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INTRODUCTION

All groups in this paper are finite, G is always a finite
group. π denotes a set of primes, Gπ means a Hall π-
subgroup of G, Oπ(G) is the largest normalπ-subgroup
of G, and Oπ(G) is the subgroup generated by all
π′-elements of G. We use conventional notions and
notations, as in [1, 2].

Recall that a class F of groups is called a formation
if F is closed under taking homomorphic images and
G/(N1∩N2) ∈ F if G/N1, G/N2 ∈ F for arbitrary normal
subgroups N1 and N2 of G. A formation F is called
saturated if G/Φ(G) ∈ F implies that G ∈ F. We use U
to denote the formation of all supersolvable groups.
It is clear that U is a saturated formation. A chief
factor H/K of a group G is said to be F-central in G
if (H/K)⋊ (G/CG(H/K)) ∈ F. A normal subgroup N
of G is said to be pF-hypercentrally embedded (resp.,
F-hypercentrally embedded) in G if either N = 1 or
every p-chief factor of G (resp., chief factor of G)
below N is F-central in G. The product of all nor-
mal pF-hypercentrally embedded subgroups (resp., F-
hypercentrally embedded subgroups) is called the pF-
hypercentre (resp., F-hypercentre) of G and denoted
by ZpF(G) (resp., ZF(G)). Clearly, a normal subgroup
N of group G is pF-hypercentrally embedded in G if
and only if N ⩽ ZpF(G).

A subgroup H covers A/B if HA= HB and avoids
A/B if H ∩ A = H ∩ B, and has the cover-avoiding
property in G if H either covers or avoids every chief
factor of G (see [3]), in this case we may also say
that H is a CAP-subgroup of G. A subgroup H of G
is said to be semi cover-avoiding in G if there is a chief
series 1 = G0 < G1 < · · · < Gt = G of G such that for
every j = 1,2, · · · , t, H either covers G j/G j−1 or avoids
G j/G j−1 (see [4]), in this case, H is also called a semi
CAP-subgroup of G or partial CAP-subgroup of G in
some literatures.

In recent years, many scholars have been inter-
ested in the influence of some property of the inter-
sections between some subgroups and the subgroups

Op(G), or Op(G∗p), or GF on the structure of a group
G and give some criteria for p-supersolvability and p-
nilpotency. For example, in [5], Guo and Isaacs inves-
tigated the supersolvability of a group G by assuming
that H ∩Op(G)�Op(G) for any normal subgroup H of
P with order d, where P ∈ S ylp(G) and d is a power
of p with 1 ⩽ d < |P|. In [6], the author proved that
G is p-supersolvable if and only if H ∩ Op(G∗p) is s-
permutable in G for all subgroups H ⩽ P with |H|= pe,
where e is an integer with e ⩾ 2, P ∈ S ylp(G) and
|P|⩾ pe+1. In addition, there are many literatures that
have also investigated the influence of the properties
of the intersections mentioned above on a group G
(such as [7–11]), the authors obtained many results on
p-supersolvability, p-nilpotency and p-supersolvable
hypercenter of G. Our motivation is to develop such
research by replacing the subgroups Op(G), or Op(G∗p),
or GF with general normal subgroups and obtain some
new results. In [12], Lei, Li and Guo considered
that the intersections between some subgroups and
a normal subgroup satisfy permutability, their main
theorems generalized many known results. In this
paper, we continue to study this question and obtain
some new characterizations for hypercentrally embed-
ded property of normal subgroups of a finite group
G by assuming that the intersections between some
subgroups with fixed order and a normal subgroup
are CAP-subgroups of G, which generalize the main
theorem of [5].

PRELIMINARIES

In this section, for the sake of convenience, we present
some basic results which will be used in the proofs of
the Main Results section in this paper.

Lemma 1 ([13]) Let S be a CAP-subgroup of G and N
a normal subgroup of G. Then
(1) N is a CAP-subgroup of G;
(2) SN/N is a CAP-subgroup of G/N;
(3) SN is a CAP-subgroup of G;
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(4) S ∩N is a CAP-subgroup of G.

Lemma 2 ([13]) Every minimal normal subgroup of G
is a minimal CAP-subgroup of G.

Lemma 3 ([14]) Let G be a p-supersolvable group.
Then the derived subgroup G′ of G is p-nilpotent. In
particular, if Op′(G) = 1, then G has a unique (normal)
Sylow p-subgroup.

Lemma 4 ([15]) Let C be a Thompson critical sub-
group of a p-group P. Then the group D := Ω(C) is
of exponent p if p is an odd prime, or exponent 4 if P
is non-abelian 2-group. Moreover, every non-trivial p′-
automorphism of P induces a non-trivial automorphism
of D.

Lemma 5 ([16]) Let F be a solvably saturated forma-
tion and P a normal p-subgroup of G and C is a
Thompson critical subgroup of P. If eitherΩ(C)⩽ ZF(G)
or P/Φ(P)⩽ ZF(G/Φ(P)), then P ⩽ ZF(G).

Lemma 6 ([12]) Let F be a saturated formation, E be
a normal subgroup of a finite group G and N a normal
subgroup of G such that N ⩽ Φ(E). Then E ⩽ ZpF(G) if
and only if E/N ⩽ ZpF(G/N).

MAIN RESULTS

In this section, we present the main results, which
give some criterions for pF-hypercentrally embedded
property of subgroups.

Theorem 1 Let E be a normal subgroup of a finite group
G and N a minimal normal subgroup of G contained in E
and p be a prime divisor of |G|. Assume that Np > 1 and
there is a normal subgroup P of Gp such that 1< Np ⩽ P
and H∩E is a CAP-subgroup of G for any subgroup H of
P with order d, where Gp ∈ S ylp(G) and d is a power of
p with 1 < d < |P|. Then N is a p-group with |N | ⩽ d.
Furthermore, if |N |= d, or |N |< d and N ≰ Φ(P), then
|N |= p.

Proof : Since Np > 1, we may let

1< T0 ⩽ T1 ⩽ · · ·⩽ Tn = Np ⩽ · · ·⩽ Tk = P ⩽ · · ·⩽ Tt = Gp

be a normal series of Gp such that |Ti/Ti−1| = p for
any 1 ⩽ i ⩽ t. Assume that |Ti | = d. It is clear that
Ti∩N = Ti∩Tn ̸= 1. By the hypothesis and Lemma 1(4),
Ti ∩ N = Ti ∩ E ∩ N is a CAP-subgroup of G. Then by
Lemma 2 and the minimality of N , we have Ti∩N = N .
This implies that N is a p-group and |N |⩽ |Ti |= d.

Assume |N | = d and let N � U ⩽ P. We can pick
a subgroup U1 of U such that N ≰ U1 and |U1| = d. If
not, then N is the unique maximal subgroup of U with
order d and so Φ(U) = N . This shows that U is cyclic.
It follows that N is also cyclic and so |N | = p. By the
hypothesis and Lemma 1(4), we get that U1 ∩ N is a
CAP-subgroup of G. By Lemma 2 and the minimality

of N , we have U1 ∩ N = 1 and so |N | = |U1| = p, as
required. Assume that |N | < d and N ≰ Φ(P). Then
n < i and N ≰ Φ(Ti+1) by [1, Hilfssatz III.3.3]. Hence
we can pick a maximal subgroup K of Ti+1 such that
N ≰ K . Clearly, |K | = d. It is easy to see that K ∩ N
is a CAP-subgroup of G. Then by Lemma 2 and the
minimality of N , we have K∩N = 1 and so |N |= p. 2

Based on Theorem 1, we can obtain the following
Theorem 2.

Theorem 2 Let F be a saturated formation containing
U and E be a normal subgroup of a finite group G such
that G/E ∈ F and p be a prime divisor of |G|. Let K be
a normal subgroup of G and P ∈ S ylp(K). Assume that
H ∩ E is a CAP-subgroup of G for any normal subgroup
H of P with order d, where d is a power of p with 1 ⩽
d < |P|. Then either K ⩽ ZpF(G) or else |P ∩ E|> d.

Proof : Let (G, E, K) be a counterexample with
|G| + |E| + |K | minimal order and let T = P ∩
E. Then K ≰ ZpF(G) and |T | ⩽ d. Assume that
Op′(G) > 1. By Lemma 1(2), it is easy to prove
that (G/Op′(G), EOp′(G)/Op′(G), KOp′(G)/Op′(G) satis-
fies the hypothesis of theorem. By the minimal choice
of (G, E, K), we have KOp′(G)/Op′(G)⩽ ZpF(G/Op′(G))
or |POp′(G)/Op′(G)∩ EOp′(G)/Op′(G)| > d, which im-
plies that either K ⩽ ZpF(G) or |P ∩ E| > d, a con-
tradiction. Hence Op′(G) = 1. Since G/E ∈ F, by
[2, Proposition IV.1.5], every chief factor of G/E is F-
central. In particular, every chief factor of G/E below
KE/E is F-central. Let A/B be a chief factor of G
such that K ∩ E ⩽ B ⩽ A ⩽ K , then B ∩ E = A ∩ E
and so A/B is G-isomorphic to AE/BE. It is clear that
CG(A/B) ⩽ CG(AE/BE). Assume that x ∈ CG(AE/BE),
then [x , A] ⩽ [x , AE] ⩽ BE. Since A� G, [x , A] ⩽ A.
Hence [x , A] ⩽ A ∩ BE = B(A ∩ E) = B and so x ∈
CG(A/B). Thus CG(A/B) = CG(AE/BE). Since AE/BE
is G-isomorphic to A/B,

(A/B)⋊(G/CG(A/B))∼= (AE/BE)⋊(G/CG(AE/BE))∈ F.

Hence K/K∩E ⩽ ZpF(G/K∩E). If T = 1, then K∩E is
a p′-group. But Op′(G) = 1, so K∩E = 1. It follows that
K ⩽ ZpF(G), a contradiction. This contradiction shows
that T ̸= 1. Let N be a minimal normal subgroup of
G contained in T G . Clearly, N ⩽ T G ⩽ E ∩ K . Since
|T | ⩽ d and T � P, there is a normal subgroup H of
P such that T ⩽ H ⩽ P and |H| = d. Hence T =
P ∩ E = H ∩ E is a CAP-subgroup of G. If T avoids
N/1, then T ∩ N = P ∩ N = 1. It implies that N is
a p′-subgroup, which contradicts Op′(G) = 1. Hence
T must covers N/1, that is, T N = T , so N ⩽ P ∩ E.
This shows that |N | ⩽ d. Assume that |N | = d, then
N = P∩E = T is a Sylow p-subgroup of K∩E. It implies
that (K ∩ E)/N is a p′-group. By the previous proof,
we have K/(K ∩ E) ⩽ ZpF(G/(K ∩ E)). Hence K/N ⩽
ZpF(G/N). Assume that |N | < d. By Lemma 1(2), we
can get that (G/N , E/N , K/N) satisfies the hypothesis.
Hence K/N ⩽ ZpF(G/N) or |P/N ∩ E/N | > d/|N | by
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the minimal choice of (G, E, K). If |P/N ∩ E/N | >
d/|N |, then |T | = |P ∩ E| > d, a contradiction. Hence
K/N ⩽ ZpF(G/N) whether |N | < d or |N | = d. If
N ⩽ Φ(K), then by Lemma 6, we have K ⩽ ZpF(G),
a contradiction. Hence we assume that N ≰ Φ(K) and
so N ≰ Φ(P). Let M be any maximal subgroup of P.
Since M ∩ E � P and |M ∩ E| ⩽ |P ∩ E| ⩽ d, there is
a normal subgroup H of P such that M ∩ E ⩽ H ⩽ M
and |H| = d. Hence M ∩ E = H ∩ E is a CAP-subgroup
of G. By Theorem 1, |N | = p. Hence N ⩽ ZpF(G),
which implies that K ⩽ ZpF(G), a contradiction. The
contradiction completes the proof. 2

By Theorem 2, we can easily obtain the following
corollaries.

Corollary 1 Let E be a normal subgroup of a finite
group G such that G/E is supersolvable and p be a prime
divisor of |G| and let P ∈ S ylp(G). Assume that H ∩ E
is a CAP-subgroup of G for any normal subgroup H of P
with order d, where d is a power of p with 1 ⩽ d < |P|.
Then either G is p-supersolvable or else |P ∩ E|> d.

Corollary 2 ([5]) Let p be a prime, let P ∈ S ylp(G),
where G is a finite group, and let d be a power of p such
that 1 ⩽ d < |P|. Write U = Op(G), and assume that
H ∩ U � U for all subgroups H � P with |H| = d. Then
either G is p-supersolvable or else |P ∩U |> d.

Remark 1 Corollary 2 represents one of the main
theorems in [5]. It is easy to observe that this result
can be directly derived from Theorem 2. Indeed, since
H∩Op(G)�Op(G) and H�P, we have H∩Op(G)�G.
Clearly, H ∩Op(G) is a CAP-subgroup of G. Hence this
result is a direct corollary of Theorem 2.

Theorem 3 Let F be a saturated formation containing
U and E be a normal subgroup of a finite group G such
that G/E ∈ F and p be a prime divisor of |G|. Let K be
a normal subgroup of G and P ∈ S ylp(K). Then K ⩽
ZpF(G) if one of the following holds:
(1) H ∩ E is a CAP-subgroup of G for any subgroup H

of P with order p. If P is a non-abelian 2-group,
assume further that H ∩ E is a CAP-subgroup of G
for any cyclic subgroup H of P with order 4.

(2) p = 2, |P| ⩾ 8 and H ∩ E is a CAP-subgroup of G
for any subgroup H of P with order 4.

Proof : Let (G, E, K) be a counterexample with |G| +
|E|+ |K | minimal order. Similar to the proof of The-
orem 2, we may assume that Op′(G) = 1. By the
hypothesis, G/E ∈ F and K � G. Similar to the proof
of Theorem 2, it is easy to prove that K/(K ∩ E) ⩽
ZpF(G/(K ∩ E)). If P ∩ E = 1, then K ∩ E is a p′-
group and so K ∩ E = 1. It follows that K ⩽ ZpF(G),
a contradiction. Hence we may assume that P∩ E > 1,
so K ∩ E > 1.

Firstly, we prove (1). Assume that K ∩ E < K . Let
K/T be a chief factor of G such that K∩E ⩽ T < K . It is
easy to see that (G, E, T ) satisfies the hypothesis of the

theorem. Hence K ∩ E ⩽ T ⩽ ZpF(G) by the minimal
choice of (G, E, K). Since K/(K∩E)⩽ ZpF(G/(K∩E)),
K ⩽ ZpF(G), a contradiction. Hence K ∩ E = K and so
K ⩽ E. Then every cyclic subgroup of P with order p
and 4 (if P is a non-abelian 2-group) is a CAP-subgroup
of G. Then by [13, Lemma 2.2(1) and (2)], every
cyclic subgroup of P with order p and 4 (if P is a non-
abelian 2-group) is a semi CAP-subgroup of K . By
[17, Lemma 1.4], we can get that K is p-supersolvable.
Since Op′(G) = 1, by Lemma 3, we get P char K and so
P �G. It is clear that (G, E, P) satisfies the hypothesis.
If P < K , by the minimal choice of (G, E, K), we have
P ⩽ ZpF(G). Note that P is a Sylow p-subgroup of K ,
thus K/P is a p′-group. It follows that K ⩽ ZpF(G), a
contradiction. This contradiction shows that K = P is
a p-group.

If K is a minimal normal subgroup of G, then
|K | = p and so K ⩽ ZpF(G), a contradiction. Hence
K is not minimal normal in G. Now, let K/T be a chief
factor of G. Then (G, E, T ) satisfies the hypothesis of
the theorem, and so T ⩽ ZpF(G) by the minimal choice
of (G, E, K). Since T is a p-group, T ⩽ ZF(G). Let L be
any normal subgroup of G such that L < K . Then we
also have L ⩽ ZpF(G). If L ≰ T , then K = T L ⩽ ZpF(G),
a contradiction. Hence we may assume that T is the
unique normal subgroup of G such that K/T is a chief
factor of G. If |K/T |= p, then K/T ⩽ ZpF(G/T ) and so
K ⩽ ZpF(G), a contradiction. Hence |K/T | > p. Let C
be a Thompson critical subgroup of K . If Ω(C) < K ,
we have Ω(C) ⩽ T ⩽ ZF(G). Then, by Lemma 5,
K ⩽ ZF(G)⩽ ZpF(G), a contradiction. This implies that
Ω(C) = K . Hence ex p(K) = p or 4 by Lemma 4. Let x
be an element of K\T . Then |〈x〉|= p or 4.

By hypothesis, 〈x〉∩E covers or avoids K/T . In the
former case, we have 〈x〉K = 〈x〉T , that is, K = 〈x〉T .
It follows that K/T is cyclic and so K/T ⩽ ZpF(G/T ),
which implies that K ⩽ ZpF(G), a contradiction. In the
latter case, 〈x〉 = 〈x〉 ∩ K = 〈x〉 ∩ T implies 〈x〉 = 1 or
Φ(〈x〉), a contradiction. Thus, (1) holds.

Now, we prove (2). Let N be a minimal normal
subgroup of G contained in K ∩ E. By Theorem 1, N is
a 2-group and |N |⩽ 4. If |N |= 4, again by Theorem 1,
|N | = 2, a contradiction. Hence |N | = 2 and so N ⩽
Z(G). Let x be any element of P\N with order 2. Then
〈x〉N = 〈x〉⋉ N is a subgroup of P and |〈x〉N | = 4. If
x /∈ E, then 〈x〉∩E = 1 is a CAP-subgroup of G. If x ∈ E,
then 〈x〉N = 〈x〉N∩E is a CAP-subgroup of G. Let A/B
be any chief factor of G. Then (〈x〉N)A= (〈x〉N)B or
〈x〉N ∩A= 〈x〉N ∩ B.

Since N is a minimal normal subgroup of G, we
distinguish three cases to complete the proof.

Case 1: N ⩽ B ⩽ A.
If (〈x〉N)A = (〈x〉N)B, then 〈x〉A = 〈x〉B; If

〈x〉N ∩ A = 〈x〉N ∩ B, then (〈x〉 ∩ A)N = (〈x〉 ∩ B)N .
Note that 〈x〉 ∩N = 1, hence 〈x〉 ∩A= 〈x〉 ∩ B.

Case 2: N ≰ B and N ⩽ A.
Obviously, N × B = A and so |A/B| = |N | = 2.
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If (〈x〉N)A = (〈x〉N)B, then we claim that
〈x〉 ∩ A = 〈x〉 ∩ B. If not, then 〈x〉 ∩ B = 1 and
〈x〉 ⩽ A. It implies that A= 〈x〉NB and so |A/B| = 4,
a contradiction; If 〈x〉N ∩ A = 〈x〉N ∩ B, then
(〈x〉 ∩ A)N = 〈x〉N ∩ B. If 〈x〉 ∩ A ̸= 〈x〉 ∩ B, then
〈x〉 ∩ B = 1 and 〈x〉 ⩽ A. Hence 〈x〉N = 〈x〉N ∩ B and
so 〈x〉N ⩽ B. This shows that 〈x〉⩽ B, a contradiction.
Thus, 〈x〉 ∩A= 〈x〉 ∩ B.

Case 3: N ≰ B and N ≰ A.
If (〈x〉N)A= (〈x〉N)B, it is easy to prove that 〈x〉∩

A = 〈x〉 ∩ B. If not, we have 〈x〉 ∩ B = 1 and 〈x〉 ⩽
A. Then |AN | = |〈x〉NB| and so |A||N | = |〈x〉||N ||B|.
Hence |A|= |〈x〉||B|. This induce that 〈x〉A= A= 〈x〉B;
If 〈x〉N ∩A= 〈x〉N ∩B, we also get 〈x〉∩A= 〈x〉∩B. If
not, 〈x〉∩B = 1 and 〈x〉⩽ A. Thus, 〈x〉= 〈x〉(N ∩A) =
〈x〉N ∩ B ⩽ B, a contradiction.

The above three cases show that 〈x〉 ∩ E = 〈x〉 is
a CAP-subgroup of G. Then by (1), K ⩽ ZpF(G). The
proof is complete. 2
Based on the preceding theorems, we obtain the fol-
lowing Theorem.

Theorem 4 Let F be a saturated formation containing
U, E be a normal subgroup of a finite group G such that
G/E ∈ F and p be a prime divisor of |G|. Let K be a
normal subgroup of G, P ∈ S ylp(K) and d a power of p
with 1< d < |P|. Assume that H ∩ E is a CAP-subgroup
of G for any subgroup H of P with order d. If P is a non-
abelian 2-group, assume further that H ∩ E is a CAP-
subgroup of G for any cyclic subgroup H of P with order
4. Then K ⩽ ZpF(G).

Proof : By Theorem 3, we may assume that d > p.
Similar to the proof of Theorem 2, we assume further
that Op′(G) = 1 and K ∩ E > 1. Let N be a minimal
normal subgroup of G contained in K ∩ E. Clearly,
1< Np ⩽ P�Gp for some Sylow p-subgroup Gp of G. By
Theorem 1, N is p-group and |N |⩽ d. If |N |= d, again
by Theorem 1, d = |N | = p, a contradiction. Hence
|N |< d.

Now, we claim that K/N ⩽ ZpF(G/N). Actually,
if d/|N | ̸= 2, then (G/N , E/N , K/N) satisfies the hy-
pothesis of the theorem, and so we can get K/N ⩽
ZpF(G/N) by induction. Assume d/|N | = 2. If P/N
has a cyclic subgroup X/N of order 4 with N ⩽ Φ(X ),
then X is cyclic and therefore N is cyclic. Hence |N |= 2
and d = 4. By Theorem 3, K ⩽ ZpF(G). Hence, we may
assume that N ≰ Φ(X ) for any cyclic subgroup X/N of
order 4 in P/N . Then there is a maximal subgroup
X1 of X such that X = X1N . Note that |X1| = d,
then X/N ∩ E/N = (X1N ∩ E)/N = (X1 ∩ E)N/N is a
CAP-subgroup of G/N by Lemma 1 (2). This shows
that K/N satisfies the hypothesis of Theorem 3, hence
K/N ⩽ ZpF(G/N).

If N ⩽ Φ(K), then K ⩽ ZpF(G) by Lemma 6. If
N ≰ Φ(K), then |N | = p by Theorem 1. Hence K ⩽
ZpF(G). 2

Corollary 3 Let G be a finite group, p be an odd prime
divisor of |G| and P ∈ S ylp(G) and let d be a power of
p with 1 < d < |P|. Assume that H ∩Op(G) is a CAP-
subgroup of G for any subgroup H of P with order d.
Then G is p-supersolvable.

CONCLUSION

In this paper, by investigating the intersections of some
subgroups with fixed order and a normal subgroup sat-
isfying the CAP-property, we obtain some new charac-
terizations for the hypercentrally embedded property
of normal subgroups of a finite group (i.e., Theorems
2–4). In particular, Theorem 2 generalizes one of the
main theorems of [5].
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