infinitely
many n ∈ N.

At the end of the paper, they left a question for
generalizing the results to the sum of the form

n
∑

k=1

F
�

pk
q

�

. (2)

In this case, the denominator is a rational number,
which includes both positive and negative, instead of
only a natural number, and F is the floor or ceiling
function. Pongsriiam’s book [4] proposes some iden-
tities related to these sums. For example, if p, q, s ∈ N
with p ⩽ q, then

s
∑

k=1

�

pk
q

�

+
∑

1⩽k⩽ ps
q

�

qk
p

�

= s
�

ps
q

�

+
�

s gcd(p, q)
q

�

.

In this paper, we study the identities for the sum of
the form (2), where p ∈ N, q ∈ Z\{0}, and gcd(p, q) =
1. We can find such simple formulas for the sums
similar to the previous paper and can find several con-
ditions that make the formulas not exist. For instance,
in the case where F is the floor function, q = 3, and
p ∈ {1,2, 4,5, 7,8, 10,11, 13,14, 16,17, 19}, the sum is
equal to the formula

�

p
8q

�

2n+
p− q+1

p

�2
�

for all n ∈ N. Moreover, if p ⩾ (
p

2|q| +
p

|q|+1)2

or p ⩽ (
p

2|q| −
p

|q|+1)2, then the formula does not
work for infinitely many n ∈ N.

PRELIMINARIES

In this section, we introduce some identities regarding
floor and ceiling functions that could help us prove the
main results.
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Lemma 1 ([5]) Let p, q ∈ N. Then,

q−1
∑

k=1

�

pk
q

�

=
(p−1)(q−1)+ gcd(p, q)−1

2
.

Lemma 2 ([5]) Let x ∈ R and n ∈ Z. Then,

(i) ⌊−x⌋= −⌈x⌉=
�

−⌊x⌋, x ∈ Z
−(⌊x⌋+1), x ̸∈ Z.

(ii) ⌊x + n⌋= ⌊x⌋+ n.

Next, we wish to extend Lemma 1 for the ceiling
function and q ∈ Z\{0}.

Lemma 3 Let p ∈ N and q ∈ Z\{0} with gcd(p, q) = 1.
Then,

|q|−1
∑

k=1

�

pk
q

�

=
(p+1)(q+1)

2
, q ⩽ −1, and

|q|−1
∑

k=1

¡

pk
q

¤

=

¨

(p+1)(q−1)
2 , q ⩾ 1

(p−1)(q+1)
2 , q ⩽ −1.

Proof : First, we consider the sum of the floor function
for q ⩽ −1. Note that |q|= −q, gcd(p, q) = gcd(p, |q|),
and pk/q /∈ Z for k ∈ {1, . . . , |q| −1}. By Lemma 2, we
have

|q|−1
∑

k=1

�

pk
q

�

= −
|q|−1
∑

k=1

��

pk
|q|

�

+1
�

= −
�

(p−1)(|q| −1)
2

+ |q| −1
�

=
(p−1)(q+1)

2
+ q+1

=
(p+1)(q+1)

2
.

Next, we consider the sum of the ceiling function. By
Lemma 2, we obtain

|q|−1
∑

k=1

¡

pk
q

¤

=
|q|−1
∑

k=1

��

pk
q

�

+1
�

=

¨

(p−1)(q−1)
2 + q−1, q ⩾ 1

(p+1)(q+1)
2 − q−1, q ⩽ −1

=

¨

(p+1)(q−1)
2 , q ⩾ 1

(p−1)(q+1)
2 , q ⩽ −1

as desired. 2

Lemma 4 Let n ∈ N∪ {0}, p ∈ N, and q ∈ Z\{0} with
gcd(p, q) = 1. Suppose that n ≡ r (mod |q|) and r ∈
{0, 1, . . . , |q| −1}. Then,

n
∑

k=0

�

pk
q

�

=

(

p
2q

�

n
�

n+ p−q+1
p

�

−r
�

r+ p−q+1
p

��

+
∑r

k=0

�

pk
q

�

, q⩾1
p

2q

�

n
�

n+ p−q−1
p

�

−r
�

r+ p−q−1
p

��

+
∑r

k=0

�

pk
q

�

, q⩽−1

and
n
∑

k=0

¡

pk
q

¤

=

(

p
2q

�

n
�

n+ p+q−1
p

�

−r
�

r+ p+q−1
p

��

+
∑r

k=0

 

pk
q

£

, q⩾1
p

2q

�

n
�

n+ p+q+1
p

�

−r
�

r+ p+q+1
p

��

+
∑r

k=0

 

pk
q

£

, q⩽−1.

Proof : First, we consider the sum of the floor function.
If |q|= 1, then r = 0 and

n
∑

k=0

�

pk
q

�

=
p
q

n
∑

k=0

k =
pn(n+1)

2q

=

¨

p
2q

�

n
�

n+ p−q+1
p

�

−r
�

r+ p−q+1
p

��

+
∑r

k=0

�

pk
q

�

, q = 1
p

2q

�

n
�

n+ p−q−1
p

�

−r
�

r+ p−q−1
p

��

+
∑r

k=0

�

pk
q

�

, q = −1.

If n < |q|, then r = n. It is easy to see that the right-
hand side is equal to the sum of the floor function for
every case of q. So, we assume that 2 ⩽ |q| ⩽ n. By
the division algorithm, there exists a unique s ∈N such
that n= s|q|+ r. Then,

n
∑

k=0

�

pk
q

�

=
s|q|−1
∑

k=0

�

pk
q

�

+
s|q|+r
∑

k=s|q|

�

pk
q

�

. (3)

By Lemma 2, the first term on the right-hand side of
(3) is

s|q|−1
∑

k=0

�

pk
q

�

=
s−1
∑

t=0

(t+1)|q|−1
∑

k=t|q|+1

�

pk
q

�

+
s−1
∑

t=0

�

p|q|t
q

�

=
s−1
∑

t=0

|q|−1
∑

u=1

�

p|q|t
q
+

pu
q

�

+
s−1
∑

t=0

p|q|t
q

=
s−1
∑

t=0

|q|−1
∑

u=1

�

p|q|t
q
+
�

pu
q

��

+
p|q|
q

s−1
∑

t=0

t

=
s−1
∑

t=0

 

p|q|(|q| −1)t
q

+
|q|−1
∑

u=1

�

pu
q

�

!

+
p|q|
q

s−1
∑

t=0

t

=
p|q|(|q| −1)

q

s−1
∑

t=0

t + s
|q|−1
∑

u=1

�

pu
q

�

+
p|q|
q

s−1
∑

t=0

t

= pq
s−1
∑

t=0

t + s
|q|−1
∑

u=1

�

pu
q

�

=
pq
2

s(s−1)+ s
|q|−1
∑

u=1

�

pu
q

�

.

For the second term of (3), by Lemma 2, we have

s|q|+r
∑

k=s|q|

�

pk
q

�

=
r
∑

l=0

�

ps|q|
q
+

pl
q

�

=
p|q|(r+1)

q
s+

r
∑

l=0

�

pl
q

�

.

Summing all the terms and using Lemma 1, we obtain
n
∑

k=0

�

pk
q

�

=
pq
2

s(s−1)+
p|q|(r+1)

q
s+s
|q|−1
∑

u=1

�

pu
q

�

+
r
∑

l=0

�

pl
q

�

=

(

pq
2 s2 +

�

(2r+1)p−q+1
2

�

s+
∑r

l=0

�

pl
q

�

, q ⩾ 1
pq
2 s2 −

�

(2r+1)p−q−1
2

�

s+
∑r

l=0

�

pl
q

�

, q ⩽ −1.
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Substituting s = (n− r)/|q|, we have

n
∑

k=0

�

pk
q

�

=







pq
2

�

n−r
q

�2
+
�

(2r+1)p−q+1
2

��

n−r
q

�

+
∑r

l=0

�

pl
q

�

, q ⩾ 1
pq
2

�

n−r
q

�2
+
�

(2r+1)p−q−1
2

��

n−r
q

�

+
∑r

l=0

�

pl
q

�

, q ⩽ −1

=

(

p
2q

�

n
�

n+ p−q+1
p

�

−r
�

r+ p−q+1
p

��

+
∑r

l=0

�

pl
q

�

, q ⩾ 1
p

2q

�

n
�

n+ p−q−1
p

�

−r
�

r+ p−q−1
p

��

+
∑r

l=0

�

pl
q

�

, q ⩽ −1.

Next, we consider the sum of the ceiling function. By
Lemma 2, we obtain

n
∑

k=0

¡

pk
q

¤

= −
n
∑

k=0

�

−
pk
q

�

=

(

−
�

p
2(−q)

�

n
�

n+ p+q−1
p

�

−r
�

r+ p+q−1
p

��

+
∑r

l=0

�

− pl
q

��

, q⩾1

−
�

p
2(−q)

�

n
�

n+ p+q+1
p

�

−r
�

r+ p+q+1
p

��

+
∑r

l=0

�

− pl
q

��

, q⩽−1

=

(

p
2q

�

n
�

n+ p+q−1
p

�

−r
�

r+ p+q−1
p

��

+
∑r

l=0

 

pl
q

£

, q ⩾ 1
p

2q

�

n
�

n+ p+q+1
p

�

−r
�

r+ p+q+1
p

��

+
∑r

l=0

 

pl
q

£

, q ⩽ −1.

Thus, the proof is complete. 2

Lemma 5 Let F be the floor or ceiling function, p ∈ N,
q ∈ Z\{0} with q ̸= 0, and α,β ,γ, a, b, c ∈R with α, c ̸=
0. Suppose that A⊆ N is an infinite set and

αn2+βn+γ= F

�

p(an+ b)2

qc

�

for every n ∈ A. Then,

p(an+ b)2

qc
=
(2αn+β)2

4α

for every n ∈ A.

Proof : We will only prove the case that F is the floor
function on R. Assume that

αn2+βn+γ=

�

p(an+ b)2

qc

�

for all n ∈ A. Hence, for all n ∈ A, we have

αn2+βn+γ=
pa2

qc
n2+

2pab
qc

n+
pb2

qc
−θn, (4)

with θn ∈ [0,1). We divide (4) by n2 and take n→∞,
where n ∈ A. Hence, α= pa2/(qc). This implies

βn+γ=
2pab

qc
n+

pb2

qc
−θn, (5)

for all n ∈ A. We divide (5) by n and take n →∞,
where n ∈ A to obtain β = 2pab/(qc). Hence,

pb2

qc
=
�

4p2a2 b2

q2c2

��

qc
4pa2

�

=
β2

4α
.

Thus, we have

p(an+ b)2

qc
=

pa2

qc
n2+

2pab
qc

n+
pb2

qc

= αn2+βn+
β2

4α
=
(2αn+β)2

4α

as desired. The case that F is the ceiling function can
be proven analogously. 2

MAIN RESULTS

In this section, we state the results regarding the
formula for the sum of the form

n
∑

k=1

F
�

pk
q

�

,

where F is the floor or ceiling function, p ∈ N, q ∈
Z\{0}, and gcd(p, q) = 1. Before stating them, we
define

ϵ =

�

−1, F is the floor function
1, F is the ceiling function.

Additionally, let G be the floor or ceiling function.

Theorem 1 Let p ∈ N and q ∈ Z\{0} with gcd(p, q) =
1, a, b, c ∈ R and c ̸= 0.
(i) If q ⩾ 1 and there exists an infinite set A ⊆ N such

that
n
∑

k=1

F
�

pk
q

�

= G

�

p(an+ b)2

cq

�

(6)

for every n ∈ A, then

p(an+ b)2

cq
=

p
8q

�

2n+
p+ ϵ(q−1)

p

�2

for every n ∈ A.
(ii) If q ⩽ −1 and there exists an infinite set A⊆ N such

that
n
∑

k=1

F
�

pk
q

�

= G

�

p(an+ b)2

cq

�

(7)

for every n ∈ A, then

p(an+ b)2

cq
=

p
8q

�

2n+
p+ ϵ(q+1)

p

�2

for every n ∈ A.

Proof : We will only prove (i) with the case that F is the
floor function. Let n ∈ A. By Lemma 4, we can write
the left-hand side of (6) as

n
∑

k=1

�

pk
q

�

=
p

2q

�

n
�

n+
p− q+1

p

�

−r
�

r+
p− q+1

p

��

+
r
∑

k=0

�

pk
q

�

=
p

2q
n2+

p− q+1
2q

n+γn,
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where n ≡ r (mod q) and γn ∈ R is bounded. By
Lemma 5, set

α=
p

2q
and β =

p− q+1
2q

.

We have

p(an+ b)2

qc
=
(2(p/(2q))n+((p− q+1)/(2q))2

4(p/(2q))

=
p

8q

�

2n+
p− q+1

p

�2

.

The other cases can be proven analogously. 2

Theorem 2 Let p ∈N and q ∈Z\{0}with gcd(p, q)=1.
(i) If q ⩾ 1 and

n
∑

k=1

F
�

pk
q

�

= G

�

p(2n+ b)2

8q

�

for infinitely many n ∈N, then b= (p+ϵ(q−1))/p.
(ii) If q ⩽ −1 and

n
∑

k=1

F
�

pk
q

�

= G

�

p(2n+ b)2

8q

�

for infinitely many n ∈N, then b= (p+ϵ(q+1))/p.

Proof : The idea of this proof is based on [3]. We will
only show (i) with the case that F is the floor function.
By Lemma 4,

n
∑

k=1

�

pk
q

�

=
p

2q

�

n
�

n+
p− q+1

p

�

−r
�

r+
p− q+1

p

��

+
r
∑

k=0

�

pk
q

�

=
p

2q
n2+

p
2q

�

p− q+1
p

�

n+γn,

where n ≡ r (mod q) and γn ∈ R is bounded. By
Lemma 5, set

α=
p

2q
and β =

p
2q

�

p− q+1
p

�

.

We have

p(2n+ b)2

8q
=

p
8q

�

2n+
p− q+1

p

�2

for infinitely many n ∈ N. Thus, there exist n1, n2 ∈ N
with n1 ̸= n2 such that

4n1 b+ b2 = 4
�

p− q+1
p

�

n1+
�

p− q+1
p

�2

,

4n2 b+ b2 = 4
�

p− q+1
p

�

n2+
�

p− q+1
p

�2

.

This implies b = (p− q+1)/p. The other cases can be
proven analogously. 2
Theorem 1 and Theorem 2 verify the uniqueness for
the formulas of the sums.

Theorem 3 Let p ∈ N and q ∈ Z\{0} with gcd(p, q) =
1. Then, for every a, b, c ∈ R with c ̸= 0, there are
infinitely many n ∈ N such that each of the following
holds.
(i) If q ⩾ 1, then

n
∑

k=1

F
�

pk
q

�

̸=
�

p(an+ b)2

qc

�

.

(ii) If q ⩽ −1, then

n
∑

k=1

F
�

pk
q

�

̸=
�

p(an+ b)2

qc

�

.

Proof : We will first prove (i) with the case that F is
the floor function. Assume on the contrary that there
are a, b, c ∈R with c ̸= 0 such that the inequality holds
for finitely many n ∈ N. By Theorem 1, there exists a
sufficiently large N ∈ N such that

n
∑

k=1

�

pk
q

�

=

�

p
8q

�

2n+
p− q+1

p

�2
�

for n⩾ N . There are two cases to consider.
Case q⩾ 2. We choose m ∈N such that m⩾ N and

m≡ q−1 (mod q). By Lemma 4, we have

m
∑

k=1

�

pk
q

�

=
m(pm+ p− q+1)− (q−1)

2q
.

Note that
�

p
8q

�

2m+
p−q+1

p

�2
�

=
m
∑

k=1

�

pk
q

�

+

�

q−1
2q
+
(p−q+1)2

8pq

�

.

Since q ⩾ 2,

q−1
2q
+
(p− q+1)2

8pq
⩾

q−1
2q

> 0.

Thus,
�

p
8q

�

2m+
p− q+1

p

�2
�

⩾
m
∑

k=1

�

pk
q

�

+1>
m
∑

k=1

�

pk
q

�

.

Hence, we arrive at a contradiction.
Case q = 1. It is easy to see that

pn(n+1)
2

=
n
∑

k=1

⌊pk⌋=
l p

8
(2n+1)2

m

=
pn(n+1)

2
+
l p

8

m

.

Note that 0 = ⌈p/8⌉ ⩾ 1, since p ∈ N. Here, we also
arrive at a contradiction.
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Next, we will prove (i) for the case that F is the
ceiling function. We may follow a similar logic by
using a proof by contradiction. There are two cases
to consider.

Case p ̸= q−1. We choose m ∈ N such that m⩾ N
and m≡ q−1 (mod q). By Lemma 4, we have

m
∑

k=1

¡

pk
q

¤

=
m(pm+ p+ q−1)+ (q−1)

2q
.

Note that
�

p
8q

�

2m+
p+q−1

p

�2
�

=
m
∑

k=1

¡

pk
q

¤

+

�

1−q
2q
+
(p+q−1)2

8pq

�

=
m
∑

k=1

¡

pk
q

¤

+

�

(p− q+1)2

8pq

�

.

Thus,
�

p
8q

�

2m+
p+ q−1

p

�2
�

⩾
m
∑

k=1

¡

pk
q

¤

+1>
m
∑

k=1

¡

pk
q

¤

.

Hence, we arrive at a contradiction.
Case p = q− 1. So, q ⩾ 2. We choose m ∈ N such

that m⩾ N and m≡ 0 (mod q). By Lemma 4, we have

m
∑

k=1

¡

pk
q

¤

=
m(pm+ p+ q−1)

2q
.

Thus,
�

p
8q

�

2m+
p+ q−1

p

�2
�

=
m
∑

k=1

¡

pk
q

¤

+

�

(p+ q−1)2

8pq

�

=
m
∑

k=1

¡

pk
q

¤

+1>
m
∑

k=1

¡

pk
q

¤

since 0< (p+q−1)2/(8pq) = p/(2(p+1))< 1. Here,
we also arrive at a contradiction.

To prove (ii), we may proceed with a similar logic
as in the proof of (i). For instance, when F is the
floor function, we separate the problem into two cases:
p ̸= |q| − 1 and p = |q| − 1. We first suppose for
contradiction that the inequality holds for only a finite
number of n. For p ̸= |q| − 1, we choose a sufficiently
large m such that m ≡ |q| − 1 (mod |q|) to create a
contradiction. In the other case, we choose m such
that m≡ 0 (mod |q|). 2

Theorem 3 restricts whether the formula should
involve the ceiling or floor function depending on F
and q. For example, when F is the floor function and
q > 0, the formula must involve the floor function by
Theorem 3(i).

Theorem 4 Let p ∈ N and q ∈ Z\{0} such that p ⩾
(
p

2|q| +
p

|q|+1)2 or p ⩽ (
p

2|q| −
p

|q|+1)2 and
gcd(p, q) = 1. Then, for every a, b, c ∈ N, there exist
infinitely many n ∈ N such that each of the following
holds.

(i) If q ⩾ 1, then

n
∑

k=1

F
�

pk
q

�

̸=
�

p(an+ b)2

qc

�

.

(ii) If q ⩽ −1, then

n
∑

k=1

F
�

pk
q

�

̸=
�

p(an+ b)2

qc

�

.

Proof : We first prove (i) for the case that F is the
floor function. Assume on the contrary that there are
a, b, c ∈ R with c ̸= 0 such that the inequality holds for
finitely many n ∈ N. By Theorem 1, there exists N ∈ N
such that

p(an+ b)2

qc
=

p
8q

�

2n+
p− q+1

p

�2

for n ⩾ N . We choose m ∈ N such that m ⩾ N and
m ≡ q− 1 (mod q). Then, by Lemma 3 and Lemma 4,
we have

m
∑

k=1

�

pk
q

�

=
m(pm+ p− q+1)− (q−1)

2q
.

However,
�

p
8q

�

2m+
p− q+1

p

�2
�

=
m
∑

k=1

�

pk
q

�

+

�

(p+ q−1)2

8pq

�

.

Since p ⩾ (
p

2q+
p

q+1)2 or p ⩽ (
p

2q−
p

q+1)2,
we have (p+ q−1)2/(8pq)⩾ 1. Hence, we arrive at a
contradiction.

Next, we will prove (i) for the case that F is the
ceiling function. We may follow a similar logic by using
a proof by contradiction. Then, we choose m ∈ N such
that m ⩾ N and m ≡ 0 (mod q). By Lemma 3 and
Lemma 4,

m
∑

k=1

¡

pk
q

¤

=
m(pm+ p+ q−1)

2q
.

However,
�

p
8q

�

2m+
p+ q−1

p

�2
�

=
m
∑

k=1

¡

pk
q

¤

+

�

(p+ q−1)2

8pq

�

.

As (p+q−1)2/(8pq)⩾ 1, we arrive at a contradiction.
To prove (ii), we may proceed with a similar logic

as in the proof of (i). When F is the floor or ceiling
function, we choose a large enough m such that m ≡
0 (mod |q|) or m ≡ |q| − 1 (mod |q|), respectively, to
create a contradiction. 2

Theorem 4 finds a bound for p depending on q
which makes the formulas not hold. This is very
helpful when finding all p ∈ N for each q ∈ Z\{0} that
make the formulas hold as we only need to consider a
finite number of candidates of p. The theorem below
provides all pairs (p, q) with 1 ⩽ |q| ⩽ 8 where the
formulas hold for every n ∈ N in the four cases.
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Theorem 5 Let p ∈ N, q ∈ Z\{0}, and gcd(p, q) = 1.
Then, the formulas

n
∑

k=1

�

pk
q

�

=











�

p
8q

�

2n+ p−q+1
p

�2
�

, q ⩾ 1
l

p
8q

�

2n+ p−q−1
p

�2m

, q ⩽ −1

n
∑

k=1

¡

pk
q

¤

=







j

p
8q

�

2n+ p+q−1
p

�2k

, q ⩾ 1
l

p
8q

�

2n+ p+q+1
p

�2m

, q ⩽ −1

hold for every n ∈ N when (p, |q|) are given in the table
below.
|q| p
1 1 2 3 4 5 6 7
2 1 3 5 7 9 11 13
3 1 2 4 5 7 8 10 11 13 14 16 17 19
4 1 3 7 9 11 13 15 17 19 21 25
5 1 2 3 4 7 8 9 12 13 14 16 17 18

19 21 22 23 26 27 28 31
6 1 5 11 17 25 31 37
7 1 2 3 5 6 10 12 13 17 18 19 23 24

25 26 30 31 32 33 36 37 39 43
8 3 5 13 19 21 27 29 35 37 43

Proof : The idea of this proof is straightforward. We
will only prove the case for the sum of the floor
function where p = 3 and q = 4 as an example. That
is, we wish to show that

n
∑

k=1

�

3k
4

�

=

�

3n2

8

�

(8)

for every n ∈ N. By Lemma 4, we can re-write the left-
hand side of (8) as

n
∑

k=1

�

3k
4

�

=
3
8
(n2− r2)+

r
∑

k=0

�

3k
4

�

=







3n2

8 , n≡ 0 (mod 4)
3n2−3

8 , n≡ 1, 3 (mod 4)
3n2−4

8 , n≡ 2 (mod 4).

Now, consider the right-hand side of (8). By the
division algorithm, there are four cases to consider.

If n ≡ 0 (mod 4), that means n = 4ℓ for some ℓ ∈
N. So

�

3n2

8

�

=

�

3(4ℓ)2

8

�

= 6ℓ2 =
3n2

8
.

If n ≡ 1 (mod 4), that means n = 4ℓ+ 1 for some
ℓ ∈ N. So

�

3n2

8

�

=

�

3(4ℓ+1)2

8

�

= 6ℓ2+3ℓ=
3n2−3

8
.

If n ≡ 2 (mod 4), that means n = 4ℓ+ 2 for some
ℓ ∈ N. So
�

3n2

8

�

=

�

3(4ℓ+2)2

8

�

= 6ℓ2+6ℓ+1=
3n2−4

8
.

If n ≡ 3 (mod 4), that means n = 4ℓ+ 3 for some
ℓ ∈ N. So
�

3n2

8

�

=

�

3(4ℓ+3)2

8

�

= 6ℓ2+9ℓ+3=
3n2−3

8
.

By comparing the four cases, we can see that (8) holds
for every n ∈ N. 2

As a remark, it is not guaranteed that if q is in the
given bound, then the formulas hold. For instance, let
p, q ∈ N with gcd(p, q) = 1, it is not always true that
there exist a, b, c ∈ R with c ̸= 0 such that

n
∑

k=1

�

pk
q

�

̸=
�

p(an+ b)2

qc

�

for finitely many n ∈ N when p ∈ ((
p

2q −
p

q+1)2,
(
p

2q+
p

q+1)2). For example, if (p, q) = (5,4), it is
easy to see that 5 ∈ ((2

p
2−
p

5)2, (2
p

2+
p

5)2), but
the formula does not hold for infinitely many n ∈ N.

The interval ((
p

2|q| −
p

|q|+1)2, (
p

2|q| +
p

|q|+1)2) gets larger as |q| increases. Hence, it is not
practical to find all p that make the formulas hold for
a large |q|. Instead, we will give some criteria for the
formulas not to hold. In fact, if p≡±1 (mod |q|), |q|⩾
8, and gcd(p, q) = 1, then the formulas are not valid.
Before we show our result, we need the following
lemma.

Lemma 6 Let p ∈ N, q ∈ Z\{−1, 0,1} such that
gcd(p, q) = 1. Suppose that r ∈ {1, . . . , |q| −1}.
(i) If q ⩾ 2 and p ≡ 1 (mod q), then

r
∑

k=1

�

pk
q

�

=
(p−1)r(r +1)

2q
and

r
∑

k=1

¡

pk
q

¤

=
(p−1)r(r +1)

2q
+ r.

(ii) If q ⩾ 2 and p ≡ −1 (mod q), then

r
∑

k=1

�

pk
q

�

=
(p+1)r(r +1)

2q
− r and

r
∑

k=1

¡

pk
q

¤

=
(p+1)r(r +1)

2q
.

(iii) If q ⩽ −2 and p ≡ 1 (mod |q|), then

r
∑

k=1

�

pk
q

�

=
(p−1)r(r +1)

2q
− r and

r
∑

k=1

¡

pk
q

¤

=
(p−1)r(r +1)

2q
.
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(iv) If q ⩽ −2 and p ≡ −1 (mod |q|), then

r
∑

k=1

�

pk
q

�

=
(p+1)r(r +1)

2q
and

r
∑

k=1

¡

pk
q

¤

=
(p+1)r(r +1)

2q
+ r.

Proof : For (i), by the division algorithm, there exists
s ∈ N such that p = sq + 1. By using Lemma 2 and
plugging in s = (p−1)/q, we have

r
∑

k=1

�

pk
q

�

=
r
∑

k=1

�

sk+
k
q

�

= s
r
∑

k=1

k+
r
∑

k=1

�

k
q

�

=
(p−1)r(r +1)

2q
+

r
∑

k=1

�

k
q

�

,

and

r
∑

k=1

¡

pk
q

¤

=
r
∑

k=1

¡

sk+
k
q

¤

= s
r
∑

k=1

k+
r
∑

k=1

¡

k
q

¤

=
(p−1)r(r +1)

2q
+

r
∑

k=1

¡

k
q

¤

.

Now, ⌊k/q⌋= 0 and ⌈k/q⌉= 1 for all 1⩽ k⩽ r since 1⩽
k⩽ r ⩽ q−1. So, we obtain (i). For (ii), by the division
algorithm, there exists t ∈ N such that p = tq− 1. By
using Lemma 2 and plugging in t = (p+1)/q, we have

r
∑

k=1

�

pk
q

�

= t
r
∑

k=1

k+
r
∑

k=1

�

−
k
q

�

=
(p+1)r(r +1)

2q
+

r
∑

k=1

�

−
k
q

�

,

and

r
∑

k=1

¡

pk
q

¤

= t
r
∑

k=1

k+
r
∑

k=1

¡

−
k
q

¤

=
(p+1)r(r +1)

2q
+

r
∑

k=1

¡

−
k
q

¤

.

Now, ⌊−k/q⌋ = −1 and ⌈−k/q⌉ = 0 for all 1 ⩽ k ⩽ r
since 1 ⩽ k ⩽ r ⩽ q− 1. So, we obtain (ii). To prove
(iii) and (iv), we may use (i) and (ii) together with
Lemma 2. 2

Now we can tackle our problem.

Theorem 6 Let p ∈N and q ∈Z\{0}with gcd(p, q)=1.
Suppose that |q| ⩾ 8 and p ≡ 1 (mod |q|). Then, for
every a, b, c ∈ N, there exist infinitely many n ∈ N such
that each of the following holds.
(i) If q ⩾ 1, then

n
∑

k=1

F
�

pk
q

�

̸=
�

p(an+ b)2

qc

�

.

(ii) If q ⩽ −1, then

n
∑

k=1

F
�

pk
q

�

̸=
�

p(an+ b)2

qc

�

.

Proof : If p ̸∈ ((
p

2|q|−
p

|q|+1)2, (
p

2|q|+
p

|q|+1)2),
then the statement holds by Theorem 4. So, we will
only consider p that lie in this interval. We first prove
(i) for the case that F is the floor function. Assume on
the contrary that there are a, b, c ∈ R with c ̸= 0 such
that the inequality holds for a finite number of n ∈ N.
By Theorem 1, there exists N ∈ N such that

p(an+ b)2

qc
=

p
8q

�

2n+
p− q+1

p

�2

=
4n(pn+ p− q+1)

8q
+
(p− q+1)2

8pq

for n⩾ N . There are two cases to consider.
Case q is even. Let m⩾ N such that m≡ (q−2)/2

(mod q). By Lemma 4 and Lemma 6, we have

m
∑

k=1

�

pk
q

�

=
p

2q

�

m
�

m+
p−q+1

p

�

−
q−2

2

�

q−2
2
+

p−q+1
p

��

+
(q−2)/2
∑

k=0

�

pk
q

�

=
4m(pm+p−q+1)−(q−2)(pq−2q+2)

8q
+
(p−1)(q−2)

8

=
4m(pm+ p− q+1)+ (q−2)2

8q
.

Thus,

�

p
8q

�

2m+
p− q+1

p

�2
�

=
m
∑

k=1

�

pk
q

�

+

�

(p− q+1)2− p(q−2)2

8pq

�

.

Since q ⩾ 8, we have

p ∈ ((
p

2q−
p

q−1)2, (
p

2q+
p

q+1)2)⊆ (1, (q−1)2).

So,
−p(q−2)2+(p− q+1)2

8pq
< 0.

This implies

�

p
8q

�

2m+
p−q+1

p

�2
�

⩽
m
∑

k=1

�

pk
q

�

−1<
m
∑

k=1

�

pk
q

�

.

Hence, we arrive at a contradiction.
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Case q is odd. Let m ⩾ N such that m ≡ (q− 1)/2
(mod q). By Lemma 4 and Lemma 6, we have

m
∑

k=1

�

pk
q

�

=
p

2q

�

m
�

m+
p− q+1

p

�

−
q−1

2

�

q−1
2
+

p− q+1
p

��

+
(q−1)/2
∑

k=1

�

pk
q

�

=
4m(pm+p−q+1)− (q−1)(pq+p−2q+2)

8q

+
(p−1)(q−1)(q+1)

8q

=
4m(pm+ p− q+1)+ (q−1)(q−3)

8q
.

Thus,

�

p
8q

�

2m+
p− q+1

p

�2
�

=
m
∑

k=1

�

pk
q

�

+

�

(p− q+1)2− p(q−1)(q−3)
8pq

�

.

Since q ⩾ 9, we have

p ∈ ((
p

2q−
p

q+1)2, (
p

2q+
p

q+1)2)

⊆
�

(q−1)(
p

q+1−
p

q−3)2

4
,
(q−1)(

p

q+1+
p

q−3)2

4

�

.

So,
(p− q+1)2− p(q−1)(q−3)

8pq
< 0.

This implies

�

p
8q

�

2m+
p− q+1

p

�2
�

⩽
m
∑

k=1

�

pk
q

�

−1<
m
∑

k=1

�

pk
q

�

.

Here, we also arrive at a contradiction.
Next, we will prove (i) for the case that F is the

ceiling function. We may follow a similar logic by
using a proof by contradiction. There are two cases
to consider.

Case q is even. We consider m⩾ N such that m≡
q/2 (mod q). By Lemma 4 and Lemma 6, we have

m
∑

k=1

¡

pk
q

¤

=
p

2q

�

m
�

m+
p+q−1

p

�

−
q
2

�

q
2
+

p+q−1
p

��

+
q/2
∑

k=0

¡

pk
q

¤

=
4m(pm+p+q−1)−q(pq+2p+2q−2)

8q
+
(p−1)q(q+2)+4q2

8q

=
4m(pm+ p+ q−1)+ q2

8q
.

Thus,
�

p
8q

�

2m+
p+q−1

p

�2
�

=
m
∑

k=1

¡

pk
q

¤

+

�

(p+q−1)2−pq2

8pq

�

.

Since q ⩾ 8, we have

p ∈ ((
p

2q−
p

q+1)2, (
p

2q+
p

q+1)2) ⊆ (1, (q−1)2).

So,
(p+ q−1)2− pq2

8pq
< 0.

This implies

�

p
8q

�

2m+
p+ q−1

p

�2
�

⩽
m
∑

k=1

¡

pk
q

¤

−1<
m
∑

k=1

¡

pk
q

¤

.

Hence, we arrive at a contradiction.
Case q is odd. We consider m ⩾ N such that m ≡

(q−1)/2 (mod q). By Lemma 4 and Lemma 6, we have

m
∑

k=1

¡

pk
q

¤

=
p

2q

�

m
�

m+
p+ q−1

p

�

−
�

q−1
2

��

q−1
2
+

p+q−1
p

��

+
(q−1)/2
∑

k=0

¡

pk
q

¤

=
4m(pm+p+q−1)− (q−1)(pq+p+2q−2)

8q

+
(p−1)(q−1)(q+1)

8q
+

q−1
2

=
4m(pm+ p+ q−1)+ q2 −1

8q
.

Thus,

�

p
8q

�

2m+
p+ q−1

p

�2
�

=
m
∑

k=1

¡

pk
q

¤

+

�

(p+ q−1)2 − p(q2 −1)
8pq

�

.

Since q ⩾ 9, we have

p ∈ ((
p

2q−
p

q+1)2, (
p

2q+
p

q+1)2)

⊆

 

(q−1)
�p

q+1−
p

q−3
�2

4
,
(q−1)

�p

q+1+
p

q−3
�2

4

!

.

So,
(p+ q−1)2− p(q2−1)

8pq
< 0.

This implies

�

p
8q

�

2m+
p+ q−1

p

�2
�

⩽
m
∑

k=1

¡

pk
q

¤

−1<
m
∑

k=1

¡

pk
q

¤

.

Here, we also arrive at a contradiction.
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To prove (ii), we may proceed with a similar logic
as in the proof of (i). When F is the floor function,
we choose a sufficiently large m such that m ≡ |q|/2
(mod |q|) or m ≡ (|q| − 1)/2 (mod |q|) when q is even
or odd, respectively, to create a contradiction. When
F is the ceiling function, we choose a large enough m
such that m ≡ (|q| −2)/2 (mod |q|) or m ≡ (|q| −1)/2
(mod |q|) when q is even or odd, respectively, to create
a contradiction. 2

Theorem 7 Let p ∈ N and q ∈ Z\{0} with gcd(p, q) =
1. Suppose that |q|⩾ 8 and p≡−1 (mod |q|). Then, for
every a, b, c ∈ N, there exist infinitely many n ∈ N such
that each of the following holds.
(i) If q ⩾ 1, then

n
∑

k=1

F
�

pk
q

�

̸=
�

p(an+ b)2

qc

�

.

(ii) If q ⩽ −1, then

n
∑

k=1

F
�

pk
q

�

̸=
�

p(an+ b)2

qc

�

.

Proof : If p ̸∈ ((
p

2|q|−
p

|q|+1)2, (
p

2|q|+
p

|q|+1)2),
then the statement holds by Theorem 4. So, we will
only consider p that lie in this interval. We will first
prove (i) for the case that F is the floor function.
Assume on the contrary that there are a, b, c ∈ R with
c ̸= 0 such that the inequality holds for a finite number
of n ∈ N. By Theorem 1, there exists N ∈ N such that

p(an+ b)2

qc
=

p
8q

�

2n+
p− q+1

p

�2

=
4n(pn+ p− q+1)

8q
+
(p− q+1)2

8pq

for n⩾ N . There are two cases to consider.
Case q is even. Let m ⩾ N such that m ≡ q/2

(mod q). Then, by Lemma 4 and Lemma 6, we have

m
∑

k=1

�

pk
q

�

=
p

2q

�

m
�

m+
p− q+1

p

�

−
q
2

�

q
2
+

p− q+1
p

��

+
q/2
∑

k=1

�

pk
q

�

=
4m(pm+ p− q+1)− q(pq+2p−2q+2)

8q

+
(p+1)(q+2)−4q

8

=
4m(pm+ p− q+1)− q2

8q
.

Therefore,
�

p
8q

�

2m+
p−q+1

p

�2
�

=
m
∑

k=1

�

pk
q

�

+

�

(p−q+1)2

8pq
+

q
8

�

.

Since q ⩾ 8, we have

(p− q+1)2

8pq
+

q
8
⩾

q
8
⩾ 1.

This implies

�

p
8q

�

2m+
p−q+1

p

�2
�

⩾
m
∑

k=1

�

pk
q

�

+1>
m
∑

k=1

�

pk
q

�

.

Hence, we arrive at a contradiction.
Case q is odd. Let m ⩾ N such that m ≡ (q− 1)/2

(mod q). Then, by Lemma 4 and Lemma 6, we have

m
∑

k=1

�

pk
q

�

=
p

2q

�

m
�

m+
p− q+1

p

�

−
q−1

2

�

q−1
2
+

p− q+1
p

��

+
(q−1)/2
∑

k=1

�

pk
q

�

=
4m(pm+p−q+1)−(q−1)(pq+p−2q+2)

8q

+
(p+1)(q−1)(q+1)

8q
−

q−1
2

=
4m(pm+ p− q+1)− (q2 −1)

8q
.

Hence,

�

p
8q

�

2m+
p− q+1

p

�2
�

=
m
∑

k=1

�

pk
q

�

+

�

(p− q+1)2

8pq
+

q2−1
8q

�

.

Since q ⩾ 9, we have

(p− q+1)2

8pq
+

q2−1
8q
⩾

q2−1
8q

> 1.

This implies

�

p
8q

�

2m+
p− q+1

p

�2
�

⩾
m
∑

k=1

�

pk
q

�

+1>
m
∑

k=1

�

pk
q

�

.

Here, we also arrive at a contradiction.
Next, we will prove (i) for the case that F is the

ceiling function. We may follow a similar logic by
using a proof by contradiction. There are two cases
to consider.

Case q is even. We consider m⩾ N such that m≡
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(q−2)/2 (mod q). By Lemma 4 and Lemma 6, we have

m
∑

k=1

¡

pk
q

¤

=
p

2q

�

m
�

m+
p+ q−1

p

�

−
q−2

2

�

q−2
2
+

p+ q−1
p

��

+
(q−2)/2
∑

k=0

¡

pk
q

¤

=
4m(pm+ p+ q−1)− (q−2)(pq+2q−2)

8q

+
(p+1)(q−2)

8

=
4m(pm+ p+ q−1)− (q−2)2

8q
.

Thus,

�

p
8q

�

2m+
p+ q−1

p

�2
�

=
m
∑

k=1

¡

pk
q

¤

+

�

(p+ q−1)2+ p(q−2)2

8pq

�

.

By expansion, we can see that

(p+q−1)2+p(q−2)2

8pq
=

p
8q
+

q
8p
+

1
8pq
+

1
4q
−

1
4p
+

q
8
−

1
4

.

Note that p ⩾ q− 1 since p ≡ −1 (mod q) and p ∈ N.
If q = 8, then p ⩾ 7 and so

(p+ q−1)2+ p(q−2)2

8pq
=

p
64
+

49
64p

+
25
32
⩾ 1.

If q ⩾ 10, then

(p+q−1)2+p(q−2)2

8pq
⩾

p
8q
+

1
p
+

1
8pq
+

1
4q
+1⩾ 1.

This implies
�

p
8q

�

2m+
p+q−1

p

�2
�

⩾
m
∑

k=1

¡

pk
q

¤

+1>
m
∑

k=1

¡

pk
q

¤

.

Hence, we arrive at a contradiction.
Case q is odd. We consider m ⩾ N such that m ≡

(q−1)/2 (mod q). By Lemma 4 and Lemma 6, we have

m
∑

k=1

¡

pk
q

¤

=
p

2q

�

m
�

m+
p+ q−1

p

�

−
q−1

2

�

q−1
2
+

p+ q−1
p

��

+
(q−1)/2
∑

k=0

¡

pk
q

¤

=
4m(pm+p+q−1)−(q−1)(pq+p+2q−2)

8q

+
(p+1)(q−1)(q+1)

8q

=
4m(pm+ p+ q−1)− (q−1)(q−3)

8q
.

Thus,

�

p
8q

�

2m+
p+ q−1

p

�2
�

=
m
∑

k=1

¡

pk
q

¤

+

�

(p+ q−1)2+ p(q−1)(q−3)
8pq

�

.

By expansion, we can see that

(p+q−1)2+p(q−1)(q−3)
8pq

=
p

8q
+

q
8p
+

1
8pq
+

1
8q
−

1
4p
+

q
8
−

1
4

.

Note that p ⩾ q− 1 since p ≡ −1 (mod q) and q ∈ N.
If q = 9, then p ⩾ 8 and so

(p+ q−1)2+ p(q−1)(q−3)
8pq

=
p

72
+

8
9p
+

8
9
⩾ 1.

If q ⩾ 11, then

(p+q−1)2+p(q−1)(q−3)
8pq

⩾
p

8q
+

9
8p
+

1
8pq
+

1
8q
+

9
8
⩾1.

This implies
�

p
8q

�

2m+
p+ q−1

p

�2
�

⩾
m
∑

k=1

¡

pk
q

¤

+1>
m
∑

k=1

¡

pk
q

¤

.

Here, we also arrive at a contradiction.
To prove (ii), we may proceed with a similar logic

as in the proof of (i). When F is the floor function, we
choose a sufficiently large m such that m≡ (|q| −2)/2
(mod |q|) or m ≡ (|q| − 1)/2 (mod |q|) when q is even
or odd, respectively, to create a contradiction. When
F is the ceiling function, we choose a large enough
m such that m ≡ |q|/2 (mod |q|) or m ≡ (|q| − 1)/2
(mod |q|) when q is even or odd, respectively, to create
a contradiction. 2

DISCUSSION AND CONCLUSION

In this work, we proposed how the simple formulas
for the sum of the floor or the ceiling function must
look like in Theorem 1, Theorem 2, and Theorem 3.
Then we discovered a bound for p depending on q that
makes the formula not hold for infinitely many n ∈ N
as presented in Theorem 4. We listed the pairs (p, q)
with 1 ⩽ |q| ⩽ 8 that make the formulas hold for all
n ∈ N as shown in Theorem 5. Lastly, we showed that
the formula does not hold when p ≡±1 (mod |q|) and
|q|⩾ 8 in Theorem 6 and Theorem 7.

For suggestions in future research, based on the
last two theorems, we predict that for every p ∈ N and
q ∈Z\{0}, there exists ρr ∈Z, where r ∈ {0,1, . . . , |q|−
1}, such that if p ≡ r (mod |q|) and |q| ⩾ ρr , then
the formulas do not exist for infinitely many n ∈ N.
It might also be possible to generalize the results for
a sum with irrational denominators (for example, by
considering continued fractions).
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