Distribution pattern of the genus *Rhododendron* in Bhutan Himalayan range

Sangay Namgaya,b,, Kitichate Sriditha

a Department of Biology, Faculty of Science, Prince of Songkla University, Songkla 90112 Thailand
b Wanakha Central School, Ministry of Education, Royal Government of Bhutan, Thimphu, Bhutan

*Corresponding author, e-mail: sangaynamgay@gmail.com

Received 30 Dec 2019
Accepted 23 Jun 2020

ABSTRACT: The genus *Rhododendron* is considered one of the relictual plant taxa having circumboreal distribution. However, through vicariance followed by orogeny, the distribution of this plant genus was vastly affected. A total of forty six *Rhododendron* species in Bhutan Himalayan region share most of its species with central Himalayan countries. Additionally, the genus *Rhododendron* is found even to the extend to Far East Asia. However, very little information is available on the comparative study of the phytogeographic distributions of genus *Rhododendron* between Himalayan countries and the extent of East Asia. Various literatures and derived data on the *Rhododendron* species availability were studied. Findings revealed that the *Rhododendron arboreum* is found to be widely distributed across the whole Himalayan range to the neighbouring countries in East Asia. It could be reasoned that *Rhododendron* species of Himalayan range are confined within their geographical boundary and remain isolated from other populations. We proposed that heterogenous environmental condition offered by might have played an important role in sustaining the diversity of *Rhododendron* in Himalayan range. Although Bhutan Himalayan range is not accounted a center of distribution of *Rhododendron* species, it might have helped as an important corridor for the dispersal of plant elements as it connects many floristic region and biogeographic realms.

KEYWORDS: geographic distribution, *Rhododendron*, Bhutan Himalayas, phytogeography

INTRODUCTION

The genus *Rhododendron*, family Ericaceae is considered an old plant genus which presumably might have occurred ca. 50 million years ago during a tertiary period [1], and it is proposed to be one of the tertiary relict genera where once this plant genus was having circumboreal distribution in the northern hemisphere [2]. Later, during late tertiary period (44–55 million years ago), the collision of Indian plate and Eurasian plate gave rise to the Himalayan mountains (region of extreme relief). With the uplift of the Himalayan mountains and change in climatic condition followed by the geological time scale, the distribution of floristic composition of a plant community was vastly affected [3]. The Himalayan mountain range plays an important role in plant biogeography as it connects different biogeographic realms [4] and provides refuge to many plants due to the unique ecological niche for the diversity of the plants [5]. Moreover, the Himalayan range is important in terms of plant biogeography as the range has connected to many important plant biogeographic regions [6] where *Rhododendron* could be found i.e. Eastern Himalaya province (region 2), Irano-Turanian province (region 8), Sudano-zambazian province (region 12), India (region 16) and Indochinese region (region 17) according to Takhtajan’s system of plant geography [7].

Bhutan Himalayas, which forms a major part of eastern Himalayas, is mostly characterized by the geographical complexity and climatic variability [8,9]. The vegetation is so diverse that it provides a cradle for vast section of floristic richness, especially *Rhododendron* where it contributes four percent to the global population of the genus *Rhododendron*. Bhutan Himalayas harbours forty-six taxa of *Rhododendron*, mostly belonging to the subgenera *Hymenanthes* and *Rhododendron* growing on different geographical mountains forming a critical component of a montane ecosystem.

Tobgye et al [6] studied the comparative study of the floristic elements on the lower montane forest of Bhutan Himalayan range and proposed the probable floristic dispersal routes. Although, Bhutan Himalayas is one of the hosts for the Rhododendrons, the phytogeographic information of this plant genus...
RESULTS AND DISCUSSION

The genus Rhododendron species have wide distribution along Himalayan range of Bhutan (Fig. 2). Based on the distribution of Rhododendron species from different taxonomic literature, two groups of the taxa could be summarized according to their presence in the given areas. Rhododendron arboreum is found throughout the Himalayas, and it is also found in neighbouring countries from East Asia i.e. Myanmar, Vietnam and Thailand (Table 1) while the other selected taxa are confined to Himalaya region of Bhutan, south-west of China, north-west of India and Nepal Himalayan range.

R. arboreum is taxonomically placed under the subgenera *Hymenanthes* and section *Pontica* subsection *Arborea* Sleumer that comprises ca. 300 *Rhododendron* species [13]. In Bhutan Himalayan range, *R. arboreum* species is widely distributed within the altitudinal range from 2500–3600 m above sea level, growing on a different ranges of habitats like a rocky cliff, marshland and temperate forest. This taxon occurs as seven different morphological forms, viz., *R. arboreum* var. *album* Wall, *R. arboreum* subsp. *nilagiricum* (Zenker) Tagg, *R. arboreum* subsp. *arboreum* Smith, *R. arboreum* subsp. *cinnamomeum* (Walllich ex G. Don) Lindley, *R. arboreum* subsp. *delavayi* (Franchet) Chamberlain, *R. arboreum* subsp. *Cinnamomeum* var. *roseum* Lindley and *R. arboreum* subsp. *seyanicum* (Booth) Tagg [13]. Therefore, it could be plausibly reasoned that its high levels of genetic variability and withstanding high and low thermal regime might have attributed to their dominance distribution [21]. However, these paleoendemic taxa hold a subject of much ongoing taxonomic debate especially regarding the center of diversity and a gradual migration of *Rhododendron* taxa [20].

Another plausible explanation for the wide distribution of *R. arboreum* could be related to ecological niche theory [22]. *R. arboreum* species is the only species that holds a wide range of altitudinal distribution (Table 2) and habitats. Chandra et al. [23] also spotted *R. arboreum* below 1000 m in Indian Himalayan region. Kuttapety et al. [24] reported that annual mean temperature was found to be an ecological factor that defined the survival of *R. arboreum* var. *cinnamomeum* and *R. arboreum* var. *arboreum* in a different geographical locations of Indian Himalayan range. *R. arboreum* has high degree of adaptability and grows in a different habitat. Due to its broad realized niche and high recolonization ability, it competes with other plants and grows with already established vegetation [21]. Further, some species like *R. arboerum* subsp. *Nilagiricum* is found in the south Western Ghats of India and even in the moun-

Fig. 2 Map showing the distribution of *Rhododendron* species in the Himalayan range and East Asia.
Table 1 List of *Rhododendron* species in Bhutan Himalayas in comparison with their occurrence in Himalayan and East Asian countries.

<table>
<thead>
<tr>
<th>Rhododendron species</th>
<th>Bhu</th>
<th>Chi</th>
<th>Ind</th>
<th>Nep</th>
<th>Pak</th>
<th>Mym</th>
<th>Viet</th>
<th>Thai</th>
<th>Habit</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. aeruginosum Hook. f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>R. anthopogon D. Don</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>R. arboreum Smith</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>R. arpegeplum Balfour & Copper</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. baileyi Balfour f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. barbatum G. Don</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. bhutanense Long & Bowes Lyon*</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. camelliflorum Hook. f.</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. campylocarpum Hook. f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. ciliatum Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. cinnabarinum Hook. f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. dalhousiae var. rhabdotum</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. edgeworthii Hook. f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. falconeri Hook. f.</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. fragariiflorum Hook. f.</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. flinckii Davidian</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. fulgens Hook. f.*</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. glaucophyllum Rehder</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. grande Wight</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. griffithianum Wight</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. hodgsonii Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>R. kendrickii Nuttall</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. kesangiae Long & Rushforth</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. keysil Nuttall</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. lanatum Hook. f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. lepidotum G. Don</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. leptocarpum Nuttall</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. lindeyi Moore</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. maddenii Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. neriiflorum Franchet</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. niveae Hook. f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. niveum Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>R. papillatum Hook. f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. pendulatum Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. pogonophyllum Cowan</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. pumilum Hook. f.*</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. setosum D. Don</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>R. succothii Davidian</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. thomsonii Hook. f.</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. triflorum Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. tsarinei Cowan</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>R. vaccinoides Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. virgatum Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>R. wallichii Hook. f.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

*Endemic to Bhutan. Countries: Bhu, Bhutan; Chi, China; Ind, India; Nep, Nepal; Pak, Pakistan; Mym, Myanmar; Viet, Vietnam and Thai, Thailand. Habit: 1, krummholz; 2, prostrate shrub; 3, tree and 4, shrubby tree. Status: 1, globally threatened *Rhododendron*; 2, least concern.

When floral morphology of *R. arboreum* is taken into account, it is assumed that this species could be pollinated both by bees and birds which might have helped in rapid seed developmental allometries due to high visitation rate by the different pollinators [25]. The *R. arboreum* tree which extended up to 15–20 m in height coupled with superior capacity to disperse by wind and animals owing to small and light seeds [26] might have triggered long dispersal and adaptation. Through dispersal means, it might have therefore used as an evolutionary measure for a wide distribution of such plant taxa, especially *R. arboreum* where it has a diverse distribution over the Himalayan range to East Asia. However, further in-depth study of the phytogeography, molecular phylogenetic analysis as well as the pollination ecology and seed dispersal of this plant taxa is suggested to encourage future research on a topic that deserves further consideration.

Table 2 Environmental variables and *Rhododendron* species that are grown in different study sites in Bhutan Himalayan range.

<table>
<thead>
<tr>
<th>Species</th>
<th>Altitude (m)</th>
<th>Flowering</th>
<th>Habitat†</th>
<th>Height (m)</th>
<th>Site‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. aeruginosum</td>
<td>3700–4000</td>
<td>May–Jun</td>
<td>1</td>
<td>2 ± 1</td>
<td>2</td>
</tr>
<tr>
<td>R. anthopogon D. Don</td>
<td>3900–4200</td>
<td>Jun–Jul</td>
<td>1</td>
<td>0.3 ± 0.2</td>
<td>1.2</td>
</tr>
<tr>
<td>R. barbatum G. Don</td>
<td>2500–3600</td>
<td>Mar–Apr</td>
<td>1 ± 2</td>
<td>20 ± 5</td>
<td>1.2</td>
</tr>
<tr>
<td>R. campylocarpum Hook. f.</td>
<td>2700–3400</td>
<td>Apr–May</td>
<td>2</td>
<td>3 ± 2</td>
<td>4.5</td>
</tr>
<tr>
<td>R. balfourii Balfour f.</td>
<td>3000–4000</td>
<td>May–Jul</td>
<td>1</td>
<td>1.5 ± 0.5</td>
<td>2</td>
</tr>
<tr>
<td>R. barbatum D. Don</td>
<td>3000–3600</td>
<td>Mar–Apr</td>
<td>2</td>
<td>6 ± 2</td>
<td>1.3</td>
</tr>
<tr>
<td>R. campylocarpum Hook. f.</td>
<td>3100–3700</td>
<td>May–Jun</td>
<td>2</td>
<td>4 ± 1.5</td>
<td>6</td>
</tr>
<tr>
<td>R. ciliatum Hook. f.</td>
<td>3000–3600</td>
<td>Apr–May</td>
<td>2</td>
<td>6 ± 2</td>
<td>1.4</td>
</tr>
<tr>
<td>R. cinnabarinum Hook. f.</td>
<td>2700–3200</td>
<td>Apr–Jun</td>
<td>4</td>
<td>1.5 ± 1.0</td>
<td>4</td>
</tr>
<tr>
<td>R. dalhousiae var. rhodotum</td>
<td>2100–2600</td>
<td>May–Jun</td>
<td>3</td>
<td>7 ± 3</td>
<td>6</td>
</tr>
<tr>
<td>R. edgeworthii Hook. f.</td>
<td>2500–3000</td>
<td>Apr–May</td>
<td>3</td>
<td>5 ± 2</td>
<td>3.4</td>
</tr>
<tr>
<td>R. falconeri Hook. f.</td>
<td>2500–3100</td>
<td>Apr–May</td>
<td>2</td>
<td>20 ± 7</td>
<td>3.45</td>
</tr>
<tr>
<td>R. fulgens Hook. f.</td>
<td>2900–3500</td>
<td>May–Jun</td>
<td>2</td>
<td>5 ± 2</td>
<td>6</td>
</tr>
<tr>
<td>R. grande Wight</td>
<td>2100–2900</td>
<td>Feb–Mar</td>
<td>2</td>
<td>10 ± 5</td>
<td>4.5</td>
</tr>
<tr>
<td>R. Griffithianum Wight</td>
<td>2000–2600</td>
<td>Mar–May</td>
<td>2</td>
<td>7 ± 4</td>
<td>3</td>
</tr>
<tr>
<td>R. hodgsonii Hook. f.</td>
<td>3000–3600</td>
<td>Apr–May</td>
<td>2</td>
<td>15 ± 5</td>
<td>1.4</td>
</tr>
<tr>
<td>R. kirkii Nuttall</td>
<td>2400–3200</td>
<td>Mar–Apr</td>
<td>2</td>
<td>6 ± 2</td>
<td>6</td>
</tr>
<tr>
<td>R. kesangiae Long & Rushforth</td>
<td>2600–3400</td>
<td>Apr–May</td>
<td>2</td>
<td>25 ± 6</td>
<td>3.45</td>
</tr>
<tr>
<td>R. leyelii Nuttall</td>
<td>2600–3500</td>
<td>May–Jul</td>
<td>2</td>
<td>3 ± 0.15</td>
<td>3.46</td>
</tr>
<tr>
<td>R. lanatunum Hook. f.</td>
<td>3500–3900</td>
<td>May–Jun</td>
<td>2</td>
<td>4 ± 1</td>
<td>6</td>
</tr>
<tr>
<td>R. lindleyi Moore</td>
<td>2000–2800</td>
<td>Apr–May</td>
<td>3</td>
<td>5 ± 2</td>
<td>6</td>
</tr>
<tr>
<td>R. maddeni Hook. f.</td>
<td>2100–2900</td>
<td>Apr–Jun</td>
<td>3</td>
<td>3.5 ± 1.0</td>
<td>5</td>
</tr>
<tr>
<td>R. neriforum Franchet</td>
<td>2500–3100</td>
<td>May–May</td>
<td>2</td>
<td>4 ± 2</td>
<td>4</td>
</tr>
<tr>
<td>R. niveum Hook. f.</td>
<td>2900–3700</td>
<td>Apr–May</td>
<td>2</td>
<td>8 ± 5</td>
<td>3</td>
</tr>
<tr>
<td>R. setosum D. Don</td>
<td>3000–4000</td>
<td>Jun–Aug</td>
<td>1</td>
<td>0.3 ± 0.2</td>
<td>1.2</td>
</tr>
<tr>
<td>R. succothi Davidian</td>
<td>3100–3900</td>
<td>Apr–May</td>
<td>2</td>
<td>3 ± 2</td>
<td>6</td>
</tr>
<tr>
<td>R. thomsonii Hook. f.</td>
<td>2900–3600</td>
<td>May–Jun</td>
<td>4</td>
<td>6 ± 3</td>
<td>3.6</td>
</tr>
<tr>
<td>R. triflorum Hook. f.</td>
<td>2300–3600</td>
<td>Apr–Jun</td>
<td>2</td>
<td>4 ± 2</td>
<td>1.34</td>
</tr>
<tr>
<td>R. tsarliense Cowan</td>
<td>3300–3900</td>
<td>May–Jun</td>
<td>2</td>
<td>5 ± 2</td>
<td>6</td>
</tr>
<tr>
<td>R. virginatum Hook. f.</td>
<td>2400–2700</td>
<td>Apr–May</td>
<td>2</td>
<td>3 ± 1</td>
<td>6</td>
</tr>
<tr>
<td>R. wallichii Hook. f.</td>
<td>2800–3900</td>
<td>Apr–Jun</td>
<td>2</td>
<td>6 ± 1</td>
<td>1.6</td>
</tr>
<tr>
<td>R. wightii Hook. f.</td>
<td>3600–4300</td>
<td>May–Jun</td>
<td>2</td>
<td>6 ± 2</td>
<td>1.6</td>
</tr>
</tbody>
</table>

† Habitats: 1, alpine shrub; 2, forest; 3, rocky cliff; 4, marsh land.
‡ Sites: 1, Chelela; 2, Dagala; 3, Dochula; 4, Pelela; 5, Sakteng; 6, Phrumshengla National park.

Table 3 Total number of *Rhododendron* species and number of endemic species in different countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>Bhutan</th>
<th>China</th>
<th>India</th>
<th>Nepal</th>
<th>Myanmar</th>
<th>Thailand</th>
<th>Vietnam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Rhododendron species</td>
<td>46</td>
<td>571</td>
<td>87</td>
<td>30</td>
<td>205</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>Number of endemic species</td>
<td>4</td>
<td>423</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

* Not assessed.

R. pogonophyllum Cowan (Table 1). Although Grierson et al [10] have proposed the *Rhododendron* species of Bhutan, the enumeration study was confined only in the western and the central part of Bhutan. The extensive survey might have been limited due to rigid and rugged mountain terrains where it remains inaccessible. There are chances that many more species or new record of *Rhododendron* species from other geographical locations of Bhutan could be later found since Bhutan Himalayan region seems likely to offer the refuge of *Rhododendron* species owing to the country's geographic complexities fueled by varying environmental clines.

Bhutan Himalayas shares most of the *Rhododendron* species with Nepal, India and Southwest China Himalayan range e.g. *R. anthopogon* (Fig. 3B), *R. arboreum* (Fig. 3C), *R. argipeulum* (Fig. 3D), *R. barbatum* (Fig. 3F), *R. campylocarpum* (Fig. 3G), *R. ciliatum* (Fig. 3H), *R. cinnabarinum* (Fig. 3I), *R. grande* (Fig. 3M), *R. Griffithianum* (Fig. 3N), *R. hodgsonii* (Fig. 3O), *R. maddeni* (Fig. 4E), *R. niveum* (Fig. 4G), *R. setosum* (Fig. 4H), *R. thomsonii* (Fig. 4J), *R. triflorum* (Fig. 4K), *R. Virgatum* (Fig. 4M), *R. wallichii* (Fig. 4N) and *R. wightii* (Fig. 4O). It could be hypothesized that the formation of Himalayan mountain range particularly Bhutan, Nepal, south west of China and north east of India by the collision between Indian Plate and Eurasian Plate which began ca. 50 million years ago [1] might have created a heterogeneous topology. This topographic complexity may have
helped to create the array of climatic niches and to increase the opportunities for the geographical barrier which gradually accentuates in forming a reproductive isolation where species diversity occurs [27]. Similarly, with the development of complex topography, it might have promoted in forming a unique environmental niche. Thus, the geographic reproductive isolation fueled by the heterogeneous habitat might have promoted the diversification of *Rhododendron* species through allopatric speciation and adaptation to the varying environmental clines [27]. Therefore, the countries of East Asia might not share a common *Rhododendron* species with the Himalayan countries due to its varying nature of habitats and environmental conditions.

Through the study of endemic species of *Rhododendron* in different countries (Table 3), it is supposed that Bhutan Himalayan region might not be a center of diversity of *Rhododendron* species due to its minimum genetic diversity as proposed by Ranjitkar et al [21]. However, it could be suggested that it might have acted as an important corridor for the distribution for many plant elements of different plant genera, especially the plant genus *Rhododendron*.

Acknowledgements: This research has been supported by Centre of Excellence on Biodiversity (BDC), Office of Higher Education Commission (BDC-PG3-160016), Ministry of Higher Education, Science Research and Innovation, Thailand. We would like to extend our sincere and humble credit to the Graduate School of Prince of Songkla University and Thailand’s Education Hub for ASEAN Countries for the scholarship. We would like to thank Mr. Tenzinla and Mr. Rinchen Dorji from National Biodiversity Centre, Serbithang, Thimphu for the assistance during data collections in the field and finally to thank Mr. Jigme Tshewang, Mr. Dorji Wangchuk and Mr. Anusit Cheechang for the assistance.

REFERENCES

sification and Synonymy, Royal Botanical Garden, Edinburg.

