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ABSTRACT: In this paper, we study the stationary Black-Scholes model arising in finance with transaction costs. This
model becomes interesting when the time does not play a role such as, for instance, in perpetual options. The equation
describing this model is a nonlinear second-order boundary value problem and there is no analytic solutions in closed
form for such a nonlinear equation. After discretization via the centered finite difference formula we have to solve a
nonlinear algebraic system which would be a serious problem when we use a small discretization mesh. We solve this
nonlinear system by the residual-based Broyden’s method, which is an efficient quasi-Newton method and is convenient
to implement by a desk computer. We give a convergence analysis of the Broyden’s method by assuming a lower and
upper bound of the converged solution of the Black-Scholes model. Numerical results are given to show that the
convergence rate of the method is robust with respect to the discretization mesh and the problem parameters.
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INTRODUCTION

The Black-Scholes (BS) model, which was proposed
in 1973 by Black and Scholes [1] and Merton [2],
provides an approximate description of the behavior
of the underlying assets. This model becames funda-
mental for the valuation of financial derivatives in a
complete frictionless market [3]. The classical Black-
Scholes model assumes that the hedging portfolio is
continuously adjusted by transacting the underlying
asset of the derivative, in order to replicate exactly the
returns of a certain derivative. This can only happen if
no transaction costs exist when buying or selling the as-
sets. Otherwise, a continuous adjustment would imply
that those costs, such as taxes or fees, would become
infinitely large [4–6]. Hence, considering transaction
costs in the model is an important issue which has
motivated the work of several authors and has led to
the study of new Black-Scholes model [7–10].

The BS model can be studied by both analytically
and numerically. For example, Black and Scholes [1]
first found the solution based on previous research on
option pricing that gave an idea of what the solution
would look like. Company, Gonzalez and Jodar [11]
solved the BS model which was modified with discrete
dividend. They utilized a delta-characterizing group-
ing of generalized Dirac-Delta function and connected
the Mellin transformation established in [12, 13] to
acquire an integral formula. However, in these studies
the closed form for the analytic solutions is only avail-
able for BS equations with constant coefficients. For

BS model with time-dependent coefficients [14–17] or
nonlinear BS model there is no closed form for the
analytic solution and we have to rely on numerical
computations [18–21].

In this paper, we are interested in the study of a sta-
tionary BS model [9, 22], which is a nonlinear second-
order differential equation that models the valuation
of a call option in presence of transaction costs. These
stationary solutions give the option value V as a func-
tion of the stock price, which can be interesting when
dealing with a model where the time does not play a
relevant role such as, for instance, in perpetual options.
There is no closed formula for the analytic solution of
such a nonlinear differential equation and we have to
relay on numerical method for a quantitative study.

We discretize the stationary BS model by the cen-
tered finite difference method and after discretization
we have to solve a nonlinear algebraic system which
would be a serious problem when the discretization
mesh size is small. We solve this nonlinear system
by the residual-based Broyden’s method [23–26]. By
assuming the lower and upper bounds of the converged
solution of the BS model, we present a convergence
analysis of Broyden’s method. Numerical results show
that the proposed method is robust in terms of discrete
grids and problem parameters.

NONLINEAR BS MODEL AND DISCRETIZATION

In the stationary case, the BS model taking into ac-
count the presence of transaction costs is a nonlinear

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2024.035
http://www.scienceasia.org/
mailto:haiyansong@nbt.edu.cn
www.scienceasia.org


2 ScienceAsia 50 (x): 2024: ID 2024035

second-order Dirichlet boundary problem [9, 22]:
�

x3V 2
x x+px2Vx x+qxVx−qV = 0, x ∈ [a, b],

V (a) = Va, V (b) = Vb,
(1)

where b > a > 0 and p, q > 0 are constants. For the
boundary conditions we consider Va ⩽ Vb which is a
quite natural assumption in some financial settings, for
instance, if we are dealing with call options. Problem
(1) is related to financial option pricing model, namely
the BS model introduced in 1973 [1]:

Vt +
σ2S2

2 VSS + r(SVS − V ) = 0, (2)

where V represents the value of a call or put option,
depending on the underlying asset S and time t, r is
the interest short rate and σ is the volatility of the
asset price. In the above model, S denotes a geometric
Brownian motion, and no costs are considered when
financial transactions hold.

The details for obtaining (1) from the classical BS
model (2) are as follows. Suppose the transaction costs
are included in the model under the assumption that
they are a percentage of the transaction, given by a
linear function h of the number of shares traded, that is
h(ξ) = a−bξ, with ξ being the number of shares traded
and a, b > 0. Under these assumptions, the following
nonlinear BS equation is obtained

Vt +
σ2S2

2 VSS − aσS2
Ç

2
π∆T |VSS |

+ bS3σ2V 2
SS + r(SVS − V ) = 0,

where ∆T is the interval between transactions. Then,
if a is small enough and VSS > 0 from [5, 9] we obtain
the following nonlinear version of the classical BS
model (2), which is

Vt +
σ̃2S2

2 VSS + bS3σ2V 2
SS + r(SVS − V ) = 0, (3)

where σ̃ = σ2(1 − 2 a
σ

q

2
π∆T ) > 0 is the so-called

adjusted volatility. Now, if we consider the stationary
version of (3), i.e., Vt = 0, we obtain the above ordi-
nary differential equation (1) with

p =
σ̃2

2bσ2
, q =

r
bσ2

.

The stationary solution gives the option value V as a
function of the stock price x , which would be inter-
esting in the situation that the time does not play a
relevant role such as, for instance, in perpetual options.

For problem (1) with Vb
b ⩽

Va
a , the following the-

orem states an existence and uniqueness result and
also provides lower and upper bounds of the solution.
The lower and upper bounds provide useful criterion
for checking the numerical solutions. (For the case
Vb
b >

Va
a , according to our best knowledge there is no

lower and upper bounds in closed form for the solution
V (x).)

Theorem 1 ([9]) For nonlinear Dirichlet boundary
value problem (1) with x ∈ [a, b], it holds

• The function V (x) = Va
a x is a solution of the prob-

lem (1) if and only if Va
a =

Vb
b .

• If Vb
b <

Va
a the problem (1) has a convex solution V

satisfying

Vb

b
x ⩽ V (x)⩽

Vb − Va

b− a
x +

bVa − aVb

b− a
, (4)

• If Vb
b <

Va
a and k =
q

q
a3 is small, the problem (1)

has a convex solution V satisfying

Vb−Va

b2−a2
x2+

b2Va−a2Vb

b2 − a2
⩽ V (x)

⩽
Vb−Va

b− a
x+

bVa−aVb

b− a
. (5)

Since the analytic solution of (1) is not available,
we next introduce numerical method for solving (1).
To this end, we first partition the computation domain
[a, b] by mesh size h and denote an arbitrary discrete
point in [a, b] by x j = a + jh, where j = 0, 1, . . . , N
with N = b−a

h . On the discrete points x j ’s we denote
the numerical solution by Vj ≈ V (x j). The numerical
method studied here lies in approximating Vx x and Vx
by the centered finite difference formula

Vx x (x j) =
V (x j+1)−2V (x j)+ V (x j−1)

h2
+τ j ,

Vx (x j) =
V (x j+1)− V (x j−1)

2h
+ τ̃ j ,

(6)

where j = 1, 2, . . . , N −1 and V (x0) = Va and V (xN ) =
Vb. The quantities τ j and τ̃ j denote the truncation
errors τ j =O(h2) and τ̃ j =O(h2). Substituting (6) into
(1) leads to the following finite difference method

x3
j

�Vj+1−2Vj + Vj−1

h2

�2

+ px2
j

Vj+1−2Vj + Vj−1

h2

+ qx j

Vj+1− Vj−1

2h
− qVj = 0,

where j = 1,2, . . . , N −1 and

Vj − V (x j) = O(h2). (7)

We rewrite this difference equation as follows

x3
j

�

Vj+1−2Vj + Vj−1

�2
+ ph2 x2

j (Vj+1−2Vj + Vj−1)

+ qh3 x j
Vj+1−Vj−1

2 − qh4Vj = 0. (8)
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Define

V= (V1, V2, . . . , VN−1)
⊤,

c= (Va, 0, . . . , 0, Vb)
⊤,

c̃=
1
2
(−Va, 0, . . . , 0, Vb)

⊤,

A=













−2 1
1 −2 1

...
. . .

. . .
1 −2 1

1 −2













,

Ã=
1
2













0 1
−1 0 1

...
. . .

. . .
−1 0 1
−1 0













,

Dx = diag(x1, . . . , xN−1).

(9)

Then, we can represent (8) as

F(V) = 0, (10a)

where the nonlinear function F is

F(V) := D3
x (AV+ c)2+ ph2D2

x (AV+ c)

+ qh3Dx (ÃV+ c̃)− qh4V. (10b)

The discrete equation (10a) is a nonlinear system with
unknown solution V. The computation of V would be
a serious problem when h is small (using a small h is
necessary if we want to get a more accurate solution,
cf. (7).

In the next section we introduce the Broyden’s
method for such a nonlinear problem. We mention
that many other methods can be used to solve (10a)–
(10b), such as the fixed-point iteration [27], the clas-
sical Newton’s method [28] and the splitting-iteration
method [29], to name a few. The Broyden’s method
has the following advantages: compared to the fixed-
point iteration and the waveform relaxation method it
converges much faster (the convergence rate is very
close to that of the classical Newton’s method); com-
pared to the classical Newton’s method, we do not
need to compute the Jacobian matrix which would be
a serious computational burden if the mesh size h is
small.

BROYDEN’S METHOD

In this section, we address how to solve V in (10a). In
particular we use the residual-based Broyden’s method
[23] for (10a). The standard Newton’s method for
(10a) is

Jk∆Vk = −F(Vk), Vk+1 = Vk +∆Vk, (11)

where k⩾ 0 is the iteration index, V0 is an initial guess
and Jk is the Jacobian matrix of F

Jk := F ′(Vk) = 2D3
x diag(AVk + c)A

+ ph2D2
x A+ qh3Dx Ã− qh4 I . (12)

In each iteration we have to solve a linear system
which, in essence, is to compute the action of the
inverse matrix J−1

k on the residual F(Vk). This would
be time consuming if N is large (i.e., h is small).

Broyden’s method lies in replacing the Jacobian
matrices {Jk} by a series of matrices {Bk}, for which
the inverse is defined recursively as

B−1
k+1 = B−1

k

�

I −
Fk+1(Fk+1− Fk)⊤

∥Fk+1− Fk∥22

�

, (13)

with B0 being an approximation of J−1
0 (i.e., B0 ≈ J−1

0 )
and Fk = F(Vk). The resulted iterations for (10a) is

Bk∆Vk = −F(Vk), Vk+1 = Vk +∆Vk. (14)

We now state the convergence property of the
Broyden’s method (14).

Theorem 2 Let V be the unique solution of F in (10a)
with F ′(V) being nonsingular. Assume that there exists
some constant ω ∈ (0,∞) such that the following Lips-
chitz condition holds

∥F ′(Ṽ)− F ′(V)∥⩽ω∥Ṽ−V∥, ∀ Ṽ ∈ D0, (15)

where D0 ⊂ RN−1. Then, there exists ε > 0 and δ > 0
such that if

∥Bk − F ′(V)∥⩽ δ, ∥V0−V∥⩽ ε,

Broyden’s method starting from V0 converges to V.

Proof : Let β be the bound of ∥F ′(V)−1∥, i.e.,
∥F ′(V)−1∥ ⩽ β . Choosing ε such that N (V0,ε) ⊂
D0, where N (V0,ε) = {Ṽ ∈ RN−1 : ∥Ṽ − V0∥ ⩽ ε}.
Moreover, we assume that δ and ε satisfies

δβ <
1
2

, ε <
1−2δβ
βω

. (16)

With V0 and Bk selected above, from the Banach
Lemma [30] we know that B−1

k exists and can be
bounded as

∥B−1
k ∥⩽

β

1−βδ
. (17)

Let
ek = ∥Vk −V∥.

We next derive a relationship between ek+1 and ek.
Since F(V) = 0 and

Vk+1 = Vk − B−1
k F(Vk),
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we have

ek+1 = ek − B−1
k [F(Vk)− F(V)]

= ek − B−1
k [F(Vk)− F(V)]+ B−1

k F ′(V)ek − B−1
k F ′(V)ek

= −B−1
k [F(Vk)− F(V)− F ′(V)ek]− B−1

k [F
′(V)− Bk]ek

=−B−1
k

�

[F(Vk)−F(V)−F ′(V)ek]+[F
′(V)−Bk]ek

	

. (18)

By using Taylor’s expansion we have

F(Vk)− F(V) = F ′(Ṽk)ek,

where Ṽk is a suitable vector lying between Vk and V.
By using (17) it holds

∥ek+1∥⩽ ∥B−1
k ∥[∥F

′(Ṽk)ek − F ′(V)ek∥+ ∥(F ′(V)− Bk)ek∥]

⩽
β

1−δβ
[∥F ′(Ṽk)ek−F ′(V)ek∥+∥F ′(V)−Bk∥∥ek∥]

⩽
ωβ

1−δβ
∥ek∥2 +

δβ

1−δβ
∥ek∥, (19)

where for the third inequality we have used ∥Bk −
F ′(V)∥2 ⩽ δ.

We claim that ∥ek∥ ⩽ ε for all k ⩾ 0. For k = 0,
from (19) we have

∥e1∥⩽
ωβ

1−δβ
∥e0∥2+

δβ

1−δβ
∥e0∥⩽

ωβε2

1−δβ
+
δβε

1−δβ
,

where we have used the assumption ∥e0∥= ∥V−V0∥⩽
ε. From (16) it holds

ε <
1−2δβ
βω

⇒ βωε+δβ < 1−δβ

⇒ βωε2 +δβε < (1−δβ)ε⇒
βωε2 +δβε

1−δβ
< ε. (20)

Hence ∥e1∥ ⩽ ε. Clearly, for general k > 0 from (19)
and (20) it holds ∥ek∥⩽ ε as well. Substituting ∥ek∥⩽
ε into the right hand-side of (19) gives

∥ek+1∥⩽
�

ωβε

1−δβ
+
δβ

1−δβ

�

∥ek∥= η∥ek∥,

η=
ωβε+δβ

1−δβ
,

(21)

and thus ∥ek∥ ⩽ ηk∥e0∥. From (20) we have η < 1,
which implies ∥ek∥ → 0 as k→∞. 2

NUMERICAL RESULTS

In this section we solve the stationary nonlinear BS
model with concrete data via the residual-based Broy-
den’s method. All numerical results are implemented
by Matlab R2016b installed in a desk computer with
Mac OS and 2.7 GHz Intel Core i5. The initial guess of
the Broyden’s method is chosen randomly.

We first study whether the numerical solution
satisfies Theorem 1 or not. To this end, we consider

Table 1 For the case Vb
b = r Va

a with several values r, the
iteration number of Broyden’s method when the global error
arrives at 10−7.

r = 0.2 0.5 1 1.5 2

(p, q) = (0.25,6.5) 20 21 21 21 21
(p, q) = (6.5,0.25) 20 21 21 21 21

(a, b) = (0.5,2), (p, q) = (0.25,6.5) and two groups of
(Va, Vb):

(Va, Vb) = (0.5, 2), (Va, Vb) = (1.5, 2). (22)

For (Va, Vb) = (0.5,2) it holds Vb
b =

Va
a and thus accord-

ing to Theorem 1 we know that the solution should be
a straight line. For (Va, Vb) = (1.5, 2), it holds Vb

b <
Va
a

and the solution has explicit lower and upper bounds.
In Fig. 1 we show the computed solution for these two
groups of (Va, Vb). We see that the numerical solution
indeed confirms the theoretical prediction. Here we
use a discretization mesh size h= 1

256 .
With the data given above we show in Fig. 2 the

measured error for each iteration of the Broyden’s
method. Clearly, for both Vb

b =
Va
a and Vb

b <
Va
a the

method converges with the same rate. We also tested
the case Vb

b = r Va
a with several values of r and for each r

the iteration number such that the global error arrives
at 10−7 is shown in Table 1. The results in Table 1
indicate that the convergence rate of the Broyden’s
method is robust in terms of the problem parameters.

We next validate whether the bounds in (5) hold
or not when
q

q
a3 is small. Let

h= 1
128 , a = 0.5, b = 2, Va = 1.5, Vb = 2, p = 0.25. (23)

We then consider two values of q: q = 1.25 ×
10−4 and q = 0.125. With this choice of q, it holds
q

q
a3 = 0.01 and
q

q
a3 = 1, respectively. The numerical

solution is shown in Fig. 3 for these two values of q.
Clearly, for q small (i.e.,

q

q
a3 = 0.01) the solution

indeed satisfies the bound given by (5), while for q
relatively large (i.e.,

q

q
a3 = 1) the solution can not

be bounded by the lower bound. With the same data
used for Fig. 3 the measured error at each iteration
for Broyden’s method is given by Fig. 4. Clearly, the
convergence rate is robust in terms of the problem
parameters as well.

At the end of this section, we validate the con-
vergence properties of the Broyden’s method given by
Theorem 2. To this end, we consider the data in (23)
and q = 1.25×10−4. We slect a special initial guess

V0 = V+random(`unif',−ε,ε, N −1,1), (24)

where ε = 0.02. With the problem and discretization
data given above, the quantities ω in (15) and β =
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1

1.5

2

Fig. 1 With h= 1
256 , the computed solution u of nonlinear BS model for two situations. In the left subfigure Vb

b =
Va
a and the

solution indeed looks like a straight line. In the right subfigure Vb
b <

Va
a and the solution indeed satisfies the upper and lower

bounds given by Theorem 1 (cf. (4)).
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Fig. 2 With the same data used in Fig. 1, the measured global error for each iteration of the Broyden’s method.
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Fig. 3 Two representative cases for the BS model with Vb
b <

Va
a . Left:
q

q
a3 = 0.01 and the solution satisfies the upper bound

and lower bound given by (5). Right:
q

q
a3 = 1 and the solution can not be bounded by the lower bound.
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Fig. 4 With the same data used in Fig. 3, the measured global error for each iteration of the Broyden’s method.

∥F ′(V)−1∥∞ measured numerically is

ω=max
Ṽ∈D0

∥F ′(Ṽ)− F ′(V)∥∞
∥Ṽ−V∥∞

= 2.8813, β = 2.6613.

With the initial guess V0 given above, it holds ∥V0 −
V∥∞ ⩽ ε. Let

δk = ∥Bk − F ′(V)∥∞.

In Fig. 5 on the left we show δk for the first 21
iterations and it is clear that δk ⩽ 0.09. Therefore, the
quantity δ which bounds ∥Bk − F ′(V)∥∞ for all k ⩾ 0
is

δ =max
k⩾0
δk = 0.09.

Now, we can calculate the contraction factor η in (21)
as

η=
ωβε+δβ

1−δβ
= 0.4158. (25)

With such a contraction factor we show in Fig. 5 the
error measured in practice and the one predicted as

∥V0−V∥∞×ηk, k ⩾ 0. (26)

The result shown in Fig. 5 on the left clearly indicates
that the convergence rate of the Broyden’s method
analyzed in Theorem 2 is sharp and predicts the real
convergence behavior very well.

CONCLUSION

In this paper, we proposed a numerical method for
solving a class of two-point nonlinear boundary value
problems arising in finance, namely the stationary
Black-Scholes model with transaction costs. We first
discretize the continuous model in space via the cen-
tered finite difference method, which results in a large
scale nonlinear algebraic system. We solve such a non-
linear system by the residual-based Broyden’s method,
where we do not need to invert any matrix during the

2 4 6 8 10 12 14 16 18 20 22
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1

Fig. 5 Left: the quantity δk = ∥Bk − F ′(V)∥∞ for each
iteration. Right: the error predicted by the contraction factor
η (cf. (26)) and the one measured in practice.

iterations, thanks to the explicit recursive relationship
between the matrices {B−1

k } cf. (13). Convergence of
Broyden’s method was proved and we also give an
estimate of the convergence factor of the method cf.
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(21). By using the proposed numerical method, we val-
idated an interesting result concerning the bounds of
the solution of the Black-Scholes model cf. Theorem 1.
Numerical results indicate that the contraction factor is
sharp and predicts the real convergence behavior very
well.
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