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ABSTRACT: Converting CO2 to valuable chemicals at ambient conditions has been a topic of great interest due to the
large impact of CO2 on global warming. Electrochemical CO2 reduction reaction (CRR) has been considered an effective
method to produce valuable products at ambient conditions. Recently, there has been a special focus toward C2+
products, such as C2H4, C2H5OH, or C3H7OH, which have higher energy densities and large applications in chemical
industries. Copper surfaces, especially those derived from its oxidized variant, have been experimentally found to be
selective for C2 products. In this mini-review, we delve into the recent advances in theoretical calculations for molecular
level understanding of the key step of C2 production, the carbon-carbon (CC) coupling reaction. We discuss various
methods that have been developed to model the complex electrode surface, including the change in electrode potential,
the effect of electrolytes, and intertwining reaction intermediates. We also present a detailed evaluation concerning the
errors induced by the different approximations and the importance of solvation and asymmetric reaction environments
for CC coupling. Lastly, we summarize with an outlook and possible future research direction, such as simulating
experimental observables for vibrational and X-ray absorption spectra at electrode working conditions.

KEYWORDS: CO2 reduction reaction, carbon-carbon bond formation, copper surface, density functional theory,
modeling electric double layer

INTRODUCTION

Due to the increase in the concentration of CO2 in
the atmosphere initiated by human activities, we are
presently facing a global warming crisis. Electro-
chemical CO2 reduction reaction (CRR) is one of the
techniques for utilizing this CO2 to realize a sustain-
able energy conversion and a carbon-neutral society
[1–5]. There have been many important advances
in increasing the selectivity and Faradic efficiency for
2 e– reduced products, CO and HCOOH. On the other
hand, we are still searching for suitable catalysts for
producing C2+ products, such as C2H4, C2H5OH, or
C3H7OH, which have higher energy densities and large
applications in chemical industries [6]. From the early
works of Hori and coworkers [7–9], Cu surface has
been studied extensively [10–14], and studies have
reported that 17 different products, including the C2+
ones, can be produced from Cu foil [15–19]. However,
the selective production of C2+ products has been
hampered due to the slow kinetics and uncertainties
in the reaction mechanism. Various experimental tech-
niques, such as IR absorption spectra, Raman scatter-
ing spectra, and X-ray absorption spectra, have been
developed to elucidate the molecular level reaction
mechanism and clarify the local environment of an
electrode surface. Furthermore, various facets show
different reactivity, and experimentalists have found
that Cu (100) is more favorable for C2 production
compared to Cu (111) [20]. In addition, recent ex-
perimental studies have focused on the effect of Cu
surfaces derived from oxidized copper [10]. These

oxidized copper derived surfaces have shown favorable
C2+ production compared to pure Cu surfaces.

Following the seminal paper by Norskov et al
[21], which introduced the concept of computational
hydrogen electrode (CHE), theoretical calculations
based on density functional theory (DFT) methods
have become a key tool to analyze electrochemical
reactions on interfaces at the molecular level.
Peterson et al [22] have utilized this CHE approach
with DFT calculations to provide an understanding
of the electroreduction of CO2 to hydrocarbon fuels
on the Cu (211) surface. Considering that there are
various reviews on CRR, here we focus on theoretical
calculations toward understanding the reaction
mechanism for C2H4 and C2H5OH production. Many
previous studies [12, 23–26] have shown that the
carbon-carbon (CC) coupling reaction [27–31] is
the bottleneck [32–35] for the slow reactivity of C2
products [36–40]. In this review, we will focus on
utilizing theoretical calculations to rationalize reaction
mechanisms and further provide hints for designing
better catalysts. The manuscript is organized in
the following manner. In the next section, we will
discuss various theoretical methods that are presently
applied to study CRR, focusing on CC coupling. In
addition to various quantum chemical methods,
we will also discuss techniques that are utilized to
include the effect of electrode potential as well as
electrolytes, i.e., the electric double layer. Then, in
the following section, we will summarize various
molecular level findings, such as transition state
energies for the CC coupling step and how it is
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affected by electrode potential and electrolytes. In
this section, we will also discuss the geometries of
the CC coupling intermediates and summarize some
key parameters that help rationalize the favorable CC
coupling barriers on oxide derived copper surfaces.
In the final section, we will summarize with some
outlook for future direction for theoretical calculation
in understanding CC coupling reactions for CRR.

THEORETICAL CALCULATION METHODS

Before starting the discussion of various theoretical
methods, it is important to first lay out the present
knowledge we have about C2 product production on
the Cu surface, which is given in Fig. 1. Chemisorption
of CO2 to Cu surface and electron transfer results in
an activated bent *CO2 (We will use * to symbolize
the adsorbed state). The protonation of the oxygen
coupled with an electron transfer from the electrode
gives *COOH. Further proton coupled electron transfer
to the oxygen atom produces H2O molecule and *CO.
Then the concentration of surface *CO can increase
where two neighboring *CO could couple to form
*OC−CO, resulting in

2∗CO→∗OC−CO. (R1)

On the other hand, another proton coupled electron
transfer can occur to form *CHO or *COH. Then, these
reduced products may couple with a *CO to give

∗CO+∗CHO→∗OC−CHO, (R2)
∗CO+∗COH→∗OC−COH. (R3)

If the concentration of the reduced products increases,
we can also have

∗CHO+∗CHO→∗OHC−CHO, (R4)
∗COH+∗COH→∗HOC−COH, (R5)
∗COH+∗CHO→∗HOC−CHO. (R6)

Further reduced products such as *CHx , where x = 1,
2, or 3, may also couple with the surface adsorbed *CO
giving: ∗CO+∗CHx →∗OC−CHx . (R7)

In the following section, we will discuss the present
knowledge concerning the different CC coupling
reactions mentioned above based on theoretical
calculations of Cu surfaces. We focus on reaction R1
since many previous calculations have mentioned that
this CC coupling step is critical on the Cu surface.

DFT Calculations

The DFT method with periodic boundary conditions
has been the main working horse for calculating bulk
transition metal interfaces. One can calculate complex

electronic states of reactive processes on the Cu surface
utilizing various computational packages. In many
cases, a slab model using four to five layers of Cu is
utilized to model the direction perpendicular to the
surface. We also include a 10 to 15 Å vacuum or
electrolyte layer to model an interface. Since one will
model the coupling reaction of *CO+*CO, *CO+*COH,
*CO+*CHO, or CO+CHx , a unit cell consisting of 3×3
to 5×5 is used for the direction in the plane of the
surface. In many early studies, the calculations were
performed in the vacuum and used the Perdew-Burke-
Ezenhoff functional [41] with Grimme’s dispersion
corrections [42] (PBE-D3). The effect of the elec-
trode potential is included as additional free energy
correction following the CHE model of Norskov et al
[21] (see below for progress in methods for including
the effect of the electrode potential). The kinetics
of a reaction is determined by the transition state
connecting the reactant and products, and the value of
the barrier energy becomes key. In the literature, this
barrier energy is referred to as the activation energy
or the transition state energy and is usually obtained
using the nudged elastic band method by connecting
reactant and product geometries [43].

Embedding methods

To go beyond the DFT level of theory, some researchers
use embedding methods, which allow the use of high-
level quantum chemistry calculation for a local cluster
cut out of the interface reaction system, while lower-
level methods model the remaining Cu surface. In the
embedded correlated wavefunction theory method,
Carter and coworkers utilized Cu10 and Cu12 cluster
models to study the reactions R1 to R5 using the
multireference complete active space self-consistent
field method with perturbative corrections (CASPT2)
[38]. The remaining Cu atoms in the five layer 5×5
surface slab model of Cu (111) surface were modeled
by periodic boundary PBE-D3 to obtain the embedded
CASPT2 (emb-CASPT2) energies. In a similar con-
cept, Xu and coworkers used the “extended our own
n-layered integrated molecular orbital method” (XO)
[44]. Here, the double hybrid XYG3 functional method
was used to model a Cu31 cluster, while the PBE-
D3 method with periodic boundary was used for the
remaining Cu (111) surface. In both cases, they saw
differences of half an eV compared to the pure PBE-D3
calculations for the energies of CC coupling reactions.
For example, Xu and coworkers found that the reaction
energy for R2 and R3 was 0.63 and 0.86 eV by the XO
XYG3:PBE-D3 method while it was 0.08 and 0.22 eV by
PBE-D3. Furthermore, the barrier energy for reaction
R2 and R3 was calculated to be 0.86 and 0.74 eV by
PBE-D3, but the emb-CASPT2 method gave 1.23 and
1.55 eV. These studies highlight that the barrier energy
and the heat of reaction may be underestimated by
PBE-D3 calculations.
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Fig. 1 Schematic CO2 reduction reaction process for producing C2H5OH and C2H4. Proton coupled electron transfer is given
with solid blue arrows, while CC coupling is given with dashed arrows.

Modeling the electrolytes

In many cases, the electrocatalytic CRR is performed in
the aqueous phase at various acidic or basic conditions,
so it is also important to consider the effect of the
electrolyte, water molecules, and ions such as Li+ or
Cs+. On the other hand, the use of CHE approximation
allows one to connect the free energy of H+(aq) + e–

to be equal to that of half of H2 gas, and one can use
the theoretical value in the gas phase to model the
thermodynamics of complex reduction reactions under
the assumption of proton coupled electron transfer. As
mentioned above, electrocatalytic CRR usually occurs
in the aqueous phase, and recent studies incorpo-
rate these effects of water molecules explicitly and
implicitly [25, 36]. The water molecules are placed
onto the surface and calculated using DFT methods
in the first method. Initially, only a few active water
molecules around the reaction center were considered,
but recently, three to five layers totaling 30 to 40
water molecules have been incorporated in the DFT

calculations of slab models [29]. Since increased water
molecules mean various hydrogen bonding conforma-
tions above the surface, we must consider sampling
various hydrogen bonding geometries. As discussed by
Chan and coworkers, this sampling can induce nearly
0.5 eV variation in energy [45].

On the other hand, for implicit modeling, one
models the aqueous condition as an effective polar-
izable continuum media with parameter ϵ; thus, we
can ignore sampling [46–48]. However, this method
ignores local hydrogen bonding interactions contribut-
ing to the solvation energy of the intermediates on the
Cu surface. We note several ad hoc energy corrections
for the solvation energy have also been reported based
on the number of hydrogen atoms on the adsorbate
[22, 48].

Constant potential models

In the CHE, the free energy, G, of the reaction
for a proton coupled electron transfer step, such as
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*CO+H+(aq)+e–→*CHO can be modeled as G∗CHO −�
G∗CO +

1
2 GH2
− eU
�
, where U is the electrode poten-

tial with respect to the standard hydrogen electrode
(SHE), and e is the charge of an electron [21]. For
CC coupling reactions, since there is no proton coupled
electron transfer, the effect of the potential is ignored if
we use the CHE. However, as one may guess, changing
the electrode potential will cause a change in charge
on the Cu surface [49]. Therefore, ignoring this effect
may not be a good approximation, especially for CRR,
which occurs at negative potentials −0.4 ∼ −1.1 V
vs SHE. In many DFT simulations, we assume the
total number of electrons is constant (constant charge).
We usually use neutral unit cells to remove artificial
interaction among the periodic images. However, to
consider constant electrode potential, we need to allow
fluctuations in the number of electrons due to the
coupling with the Cu electrode. In CHE, the effect
of the electrode potential, U, is added as an external
energy correction to the energies calculated by DFT at
a constant number of electrons. However, this does
not include the charging effect of the electrode surface
due to the variation in the electrode potential. Various
grand canonical ensemble DFT methods have been
developed to model such electrode potential depen-
dence. In these methods, the number of electrons is
modulated in the DFT calculation, and the theoretical
work function of the Cu surface is used to define the
electrode potential of the calculated surface [47]. Both
explicit and implicit forms of solvation models are
applied in these simulations [25, 36]. We note that in
the simulations, a continuous background charge com-
pensates for the extra charge induced by adding or sub-
tracting the fractional number of electrons. Recently,
several different approximations have been developed
to model the effect of the electrode potential. One is
based on calculating the charge buildup at the interface
layer and extrapolating between the initial and final
geometries [50]. Otani and Sugino developed an
efficient method to screen the excess surface charge by
imposing proper boundary conditions [51]. Another
method uses a plate type electric field and performs
the calculation under constant charge conditions [52].
Including neutral Li or Na atoms into the explicit water
layer can also result in an electron transfer to the Cu
surface and be used to model the negatively charged
surface [53]. In Fig. 2, we have placed a schematic rep-
resentation of the various methods mentioned above.

As seen in this section, various methods allow
one to include the effect of electrode potential and
electrolytes. We think it will be important to use
the same level of electronic structure calculation and
evaluate the consistencies among various methods.

MOLECULAR LEVEL FINDINGS

In the following, we focus on a few insights obtained
from the theoretical DFT calculations. As mentioned

above, PBE-D3 may have errors of ∼ 0.5 eV, and sol-
vation sampling can also add in ∼ 0.5 eV variations in
energy. So, the key point will be discussing the general
trends.

Effect of hydration toward CC coupling barriers

In Fig. 3, we present the calculated reactant, product,
and barrier geometries for reaction R1 on various
Cu surfaces. We used the projector-augmented wave
method implemented in the Vienna Ab initio Simu-
lation Package [54, 55] with PBE-D3 [42, 56]. We
used a kinetic energy cutoff of 500 eV for the plane-
wave expansion. We used Monkhorst-Pack 3×3×1
k-point mesh for the Brillouin zone integration. We
set our convergence criteria as total energy difference
less than 10−5 eV and Hellmann-Feynman forces less
than 0.02 eV/Å across all optimizations. To mitigate
interaction between the Cu surface and its periodic
image, we introduced a vacuum layer of 15 Å along
the direction perpendicular to the surface.

These calculations show that for Cu (111), (110),
and (100), the CC coupling product OCCO is bound to
the surface with carbon and oxygen atoms (CO bound).
On the other hand, for the high index (211) and (511)
surfaces, we obtain OCCO in which two carbon atoms
are bound (CC bound) to the Cu surface. As discussed
by Santatiwongchai et al, who used PBE-D3 DFT with
five layers of implicit water on Cu (100), the hydration
causes the reaction free energy to change greatly for
reaction R1, 2*CO→*OC−CO. In the vacuum, it is
exothermic by 1.1 eV, while it becomes nearly isoener-
getic if we consider the hydration [29]. Furthermore,
their calculations show that the OCCO product takes
the CO bound form in vacuum calculations, but with
implicit water layers, it takes the CC bound form.
Montoya et al also observed that the CC bound form
is stabilized on both Cu (111) and (100) surfaces
when calculated using PBE-D3 with a monolayer of
water [32]. They also showed that the local electric
field initiated by the solvating water molecule can help
stabilize *OCCO adsorption compared to 2*CO.

Electrode potential dependence of CC coupling
barriers

To study the 2*CO→*OC−CO reaction on the Cu
(100) surface, Head-Gordon and coworkers used PBE-
D3 with implicit solvation with electrode potential
correction using grand canonical DFT [25]. In their
calculation, they changed the electrode potential from
U = 0 and −1.0 V versus the relative hydrogen elec-
trode at pH = 7 and found that the barrier for CC
coupling increases slightly from 0.6 eV to 0.7 eV. On
the other hand, the heat of reaction decreased from
0.5 eV to 0.2 eV. So, the effect of a negatively charged
surface can greatly affect the heat of reaction for
2*CO→*OC−CO by stabilizing the product. Tsai and
coworkers used PBE-D3 to model the same reaction on
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Fig. 2 Schematic models used to calculate copper electrolyte interfaces, including the effect of electrode potential. (a) vacuum,
(b) varying the number of electrons and using implicit water [25], (c) varying the number of electrons and using explicit water
[36], (d) applying an electric field with explicit water [52], (e) adding in atoms and explicit water [53].

2*CO *OC-CO

Cu(100) Cu(110) Cu(111)

2*CO *OC-CO *OC-CO2*CO

Cu(211) Cu(511)

2*CO *OC-CO *OC-CO2*CO

Cu C O

→ → →

→ →

CO bound
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Fig. 3 Schematic geometry for 2*CO→*OC−CO, reaction R1, calculated for Cu surface on various facets in vacuum.

the Cu (111) surface, including three to four layers of
water molecules and a plate type electric field [52].
They also found a slightly increasing barrier energy
and a great decrease in the heat of reaction in going
from positive to negative electrode potential U. Fur-
thermore, in their analysis, they found that at 2*CO,
the Cu surface donates ∼ 1 electron to the adsorbates,
on the other hand, after the CC coupling this increases
to ∼ 1.6 electrons for *OCCO configuration. This

signifies that the product OCCO is more negatively
charged, and hydrogen bonding of the water also
stabilizes this excess charge by shortening the average
CO. . . H2O distance by 0.3 Å. The large negative
potential results in favorable electron transfer to the
*OCCO, and stabilization of this CC coupling product
can be further enhanced by a larger hydration energy
of the more negatively charged *OCCO.

Considering that this effect of electrode poten-

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


6 ScienceAsia 50 (1): 2024: ID 2024029

tial and solvating water molecules greatly affects the
charge transfer between the Cu surface and the adsor-
bates, we also have to be careful about the accuracy
of the charge transfer. Carter and coworkers have
compared the difference in binding energies of CC cou-
pling intermediates using PBE-D3 and emb-CASPT2
[38]. They found that intermediates with large energy
differences between the two methods have large dif-
ferences in the adsorbate charge change. Therefore,
they concluded that inaccurate charge transfer from
the metal surface is one sign when evaluating the
accuracies in the energies. On the other hand, charge
transfer is very sensitive to the work function of the
surface, and in the embedding methods, one may need
to check the convergence with respect to the embedded
cluster size.

Reactivity on the oxidized copper surface

Experimental studies by Kanan and coworkers showed
enhanced production of C2 products on electrodes
derived from oxidized copper produced by annealing
copper foil in air [10]. Considering that CRR occurs
at negative electrode potentials (−0.4 to −1.1 V SHE),
the Cu(+1) oxidation state is expected to be reduced
at experimental electrocatalytic conditions. Detailed
experimental studies have found that the number of
grain boundaries can be related to the activity of
producing C2 products. Goddard and coworkers have
performed calculations on pristine Cu (111) surface,
fully oxidized Cu2O surface, and Cu embedded Cu2O
surface; see schematic geometries in Fig. 4 [35]. They
used PBE with a mixed implicit explicit solvation model
coupled with grand canonical DFT and showed that
at U = −0.9 V vs SHE, the barrier for reaction R1,
2*CO→*OC−CO, was 1.1, 3.2, and 0.71 eV on the
pristine Cu, full oxidized Cu2O, and Cu embedded
Cu2O surface, respectively. Importantly, they showed
that the reduced barrier energy in the Cu embedded
Cu2O surface was due to the different atomic charges
on the two *CO on the surface. The *CO on the
Cu2O had a slightly positively charged carbon atom,
while that on embedded Cu had a slightly negatively
charged carbon atom (see bottom panel of Fig. 4). This
favorable electrostatic interaction among the 2*CO
on the Cu embedded Cu2O surface results in lower
barriers than pristine Cu or Cu2O surfaces. Indeed, if
the CC coupling reaction was performed only on the
Cu surface that is embedded in the Cu2O, the barrier
was similar to that obtained from the pristine Cu sur-
face. This shows that grain boundaries are important
features for CC coupling, and experimental studies
have shown a correlation between the amount of grain
boundary and C2H4 faradic efficiency. In conclusion,
an asymmetric environment is vital in promoting CC
coupling.

Wu and coworkers evaluated the optimum Cu-Cu
distance for favorable CC coupling barriers in generat-

Cu C O

2*CO *OC-CO→

2*CO *OC-CO→

2*CO *OC-CO→

C-C
4.00 Å

C-C
1.53 Å

C-C
6.03 Å

C-C
1.27 Å

C-C
3.52 Å C-C

1.53 Å

Cu(111)

Fully oxidized Cu2O

Metal embedded Cu2O

𝜹(+0.11) 𝜹(-0.31)

HCu+

Fig. 4 The pristine Cu (111) surface, fully oxidized Cu2O
surface, and metal embedded Cu2O surface. Orange, blue,
gray, red, and white balls stand for Cu, embedded Cu, carbon,
oxygen, and hydrogen atoms. We obtained the charge on the
CO of the metal embedded Cu2O surface from Xiao et al [35].

ing C2H4 using PBE functional on Cu2O (100) surface
[57]. Interestingly, they found that if the two active
Cu are 1.5 Å apart, the hydrogen evolution reaction
producing H2 is active, while if it is 3.5 Å apart, formic
acid production is favored. According to their study,
favorable ethylene production was predicted if the Cu
distance was 2.5 Å apart. Norskov and coworkers
also studied the effect of strain on the Cu (100),
(111), and (211) surfaces and found tensile strain
can cause the CC coupling barrier to decrease [24].
This shows constraining the active site distance is one
way to reduce the CC coupling barrier, but we have
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to remember that in electrode working conditions,
surface reconstructions may occur, and keeping the
ideal distance at experimental conditions may not be
as easy as in a computational perspective.

CONCLUSION AND OUTLOOK

As we have summarized above, theoretical calculations
have helped rationalize various experimental findings
on CC coupling on the Cu surface, and researchers
are developing various models to describe the complex
electric double layer of the electrode-electrolyte inter-
face. We have collected CC coupling barrier energies
from recent theoretical calculations on Cu surface in
Table 1, following the format used by Nitopi et al [19].
As discussed in many experimental reviews, devel-
oping in situ surface sensitive techniques that detect
important reaction intermediates at electrode operat-
ing conditions will become key for understanding the
reaction mechanism and finding suitable catalysts for
CRR to form C2+ products selectively. Following this
lead for new experimental instrumentation, theoretical
studies will also need to develop new methodologies
to simulate IR absorption or Raman scattering spectra
under operating conditions [58]. Koper and coworkers
have reported the vibrational spectra of C2+ inter-
mediates at experimental electrode conditions with
assignments based on frequencies calculated by DFT
calculations [12]. Ab initio molecular dynamics simu-
lation at a constant charge DFT level was recently used
to simulate vibrational spectra of CC coupling reaction
intermediates to help assign the experimental spectra
on oxide derived copper surfaces [59]. So combining
the various electrolyte models as well as electrode po-
tential calculation methods to quantitatively determine
the vibrational spectra change during the electrode
working condition will be one important direction for
the future [60].

In addition, surface reconstruction at operating
electrode CRR conditions is one of the reasons for the
decrease in activity for oxide derived copper surfaces.
Recent studies have shown that the catalyst activity
toward producing ethylene of these Cu surfaces can
be elongated by alternating “on” and “off” operating
regimes [61]. During the “on” time, the catalyst is
reduced at very negative electrode potentials. It is
oxidized during the “off” time due to the interaction
with available oxygen in the atmosphere. Further-
more, pulsing the electrode potential has also been
shown to allow efficient steering of ethanol on Cu
surfaces [62]. Another recent study has mentioned
that co-electrolysis of CO2 with O2 can modulate the
Cu surface and promote the formation of C2 prod-
ucts [63]. Therefore, detailed calculations helping
to understand the surface reconstruction at working
electrode conditions and its recovery will also be an
important direction for producing stable catalyst sur-
faces for CRR [64].

Thirdly, several studies have mentioned the im-
portance of cations, such as Cs+, in promoting the
CC coupling to produce ethanol. Detailed theoretical
models to evaluate the effect of these cations and
anions near the electrode interface will likely shed light
on the complex reactions occurring on electrocatalytic
CRR. Since these ions can be in the electrolyte near
the adsorbates, directly adsorb on or desorb from the
surface (depending on the electrode potential), and
modulate the local pH around the electrode, one will
need detailed modeling of the dynamics of these ions
involving adsorption, desorption, and mass transport.
We believe that detailed modeling of the electrode in-
terface C2H5OHs complex local reaction environment
will further enhance our understanding of electrocat-
alytic reactions [49].

Lastly, so-called single atom catalysts (SACs),
which are based on localized atomic active sites for
reactions, have attracted attention due to their favor-
able utilization of metal atoms [65, 66]. Similarly,
dual-atom catalysts (DACs) have also been studied,
and some show promising results for CC coupling
reactions [67–70] Compared to traditional copper-
based catalysts, these SACs and DACs offer enhanced
selectivity and efficiency, spotlighting the potential for
broader material exploration. Furthermore, utilizing
various substrate materials and defect engineering,
one can modulate the electronic state of the active
metal site which can provide flexibility and fine tuning
for favorable CC coupling. We believe computational
studies can help rationalize the effect of the substrate
on the local electronic structure of the metal active site.
Some studies have even mentioned that non-metal
carbon based surfaces can also promote CC coupling
[71, 72]. All in all, copper remains the most well-
studied metal surface for C2 production for CRR, but
extension toward other materials is another direction
for computational studies to explore. Furthermore, for
these carbon based materials, the surface stability has
not been studied in detail compared to metal surfaces,
and computational studies may help provide molecu-
lar level changes in bonding geometries at electrode
working conditions.
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