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ABSTRACT: In this paper, we shall extend some of the recent results regarding Fermat type differential equations,
which can include several known results for related results obtained earlier as special cases. Finally, we pose some
questions for further study.
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INTRODUCTION AND MAIN RESULTS

Let f :C→C∪{∞} be a meromorphic function in the
complex plane. We use ρ( f ) to denote the order of f ,
which is defined as

ρ( f ) = limsup
r→∞

log T (r, f )
log r

.

Any quantity satisfying S(r, f ) = o(T (r, f )), as r→∞
outside a possible exceptional set of finite logarithmic
measure, is denoted by S(r, f ). Moreover, Nevanlinna
theory is an important tool in this paper, its usual
notations and basic results come mainly from [1–3].

The classical Fermat-type functional equation is

f n+ gn = 1, (1)

where n is a positive integer. For n¾ 2, the entire solu-
tions or meromorphic solutions of (1) were completely
analyzed by Baker [4], Gross [5–7] and Montel [8].
For the convenience of the reader, we summarize these
proved results as follows.

Theorem 1 The solutions f and g of the functional
Eq. (1) are characterized as follows:
(1) if n= 2, the entire solutions

f = sin h and g = cos h,

where h is entire; the meromorphic solutions

f =
1−β2

1+β2
and g =

2β
1+β2

,

where β is a nonconstant meromorphic function;
(2) if n> 2, there are no nonconstant entire solutions;
(3) if n= 3, the meromorphic solutions

f =
1+ ℘

′(h(z))p
3

2℘(h(z))
, g =

1− ℘′(h(z))p
3

2℘(h(z))
η,

where h is a nonconstant entire function, η3 = 1
and ℘ remarked as the Weierstrass ℘-function that
satisfies (℘′)2 = 4℘3−1 under appropriate periods;

(4) if n > 3, there are no nonconstant meromorphic
solutions.

In 2004, Yang and Li [9] showed the differential
equation

( f (z))2+( f ′(z))2 = 1 (2)

has transcendental entire solutions only with the form
f (z) = 1

2 (P eαz + 1
P e−αz), where P, α are nonzero

constants.
In 2019, Han and Lü [10] proved the next result.

Theorem 2 The meromorphic solutions f of the follow-
ing differential equation

( f (z))n+( f ′(z))n = eαz+β (3)

must be entire functions and the following assertions
hold.
(i) For n= 2, either α= 0, and

f (z) = eβ/2 sin(z+ b) or f (z) = d e(αz+β)/2.

(ii) For n ¾ 3, then f (z) = d e(αz+β)/n, where α, β , b
and d are constants.

Some related results can be referred to [11, 12]
and references therein. It is natural to propose the
problem: what about the entire solutions of Eq. (3)
when the right hand side of Eq. (3) eαz+β is replaced
by eng(z), the left-hand side of Eq. (3) f ′ is replaced by
f (k), where g is a polynomial and k ¾ 1 is an integer.
In this study, we try to solve the above problem and
obtain the following theorem.

Theorem 3 Assume that k (¾ 1), n (¾ 2) are integers, g
is a nonconstant polynomial. The meromorphic solution
f of the differential equation

( f (z))n+( f (k)(z))n = eng(z) (4)
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must be an entire function and g(z) = az + b, where
a ( 6= 0), b are constants. Moreover, f can be character-
ized as follows:
(1) if n= 2, the entire solutions f (z) = eaz+B or f (z) =

eaz+b sin(cz+ d);
(2) if n ¾ 3, then f (z) = eaz+B, where c, d and B are

constants.

Obviously, Theorem 3 is an extension of Theo-
rem 2. Next, we give some examples to show that the
conclusions of Theorem 3 indeed occur.

Example 1 We consider f (z) = e
1p
2

z sin( 1p
2
z), which

satisfies the following equation

f 2+( f ′′)2 = e
p

2z .

Example 2 The equation

f 2+( f ′′′)2 = e
p

3z+1

has the entire solution

f (z) = e
p

3
2 z+ 1

2 sin(
1
2

z+1).

Example 3 Let a =
p

2+
p

2
2 , b = 1p

2·
p

2+
p

2
. Then the

equation
f 2+( f (4))2 = e2az (5)

has the entire solution f (z) = eaz sin(bz).

We will give the basic computation for the readers.
In fact, it follows by (5) that

f ′(z) = [a sin(bz)+ b cos(bz)]eaz ,

f ′′(z) = [(a2− b2) sin(bz)+ 2ab cos(bz)]eaz ,

f ′′′(z) = [(a3−3ab2) sin(bz)+(3a2 b−b3) cos(bz)]eaz ,

f (4)(z) = [(a4+ b4−6a2 b2) sin(bz)

+ (4a3 b−4ab3) cos(bz)]eaz .

According to the values of a and b, after careful
calculation, it is immediately obtained

a4+ b4−6a2 b2 = 0, 4a3 b−4ab3 = 1,

which gives f (4)(z) = eaz cos(bz). Thus, we find f (z) =
eaz sin(bz) is a solution of (5).

In 2016, Liu and Yang [13] generalized (2), and
obtained the following result.

Theorem 4 If ω ∈ C and ω2 6= 1, 0, then the equation

( f (z))2+2ω f (z) f ′(z)+ ( f ′(z))2 = 1 (6)

has no transcendental meromorphic solutions.

The motivation of this paper arise from the study
of the above result, we will continue to discuss the
related questions and prove the following result.

Theorem 5 Assume that k (¾ 1) is an integer, g is a
nonconstant polynomial, ω ∈ C and ω2 6= 1, 0. The
meromorphic solution f of the differential equation

( f (z))2+2ω f (z) f (k)(z)+ ( f (k)(z))2 = e2g(z) (7)

must be an entire function and g(z) = az+ b and f can
be characterized as follows:

f (z) = eaz+B or f (z) = eaz+B sin(cz+ d),

where a ( 6= 0), b, c, d and B are constants.

Now, we provide some examples to show that the
conclusions of Theorem 5 indeed occur.

Example 4 Let ω =
p

2. Then f (z) = 1
i
p

2
e(i−
p

2)z+1

solves the equation

f 2+2
p

2 f f ′+( f ′)2 = e2[(i−p2)z+1].

Example 5 For any positive integer k, we see that
f (z) = eaz+b is a solution of the equation

f 2+2ω f f (k)+( f (k))2 = e2(az+b),

where a, b are constants with ak +2ω = 0.

Example 6 Taking ω = 1/2. Then f (z) = 2p
3

e− 1
2 z

sin(
p

3
2 z) is a solution of the equation

f 2+ f f ′+( f ′)2 = e−z .

Example 7 Takingω= 3. Then f (z) = 1
2
p

2i
e
p

2 i z sin z
is a solution of the equation

f 2+6 f f ′′ +( f ′′)2 = e2
p

2 i z ,

and f (z) = 1
2
p

2 i
ei z sin(

p
2z) is a solution of the equa-

tion
f 2+6 f f ′′ +( f ′′)2 = e2 i z .

By examining the proof of Theorem 5 in the fol-
lowing section carefully, we have

Theorem 6 Suppose that k (¾ 1) is an integer, g is a
constant, ω ∈ C and ω2 6= 1, 0. Then the differential
equation

( f (z))2+2ω f (z) f (k)(z)+ ( f (k)(z))2 = e2g (8)

has no transcendental meromorphic solutions.

LEMMAS

We now state some results that will be used to prove
Theorem 3 and Theorem 5.
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Lemma 1 ([1]) Suppose that f is meromorphic and
has only a finite numbers of poles in the plane, and that
f , f (l) have only a finite number of zeros for some l ¾ 2.
Then

f (z) =
P1(z)
P2(z)

eP3(z),

where P1, P2 and P3 are polynomials. If, further, f and
f (l) have no zeros, then f (z) = eAz+B or f (z) = (Az +
B)−m, where A, B are constants such that A 6= 0 and m is
a positive integer.

Lemma 2 ([1]) Suppose that g is a transcendental
meromorphic function and h is a nonconstant entire
function. Then

lim
r→∞

T (r, g(h))
T (r, h)

=∞.

A differential polynomial P(z, f ) in f is a finite
sum of products of f , derivatives of f , with all the
coefficients being small functions of f in the sense of
Nevanlinna theory, namely

P(z, f ) =
∑
λ∈I

aλ f λ0( f ′)λ1 · · · ( f (n))λn , (9)

where I is a finite index set. The degree of a single term
in P(z, f ) will now be defined as

λ := λ0+λ1+ · · ·+λn.

Of course, the degree of P(z, f ) will then be de-
fined as Λ :=maxλ∈I λ.

Lemma 3 ([1, 14]) Let f be a meromorphic solution of

f nP1(z, f ) = P2(z, f ),

where P1(z, f ) and P2(z, f ) are polynomials in f and
its derivatives with meromorphic coefficients {aλ|λ ∈ I}
such that T (r, aλ) = S(r, f ) for all r ∈ I . If the total
degree of P2(z, f ) as a polynomial in f and its derivatives
is less than or equal to n, then m(r, P1(r, f )) = S(r, f ).

PROOF OF THEOREM 3

From (4), after a routine operation, it is immediately
concluded that f must be an entire function. Further,
we rewrite (4) as

[ f e−g]n+[ f (k) e−g]n = 1. (10)

Suppose that f e−g is a constant, say c1. Then c1 6= 0
since f is a transcendental entire function and (10)
shows that f (k) e−g = c2, where c2 is a nonzero con-
stant. Moreover, we see that f and f (k) have no zeros.
If k¾ 2, it follows by Lemma 1 that f (z) = eAz+B, where
A, B are constants such that Ak = c2/c1. So, we can
infer that g(z) = Az + b, where b is a constant. In
the case of k = 1, using f ′/ f = c2/c1 := a, we can

immediately deduce f (z) = eaz+B and g(z) = c2
c1

z+ b =
az+ b.

Next, let’s focus on considering that f e−g is not a
constant. As long as we pay attention to Theorem 1,
n must be equal to 2. Otherwise f e−g and f (k) e−g

must be constants for n ¾ 3. In this case, (10) and
Theorem 1 imply

f e−g = sin h, f (k) e−g = cos h, (11)

where h is an entire function.
Set α1 = g ′, β1 = h′. Then from (11), we have

f ′ = (α1 sin h+β1 cos h)eg , (12)

which tells us

f ′′ = (α2 sin h+β2 cos h)eg , (13)

where α2 = g ′′ +(g ′)2− (h′)2, β2 = 2g ′h′+ h′′.
Again, it follows by (13) that

f ′′′ = (α3 sin h+β3 cos h)eg ,

α3 = α
′
2+α1α2−β1β2

= g ′′′ +3g ′g ′′ −3h′h′′ −3g ′(h′)2+(g ′)3,

β3 = β
′
2+α1β2+α2β1

= h′′′ +3g ′h′′ +3g ′′h′+3(g ′)2h′− (h′)3.

(14)

Thus, using the same way, for k ¾ 3, we deduce

f (k) = (αk sin h+βk cos h)eg ,

αk = α
′
k−1+α1αk−1−β1βk−1,

βk = β
′
k−1+α1βk−1+αk−1β1.

(15)

Moreover, it follows by (15) that the expressions for
αk and βk can be given using g ′, g ′′, h′, h′′, . . . . For
example

α4 = g(4)+4g ′g ′′′+3(g ′′)2+6(g ′)2 g ′′+(g ′)4 −6(g ′)2(h′)2

−6g ′′(h′)2 −12g ′h′h′′ −4h′h′′′ +(h′)4 −3(h′′)2,

β4 = h(4)+4g ′h′′′+6g ′′h′′+4g ′′′h′+12g ′g ′′h′+4(g ′)3h′

+6(g ′)2h′′ −6(h′)2h′′ −4g ′(h′)3,

α5 = g(5) +5g ′g(4) +10g ′′g ′′′ +10(g ′)2 g ′′′ +15g ′(g ′′)2

+10(g ′)3 g ′′ +(g ′)5 −10(g ′)3(h′)2 −30g ′g ′′(h′)2

−10g ′′′(h′)2 −30(g ′)2h′h′′ −30g ′′h′h′′ −20g ′h′h′′′

+10(h′)3h′′ −5h′h(4) −15g ′(h′′)2 −10h′′h′′′ +5g ′(h′)4,

β5 = h(5) +5g ′h(4) +10g ′′h′′′ +10(g ′)2h′′′ +10g ′′′h′′

+30g ′g ′′h′′ +5g(4)h′ +10(g ′)3h′′ +15(g ′′)2h′

+30(g ′)2 g ′′h′ +20g ′g ′′′h′ −30g ′(h′)2h′′ −10(g ′)2(h′)3

−10g ′′(h′)3 −10(h′)2h′′′ +5(g ′)4h′ −15h′(h′′)2 +(h′)5.
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Since g is a nonconstant polynomial and h is a
nonconstant entire function, according to Lemma 2,
when α j 6≡ 0 and β j 6≡ 0, we claim that αk, βk are small
functions of sin h, cos h and cot h.

Case 1 If k = 1, then by making use of (11) and
(12), we obtain that

g ′ sin h= (1− h′) cos h. (16)

It is easy to see that g ′ 6≡ 0 because we have assumed
that g is a nonconstant polynomial. Applying Lemma
Lemma 2 to (16) gives

T (r, cot h) = T (r,
g ′

1− h′ )

¶ T (r, h′)+O(log r) = S(r, cot h), (17)

which is a contradiction.
Case 2 Suppose that k = 2. Now, by using (11)

and (13), we have

α2 sin h+β2 cos h= cos h. (18)

Firstly, we assume thatα2 6≡ 0. Now, applying Lemma 2
to (18) implies

T (r, cot h) = T (r,
α2

1−β2
)

¶ 3T (r, h′)+O(log r) = S(r, cot h), (19)

which is a contradiction. Therefore, we must have
α2 = g ′′ + (g ′)2 − (h′)2 ≡ 0 and 2g ′h′ + h′′ − 1 ≡ 0.
Note that g is a nonconstant polynomial, so that h
can only be a nonconstant polynomial after calculation.
Moreover, deg h = deg g = 1. Thus, g(z) = az + b,
h(z) = cz + d and f (z) = eaz+b sin(cz + d), where a,
b, c, d are constants with a = ±c, 2ac = 1.

Case 3 Assume that k ¾ 3. Let us start with k = 3.
If α3 6≡ 0, then β3−1 6≡ 0. It follows by (14), (11) and
Lemma 2 that

T (r, cot h) = T (r,
α3

1−β3
)

= O{T (r, h′)}+O(log r) = S(r, cot h),

this is impossible. Consequently, we get α3 ≡ 0, and
β3−1≡ 0, that is

g ′′′ +3g ′g ′′ −3h′h′′ −3g ′(h′)2+(g ′)3 ≡ 0 (20)

and

h′′′ +3g ′h′′ +3g ′′h′+3(g ′)2h′− (h′)3−1≡ 0. (21)

Suppose that h′ is a transcendental entire function.
From (21), we deduce

(h′)2h′ = h′′′ +3g ′h′′ +3g ′′h′+3(g ′)2h′−1,

which and Lemma 3 show that m(r, h′) = S(r, h′), this
is absurd. Thus, h′ is a polynomial. Next, we will prove
g ′ and h′ are nonzero constants. If not, we may set

g ′(z) = asz
s + as−1zs−1+ · · ·+ a0,

h′(z) = btz
t + bt−1z t−1+ · · ·+ b0,

where a j ( j = 0,1, . . . , s), bl (l = 0,1, . . . , t) are con-
stants with as bt 6= 0 and s ¾ 1, t ¾ 1. By carefully
comparing the coefficients of Eqs. (20) and (21) to the
same power, it is not difficult to work out

3as b2
t = a3

s and 3a2
s bt = b3

t ,

which, of course, is impossible. By the above discus-
sion, we see that g ′ and h′ are nonzero constants.
Let g(z) = az + b, h(z) = cz + d. Further, by (20)
and (21), we obtain a2 = 3c2, 8c3 = 1, and f (z) =
eaz+b sin(cz+ d).

For k ¾ 4, using exactly the same ideas as above,
it can be shown that αk ≡ 0 and βk ≡ 1, which yield
g and h are linear (first-order) polynomials. Thus,
g(z) = az+b, h(z) = cz+d and f (z) = eaz+b sin(cz+d).

This completes the proof of Theorem 3.

PROOF OF THEOREM 5

Assume that f is a solution of (8), it is easy to see that
f must be an entire function. To prove this Theorem,
first of all, we rewrite (8) as follows

[i
p
ω2−1 f ]2+[ω f + f (k)]2 = e2g ,

which gives

[i
p
ω2−1 f e−g]2+[(ω f + f (k))e−g]2 = 1. (22)

Obviously, by (22) and Theorem 1, we have

i
p
ω2−1 f e−g = sin h, (ω f + f (k))e−g = cos h, (23)

where h is an entire function.
Moreover, it follows by (23) that

f =
1

i
p
ω2−1

eg sin h,

f (k) = (cos h+
iωp
ω2−1

sin h)eg .
(24)

Thus, we apply the same idea as proving Theorem 3
and obtain

f ′ = 1

i
p
ω2−1

(α1 sin h+β1 cos h)eg , (25)

where α1 = g ′, β1 = h′.

f ′′ = 1

i
p
ω2−1

(α2 sin h+β2 cos h)eg , (26)
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where α2 = g ′′ +(g ′)2− (h′)2, β2 = 2g ′h′+ h′′.
Consequently, when k ¾ 2, we have

f (k) =
1

i
p
ω2−1

(αk sin h+βk cos h)eg ,

αk = α
′
k−1+α1αk−1−β1βk−1,

βk = β
′
k−1+α1βk−1+αk−1β1.

(27)

Suppose that h is a constant. Then, by (24), we see f
and f (k) have no zeros. If k ¾ 2, it follows by Lemma 1
that f (z) = eAz+B, where A, B are constants. So, we
can infer that g(z) = Az + b, where b is a constant. If
k = 1, then (24) and (25) give g ′ = i

p
ω2−1cot h−ω.

Therefore, g(z) = (i
p
ω2−1cot h−ω)z + b := az + b

and f (z) = eaz+B.
In the following, we may suppose that h is a

nonconstant entire function, according to Lemma 2,
we claim that α j , β j ( j = 1,2, . . . , k) are small functions
of sin h, cos h and cot h.

Case 1 If k = 1, then (24) and (25) imply

(ω+ g ′) sin h= i(
p
ω2−1+ ih′) cos h. (28)

Now, applying Lemma 2 to (28), one has g ′ =−ω, h′ =
i
p
ω2−1 and thus g(z) =−ωz+b, h(z) = i

p
ω2−1z+

d and f (z) = 1
i
p
ω2−1

e−ωz+b sin(i
p
ω2−1 z+ d), where

b and d are constants.
Case 2 If k ¾ 2, then (24) and (27) imply

(ω+αk) sin h= i(
p
ω2−1+ iβk) cos h. (29)

Now, applying Lemma 2 to (29), one has αk = −ω,
βk = i

p
ω2−1. Now, by the similar methods employed

as in the proof of Theorem 3, we can obtain g(z) =
az+b, h(z) = cz+d and f (z) = 1

i
p
ω2−1

eaz+b sin(cz+d),
where a, b, c and d are constants.

The proof of Theorem 5 is completed.

CONCLUSION

By examining the proof of Theorem 3 carefully, we will
find that if n ¾ 3 or k = 1, the condition that g is
a nonconstant polynomial is not necessary. In other
words, the conclusion of Theorem 3 still holds if we
replace the nonconstant polynomial g with a general
nonconstant entire function when n¾ 3.

Now, an important and interesting question is
raised as follows:

Question 1 What can be said if the nonconstant
polynomial g is replaced by a general nonconstant
entire function when n= 2 in Theorem 3?

Clearly, Theorem 5 is an extension and supplement
of Theorem 4. In addition, Zhang, Yang and Ng [15]
proved the following conclusion:

Theorem 7 Let k ¾ 2 be an integer and a be a non-
constant entire function. Then the differential equation
f 2+ a( f (k))2 = 1 has no admissible entire solution.

Some related questions were studied by Zhang and
Liao [16] and some related results can be referred ref-
erences therein. In [17], Gross, Osgood and Yang gave
necessary and sufficient conditions for the existence of
entire solutions to the functional equation ϕ2+ gφ2 =
h, where g, h are given nonzero polynomials in z.
We think such arguments can then used to produce
transcendental entire function solutions of p f 2+qg2 =
e2g . The special case is p f 2+q( f (k))2 = e2g , where p, q
and g are polynomials with p q 6≡ 0. For possible future
discussion, we are very interested in the following
question:

Question 2 How to find out all admissible solu-
tions to the following equation

[ f (z)]n+ r(z)[ f (z)]s[L(z, f )]t +[L(z, f )]n = eng(z),

where n, k, s, t are positive integers with s + t ¶ n,
L(z, f ) =
∑k

j=1 b j f ( j), b1, . . . , bk are polynomials with
bk 6≡ 0, and r, g are entire functions?
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