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ABSTRACT: The accuracy of age prediction based on physical appearance diminishes as body degradation occurs,
prompting the suggestion of utilizing skeletal remains as an alternative method. Molecular studies investigating
epigenetic responses have proposed the development of age prediction models. Certain studies focusing on teeth
or bones have explored the correlation between DNA methylation and actual age. However, the influence of
diverse ethnicities on DNA methylation levels poses a challenge to the generalizability of these models, limiting their
applicability to specific populations of origin. This study aims to investigate the DNA methylation levels in teeth
to construct an age prediction model. Teeth were collected from corpses, and the pyrosequencing technique was
employed to measure the quantification of DNA methylation levels on ELOVL2, ZYG11A, and TRIM59 genes. Significant
correlations were observed between several methylated ELOVL2, ZYG11A, and TRIM59 levels and actual age, and these
correlations had not been reported before. A moderately positive linear relationship (r value between 0.365–0.643) was
constructed for age prediction. The performance of the predicted models was evaluated using Leave-One-Out Cross-
Validation, indicating an approximate error of 11–13 years from the actual age. In conclusion, our findings provide
preliminary data to the discovery of significantly methylated genes for the construction of age prediction model for
further study and the utilization of the DNA methylation-based approach for application in forensic aspect.
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INTRODUCTION

In the context of criminal proceedings, age estima-
tion is a crucial approach for identifying individuals
in the absence of relevant documents. Various tech-
niques, including forensic genetics, forensic anthro-
pology, forensic radiography, and forensic odontol-
ogy, have been employed for age estimation in adult
corpses. However, estimating age based on physical
appearance becomes challenging due to the decompo-
sition of the corpse. Furthermore, biological samples
such as blood, saliva, buccal mucosa, semen, or other
tissues cannot be collected from corpses due to envi-
ronmental degradation and decay [1, 2]. Therefore,
skeletal remains, bones, or teeth have emerged as
potential sources for personal identification. Recently,
DNA evidence has been proven valuable for forensic
purposes, particularly in age estimation. Previous
studies have demonstrated that genetic-based tech-
niques, such as measuring telomere length, mRNA
expression, DNA rearrangement, and DNA methyla-
tion, can be utilized to estimate the age of death
[3]. Both cellular senescence and biological aging are
associated with telomere shortening. However, using
telomere length as a model for age estimation exhibits

a wide range of errors and is not widely adopted in
forensic applications [4, 5]. Age prediction models
generated through the analysis of mRNA expression
and signal joint T-cell receptor rearrangement excision
circle (sjTREC) have been reported to have predictive
accuracy. However, this technique is limited to specific
tissues, such as fresh blood and tissues from fresh
cadavers [6]. Consequently, quantifying DNA methyla-
tion has emerged as the most reliable method for age
estimation, demonstrating lower predicted errors in
comparison to the actual age [4, 7]. DNA methylation
is an epigenetic mechanism that involves the transfer
of a methyl group onto the C5 position of cytosine,
forming 5-methylcytosine [8].

In terms of the type of specimen used for quan-
tifying DNA methylation, the prior study discovered
that age-related DNA methylation is relatively tissue-
specific [9]. Teeth, being the hardest structures in
the human body, are resistant to decay in extreme
environments and degrading contamination, thus pre-
serving teeth DNA. Teeth DNA can be found in den-
tal tissues such as dentine, cementum, and the pulp
complex [10]. The Disaster Victim Identification (DVI)
Guide 2018 and the DNA Commission of the Interna-
tional Society of Forensic Genetics (ISFG) suggest that
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healthy teeth, preferably molars and premolars, are
suitable choices for collecting samples from uniden-
tified human remains [11]. Several studies have
been conducted on the estimation of age using DNA
methylation. Previous investigations summarized that
the methylation levels of ELOVL2, RPA2, TRIM59, and
ZYG11A genes were effective for age prediction in
blood, bone, brain, buccal swab, and muscle sam-
ples [12, 13]. Unfortunately, fewer studies have been
carried out on the association between dental DNA
methylation and biological age.

ELOVL2 (ELOVL fatty acid elongase 2), ZYG11A
(Zyg-11 Family Member A), and TRIM59 (Tripartite
Motif Containing 59) have been identified age pre-
dictors. The correlation between the methylation of
ELOVL2, TRIM59, ZYG11A, and actual age has been re-
ported in various biological samples, including blood,
buccal swabs, and saliva [12]. However, the methyla-
tion analysis of TRIM59 and ZYG11A in teeth remains
unexplored. Furthermore, it has been noted that
different populations can impact genetic background.
Previous studies have shown that the accuracy and
precision of predictive models vary when applied to
populations other than the one from which the model
was developed. It is assumed that race or ethnicity may
influence the effectiveness of the model in predicting
age within individual populations [14, 15]. Moreover,
there is a scarcity of studies on developing age predic-
tion models based on the methylation of these three
genes for the Thai population [16]. Therefore, it is
crucial to consider the ethnicity of individuals when
utilizing such models to estimate age based on DNA
methylation rates. As a result of these considerations,
the three genes, ELOVL2, ZYG11A, and TRIM59, were
selected for establishing age prediction in our study.
The objectives of this research are to evaluate DNA
methylation in teeth, specifically at CpG sites located
on the ELOVL2, ZYG11A, and TRIM59 genes in samples
of the Thai population and to construct a preliminarily
predictive model for age estimation. The data obtained
from this study can be used to develop an age predic-
tion model in the future.

MATERIALS AND METHODS

Sample collection and preparation

The study was conducted in accordance with the Decla-
ration of Helsinki and approved by the Ethics Commit-
tee of the Faculty of Medicine, Chiang Mai University,
Thailand (No. 019/2022). Thirty-six healthy perma-
nent maxillary right first premolar teeth were collected
from corpses aged between 17–72 years within 24 h
after death at the Department of Forensic Medicine,
Faculty of Medicine, Chiang Mai University. Sam-
ple inclusions were participants without any diseases
impacting DNA methylation levels, such as cancer,
atherosclerosis, nervous disorders, or cardiovascular
diseases; nor any disease-related gum or tooth infec-

tions including dental caries, enamel hypomyelination,
periodontitis, or oral carcinogenesis [17]. The criteria
for determining Thai ethnicity include verifying infor-
mation of family history obtained from interviewing
the deceased’s relatives, the history in medical record,
and the National ID Number with the initial digits
of 1, 2, and 3 for individuals with Thai nationality.
Fresh teeth were brushed under distilled water and
dried at room temperature. Teeth were soaked in
liquid nitrogen and ground using Freezer Mil 6750
(SPEX SamplePrep, New Jersey, USA) before storage
at −20 °C.

DNA extraction and quantification

Genomic DNA was extracted using QIAamp DNA Inves-
tigator Kit (Qiagen, Hilden, Germany). Approximately
100–200 mg of powdered teeth was mixed with Buffer
ATL and proteinase K and incubated overnight. After
the incubation, buffer AL was added, and the solu-
tion was incubated with shaking, then, centrifuged.
The supernatant was collected, mixed with absolute
ethanol and transferred into QIAamp MinElute column
for DNA binding. The extracted DNA was washed
in sequence with Buffer AW1, Buffer AW2, and 70%
ethanol. Finally, purified DNA was eluted into a mi-
crocentrifuge and quantified using NanoDrop (Thermo
Fisher Science, MA, USA).

Bisulfite conversion

To distinguish between methylated and unmethylated
cytosine, bisulfite technique was used for a conversion
of unmethylated cytosine to uracil according to manu-
facturer’s instruction (Epitect Fast Bisulfite Conversion
Kit, Qiagen, Hilden, Germany). Briefly, 100 ng of puri-
fied DNA was mixed with RNase free water, bisulfite
solution, and DNA protect buffer. The solution was
incubated at 56 °C for 5 min, followed with 60 °C for
10 min, 95 °C for 5 min, 60 °C for 10 min, and held
at 20 °C using a thermal cycler (Qiagen, Hilden, Ger-
many). The bisulfite DNA product was desulphonated
by Buffer BD and eluted into a microcentrifuge. Finally,
the concentration of bisulfited DNA was quantified
using NanoDrop (Thermo Fisher Science, MA, USA) for
next steps.

PCR pyrosequencing and methylation analysis

Approximately 20–30 ng of bisulfite converted DNA
was amplified by polymerase chain reaction (PCR).
The PCR reaction mixture contained bisulfite con-
verted DNA as a template, 2X PyroMark mastermix,
10X CoralLoad concentration, 10 µM forward and
reverse primer. The assay design program 2.0 was
used to generate the primer sequences (Table 1). The
primers for all three genes were designed by Pyro-
Mark PCR software with slight modification from a
previous publication [18]. The PCR was performed
by Veriti™ 96-Well Fast Thermal Cycler PCR Systems
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Table 1 PyroMark CpG assay design, including primer name, primer sequencing, and primer details in ELOVL2, ZYG11A and
TRIM59 genes.

Primer name Primer sequences (5′→ 3′) Tm % GC PCR size (bp)

ELOVL2-FP AGGGGAGTAGGGTAAGTGAG 57.8 55.0
307ELOVL2-RPB ACAAAACCATTTCCCCCTAATATA 59.4 33.0

ELOVL2-SP GGGAGGAGATTTGTAGGTTT 42.4 45.0

ZYG11A-FP TAGAGGTATTTGTTGGGGAGT 56.2 42.9
290ZYG11A-RPB AACCAAACCCAATACCATACCCT 56.7 43.5

ZYG11A-SP TTTGTTGGGGAGTGT 45.7 46.7

TRIM59-FP TATGGTATAGGTGGTTTGGGGGAGA 62.3 48.0
148TRIM59-RPB ATAAAAAACACTACCCTCCACAACATAACA 58.5 33.3

TRIM59-SP TTGGGGGAGAGGTTG 50.5 60.0

(Thermo Fisher Science, MA, USA), with an initial
PCR activation step at 94 °C for 15 min, followed by
45 cycles at 94 °C for 30 s, 56 °C for 30 s, 72 °C for
30 s, and final extension step at 72 °C for 10 min
according to the manufacturer’s instruction (PyroMark
PCR Kit, Qiagen, Hilden, Germany). The verifica-
tion of PCR product prior to pyrosequencing analysis
was confirmed by analysis of amplifying product on
1.5% agarose gel electrophoresis. Finally, PCR prod-
uct was loaded into the PyroMark Q48 Instrument
(Qiagen, Hilden, Germany) following the manufac-
turers instruction. Methylation levels were analyzed
by PyroMark Q48 Autoprep software (Qiagen, Hilden,
Germany). The result was expressed as percentage of
methylated cytosines over the total of methylated and
non-methylated cytosines on each CpG site.

Statistical analysis

Statistical analysis was performed using GraphPad
Prism 9 and IBM SPSS 26. First, the data’s normal dis-
tribution was assessed using the Shapiro-Wilk method.
The Spearman correlation coefficient (r) was used to
analyze the correlation between methylation levels and
actual age in non-normal distribution. The statistical
significance level was set at p < 0.05. To demon-
strate the performance of predicted equations for age
estimation, the mean absolute error (MAE) and the
root mean square error (RMSE) were calculated. The
MAE represents the error between predicted values
and the actual value by calculating from the average
absolute difference between the predicted values and
the actual values in a set of data points. The RMSE
is standard deviation of the prediction errors, and it
is another parameter to evaluate the accuracy of a
predictive model. It indicates the extent to which data
points deviate from the regression line. The lower
MAE and RMSE indicate the closer to the actual values
of the model’s predictions. It is widely employed
for evaluating the performance of predictive models
[19]. Leave-One-Out Cross-Validation (LOOCV) was
performed in RStudio to evaluate the model’s effec-
tiveness and capability to make accurate predictions

on unseen data. One data point is excluded at a time
from all datasets and train the model on the remaining
data. Then, the model is used to predict the excluded
data point. This process is repeated for each data point
in the whole dataset, enabling a thorough evaluation
of the model’s effectiveness and its capability to make
accurate predictions on unseen data [20].

RESULTS

Thirty-six teeth were collected from corpses without
underlying diseases. The quantification of DNA
methylation on ELOVL2, ZYG11A, and TRIM59 genes
were analyzed by pyrosequencing technique. The
eight CpG sites on the ELOVL2 gene (cg16867657)
were CpG1 (6:11044861), CpG2 (6:11044864),
CpG3 (6:11044867), CpG4 (6:11044873),
CpG5 (6:11044875), CpG6 (6:11044877), CpG7
(6:11044880), and CpG8 (6:11044888). The four
CpG sites, CpG1 (1:53308756), CpG2 (1:53308758),
CpG3 (1:53308760), and CpG4 (1:53308768) were
located on the ZYG11A gene (cg06784991). Finally,
the six CpG sites on the TRIM59 gene (cg07553761)
were CpG1 (3:160167960), CpG2 (3:160167962),
CpG3 (3:160167967), CpG4 (3:160167972), CpG5
(3:160167977), and CpG6 (3:160167980).

A correlation between methylated DNA and actual
age

Regarding the ELOVL2 gene, the methylated DNA lev-
els at CpG1, CpG2, CpG3, CpG4, CpG5, CpG6, and
CpG7 demonstrated a gradual increase with advanc-
ing age. The overall r values for methylated CpG
sites and age ranged between −0.0083 and 0.5359.
Significant correlations between DNA methylation and
age were observed at CpG1, CpG4, CpG5, and CpG6.
Particularly, CpG5 exhibited a moderate positive cor-
relation with an r value of 0.5359. Regarding the
four CpG sites neighboring the ZYG11A genes, it was
observed that the methylated DNA levels at CpG1,
CpG2, and CpG3 were likely directly proportional to
the actual age. Additionally, the methylation level
of CpG1 showed a significantly positive correlation
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Table 2 The correlation between methylated CpG site of 3 candidate genes and age by Spearman correlation coefficient
analysis.

Gene CpG site
Spearman Correlation

Correlation 95% confidence p-valuecoefficient (r) interval

ELOVL2

CpG1 0.3732 0.0409 – 0.6312 0.0125
CpG2 0.1332 −0.2139 – 0.4504 0.2194
CpG3 0.1271 −0.2199 – 0.4455 0.2301
CpG4 0.3110 −0.0296 – 0.5869 0.0324
CpG5 0.5359 0.2422 – 0.7396 0.0004
CpG6 0.4354 0.1148 – 0.6739 0.0040
CpG7 0.1755 −0.1722 – 0.4843 0.1530
CpG8 0.0415 −0.3002 – 0.3737 0.4051

ZYG11A

CpG1 0.3765 0.0446 – 0.6335 0.0118
CpG2 0.2615 −0.0833 – 0.5505 0.0617
CpG3 0.1847 −0.1629 – 0.4916 0.1404
CpG4 0.1174 −0.2292 – 0.4375 0.2477

TRIM59

CpG1 0.1962 −0.1513 – 0.5006 0.1257
CpG2 0.2258 −0.1209 – 0.5234 0.0927
CpG3 −0.0083 −0.3448 – 0.3302 0.4809
CpG4 0.2712 −0.0730 – 0.5576 0.0548
CpG5 0.3317 −0.0065 – 0.6018 0.0241
CpG6 0.1951 −0.1524 – 0.4997 0.1270

A significant correlation between methylated level and age is shown in bold (p < 0.05).

with age. Furthermore, CpG5 on the TRIM59 gene
displayed a significant positive correlation between the
methylation level and age at that specific CpG site
(Table 2).

Validation of age prediction model

The performance of the age prediction model was
analyzed using a training set of 36 teeth samples.
The stepwise multiple linear regression approach was
employed by selecting the nine CpG sites correlated
with age. These CpG sites were located at CpG1, CpG4,
CpG5, and CpG6 in the ELOVL2 gene; CpG1 and CpG2
in the ZYG11A gene; and CpG2, CpG4 and CpG5 in the
TRIM59 gene. Their selection was based on r values
higher than 0.2 determined by Spearman correlation
coefficient analysis.

Four models of equations were produced in our
research. The age estimation in model 1 which was
calculated based on the methylated ELOVL2 gene. The
performance of this model was evaluated by comparing
the predicted age with the actual age, resulting in the
MAE, the RMSE, the r value, and the r squared (r2)
value. Model 1 showed a moderately strong positive
linear relationship between predicted age and actual
age. In addition, model 2, which was based on the
methylated ZYG11A gene, demonstrated lower accu-
racy and higher predicted error compared with results
from the other three models. However, in model 3,
using CpG1 and CpG2 on the methylation ZYG11A
gene, showed a better performance than model 2,
which used only CpG1 on ZYG11A. Additionally, model
4, which included methylated ELOVL2 and ZYG11A,
was regarded as the most accurate age prediction and

the lowest predictive error (Fig. 1 and Table 3).
To compare the error for age prediction, the age

was grouped into less than 40 years, between 40–60
years, and more than 60 years. It was discovered that
for all four models, MAE and RMSE values accurately
predicted age in the age range 40–60 years. Ages
under 40 and over 60 were accurately predicted by
model 4, while model 3 showed the most accurate
predictions for individuals in the 40–60 age range
(Table 4).

Given the small dataset and lack of a validation set,
the performance of the prediction model was evaluated
using LOOCV. The LOOCV is a reliable method that uti-
lizes all available data points for training and testing,
providing a more robust estimate of the model’s perfor-
mance [20]. In each iteration, one data point was ex-
cluded from the training set, resulting in a training set
of 35 data points. The model’s performance was then
assessed on the excluded data point, serving as the
test set. By incorporating all individuals in the LOOCV
approach, the models yielded MAE of 11.722–14.195
years and RMSE of 13.899–16.419 years (Table 5).
These results also demonstrated moderate correlations
with chronological ages (r2 between 0.045–0.307),
hence, suggesting that model 4 gave the most accurate
age prediction with an error of approximately 11–13
years from the actual age, while effectively explaining
the variation in the data.

DISCUSSION

The aim of this study was to preliminary study of a
correlation between DNA methylation levels in teeth
and actual age, with the goal of developing a pilot
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Fig. 1 Predicted age versus actual age in models (a–d) with the training set of 36 teeth samples. The graphs depict the
correlation between actual age (years) represented on the x-axis and predicted age (years) represented on the y-axis. A red
line shows the best fit line and dot lines show the 95% confidence intervals.

Table 3 Multiple stepwise regression in the four models for age estimation.

Model Equation r r2 SE MAE RMSE

1 y = 30.651 + 1.298(ELOVL2CpG5) 0.508 0.259 14.690 11.996 14.272
2 y = 39.128 + 0.228(ZYG11ACpG1) 0.365 0.133 15.880 13.395 15.434
3 y = 26.159 + 0.259(ZYG11ACpG1) + 2.317(ZYG11ACpG2) 0.518 0.269 14.800 11.573 14.174
4 y = 23.711 + 1.352(ELOVL2CpG5) + 0.246(ZYG11ACpG1) 0.643 0.413 13.265 10.711 12.701

Correlation coefficient (r), coefficient of determination (r2), standard error of the estimate (SE), mean absolute error
(MAE) and root mean square error (RMSE).

Table 4 Mean absolute error (MAE) and root mean square
error (RMSE) between an actual and a predicted ages of the
four models.†

Model Age group (years)

< 40 40–60 > 60

1 11.737 (14.008) 7.750 (8.727) 16.658 (18.526)
2 14.852 (16.547) 6.708 (8.072) 17.752 (18.823)
3 12.122 (14.401) 5.300 (7.013) 16.969 (18.498)
4 10.934 (13.277) 8.084 (8.987) 12.980 (14.761)

† Values are MAE (RMSE).

age prediction model that is more reliable, accurate,
and precise. The pyrosequencing method, on the other

hand, is a popular choice due to its unique detection
and quantification platform technology. It is suitable
for analyzing fresh, frozen, and FFPE specimens. It is
known for being rapid, easy-to-use, and cost-effective,
and has been widely applied in this field [21].

A previous study reported that blood and buccal
swab samples are commonly used as sources of DNA
methylation for accurate and precise age prediction
[13]. However, environmental damage and decay
susceptibility may render these specimens unavailable
in forensic cases. Therefore, dental samples are con-
sidered as alternative specimens that provide valu-
able information for personal identification in forensic
purposes. Several studies have developed prediction
models based on blood or various liquid samples in
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Table 5 Leave-One-Out Cross-Validation (LOOCV) in the four models for age estimation.

Model Equation r2 MAE RMSE

1 y = 30.651 + 1.298(ELOVL2CpG5) 0.181 12.703 15.090
2 y = 39.128 + 0.228(ZYG11ACpG1) 0.045 14.195 16.419
3 y = 26.159 + 0.259(ZYG11ACpG1) + 2.317(ZYG11ACpG2) 0.161 12.558 15.363
4 y = 23.711 + 1.352(ELOVL2CpG5) + 0.246(ZYG11ACpG1) 0.307 11.722 13.889

Coefficient of determination (r2), mean absolute error (MAE) and root mean square error (RMSE) for leave-one-out cross-
validation (LOOCV).

different populations. However, these models cannot
be directly applied to age prediction using teeth due
to variations in the level of methylated DNA [22].
Previous studies have revealed that while the same
methylation degree pattern was observed across dif-
ferent populations, variations in accuracy and perfor-
mance of age prediction models were evident [14]. A
previous investigations demonstrated that over 90%
of age-associated differentially methylated CpG posi-
tions (aDMPs) were significantly identified in African
Americans, whereas only 5% of aDMPs were shared
between the two racial populations (African Americans
vs. whites). Additionally, it was observed that only
3% of hypermethylated aDMPs overlapped, while the
remaining methylated aDMPs were unique to each
racial population (African Americans vs. whites) [23].
In addition, methylation studies have shown distinct
patterns of CpG methylation at certain locus in the
autosomal DNA between different human populations
or races. According to a prior study, 13.7% of au-
tosomal CpGs displayed significantly different levels
of DNA methylation between African Americans and
Caucasians [24]. Notably, differences were observed in
the methylation scores of the EDARADD gene between
Japanese and Indonesian saliva samples. Further-
more, nationality significantly influenced age estima-
tion based on the methylation levels of both EDARADD
and FHL2 [25]. To compare between the Germans and
the Japanese, the correlations between DNA methyla-
tion levels and age were very similar in both groups.
Evidently, however, there were differences between
the two groups in DNA methylation at certain CpG
sites, with the most noticeable variations observed in
EDARADD and PDE4C [14]. For the age prediction
model utilizing FHL2 and TRIM59 methylation, the
study noted a high r value for age-associated relation-
ships, specifically 0.798 for FHL2 in the Southern Han
Chinese. However, in the Polish, the r value was 0.42.
In various East Asian populations, the r values for
age-associated relationships with methylated TRIM59
were 0.67 and 0.87 in Southern Han Chinese and
Koreans, respectively [26]. These results illustrate
that different populations exhibit distinct methylation
statuses. Hence, based on the findings of the previous
investigations, it is suggested that a model trained
with specific ethnic groups should not be applied to an
individual from a non-targeted ethnic group without

retraining the model [27]. Therefore, it is crucial to
determine DNA methylation on CpG sites in various
genes from teeth samples to establish age prediction
models tailored to specific populations. In this study,
we utilized bisulfite pyrosequencing, a methodologi-
cal technique, to evaluate DNA methylation levels of
three genes (ELOVL2, ZYG11A, and TRIM59) in teeth
samples. We found that certain CpG sites within
these genes exhibited significant correlations with ac-
tual age, consistent with previous studies utilizing
blood, saliva, buccal swab, bone, and teeth samples
[6, 7, 28]. Multiple biological alterations, including
cellular senescence, telomere attrition, and epigenetic
response, are involved in the aging process. Dynamic
DNA methylation plays a beneficial role in the adaptive
response of cells to cellular stress throughout human
lifespan, leading to the accumulation of methylated
DNA on various genes [29]. It is widely acknowledged
that humans are exposed to various environmental fac-
tors that can induce or reduce methylation processes
at sensitive locations on the chromosome over their
lifetime. These factors support the strong correlation
between methylation levels and the aging process,
providing a novel marker for age estimation [30].

According to previous findings, the ELOVL2 gene
has been extensively studied for age prediction; how-
ever, most studies have focused on analyzing methy-
lated ELOVL2 in blood and saliva [21]. This gene plays
a role in regulating the synthesis of polyunsaturated
fatty acids (PUFAs), which are involved in various
biological functions such as energy production, inflam-
mation activation, and maintenance of cell membrane
integrity. The methylation of the ELOVL2 gene has
been well-documented to be associated with the ag-
ing process through the control of different biological
pathways [31]. Previous reports have demonstrated a
decrease in PUFAs concentration as a result of hyper-
methylation of the ELOVL2 gene, which is proportional
to an increase in human age [6]. In our study, we ob-
served a positive correlation between the methylation
of CpG1 sites in the ZYG11A gene and actual age. To
the best of our knowledge, the analysis of methylated
ZYG11A levels in teeth has not been previously pub-
lished. However, two studies have shown a correlation
between the methylation level of ZYG11A and actual
age. A significant correlation between ZYG11A and
actual age in whole blood, brain, bone, muscle, and
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buccal swab samples was reported in one study [13];
and a positive correlation between methylated ZYG11A
levels and actual age in blood samples was observed in
the other [32]. The ZYG11A gene acts as a regulator
of the cell cycle, driving cellular proliferation. Some
evidence suggests that ZYG11A expression is regulated
by insulin-like growth factor (IGF) signaling, which is
associated with healthy aging and longevity. There-
fore, it is hypothesized that the suppression of this
gene through hypermethylation might contribute to
increased age [33]. Furthermore, this gene encodes a
protein substrate for culin-2-based E3 ubiquitin ligase,
which is related to the ubiquitin system. Dysregula-
tion of the ubiquitin system has been associated with
the aging process, as observed in a previous study
[34]. Consistent with these findings, it is suggested
that the downregulation of the ZYG11A gene due to
hypermethylation might disrupt cellular function and
the ubiquitin process, contributing to an increase in
age [35]. Regarding methylated TRIM59, we found
a Spearman correlation between the methylation of
CpG5 sites in this gene. However, the methylation of
TRIM59 did not serve as a contributing factor in the
construction of the age prediction model by the analy-
sis of stepwise regression. Many studies have analyzed
the correlation between the methylation level of this
gene and actual age using various biological samples
such as blood, saliva, and buccal swabs. Nonetheless,
the quantification of methylated levels in teeth has not
been studied yet. TRIM59 has been proposed to reg-
ulate innate immune signaling pathways and induce
cellular senescence, contributing to age-related tissue
changes [36]. Hence, it was possible that methylated
TRIM59 genes did not significantly affect the ability to
estimate age in Thai population teeth.

To develop a preliminary age prediction model,
we selected r values higher than 0.2 in CpG sites
located on ELOVL2, ZYG11A, and TRIM59 and ana-
lyzed their association with actual age using multiple
linear regression analysis. Among these sites, only
two CpG sites from ELOVL2 and ZYG11A were found
to have a significant correlation with age and were
never studied in the teeth of Thai population. Among
our four age prediction models, applicable for ages
between 17 and 72 years, model 4 exhibited the best
performance characterized by giving lower MAE and
RMSE indicating higher accuracy in the model’s predic-
tions. Therefore, the model 4 is capable of predicting
ages with an error margin of approximately 11 years
in either direction from the actual age. Additionally,
we employed LOOCV to further evaluate the model’s
performance. The results showed a MAE of 11.722
years and an RMSE of 13.889 years, validating the
reliability and stability of the model. Previous research
has suggested that LOOCV analysis helps address over-
fitting and overestimation of prediction performance
[37]. Given the limited sample size of our study, incor-

porating a validation set alongside the training set and
utilizing LOOCV was necessary. LOOCV proves to be
a valuable approach for evaluating the model’s ability
to generalize, accurately measuring its performance,
optimizing data utilization, and minimizing bias and
overfitting. By utilizing MAE, RMSE, and LOOCV, this
study aims to assess the accuracy and stability of the
model and make informed decisions regarding model
selection and future enhancements.

Several studies, utilizing the same genes in dif-
ferent biological samples such as blood, saliva, and
buccal swab, have demonstrated r value above 0.9 and
MAE lower than 5 years [22]. It could be assumed
that blood, saliva, and buccal swab samples exhibit a
stronger correlation with actual age and lower MAE
due to their higher cell count, particularly leukocytes,
which contain a greater amount of DNA compared with
the other tissues [3, 13]. Additionally, factors like post-
mortem interval (PMI), lifestyle, cause of death, and
environmental conditions have been shown to influ-
ence DNA degradation and subsequently impact DNA
methylation levels. Comparing bone and teeth samples
with fluid biological evidence samples in terms of PMI
reveals that the latter tend to display shorter PMI and
faster DNA degradation. Conversely, teeth and bone
exhibit slower DNA degradation due to their robust
nature as the strongest tissues in the human body,
providing resistance against deterioration in harsh
environments or exposure to decaying contaminants
[38]. Regarding age prediction models based on teeth
samples, previous studies have shown r values ranging
from 0.7 to 0.9 and MAE values ranging from 2.3 to 8.9
years [6, 28, 39]. In our study, the r value and MAE
value were approximately 0.643 and 10.711 years,
respectively, which closely align with those reported in
previous publications. Interestingly, the differences in
r value and MAE value compared to previous studies
could be attributed to the preparation of the teeth
samples. In our study, DNA was extracted from the
entire tooth, while in some publications, DNA extrac-
tion was performed on specific tooth components such
as cementum, dentin, and pulp. Pulp extraction is
considered the most accurate method for age determi-
nation, although cementum can also provide valuable
information. It is possible that our teeth samples,
which included enamel and calcium, inhibited the DNA
extraction process, resulting in lower DNA quality and
quantity for DNA methylation quantification. There-
fore, to increase the accuracy of our model, a large-
scale sample size and increases number of CpG sites in
each gene are probably required. Moreover, the model
could be constructed for small ranges of age to increase
accuracy for age prediction in different age ranges.

CONCLUSION

Our findings revealed a robust correlation between
methylated ELOVL2 and ZYG11A genes in human teeth
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and actual age. Our information provided preliminary
data to discover the significantly methylated genes,
especially ELOVL2 and ZYG11A, for the construction of
age prediction model. Based on this association, we de-
veloped a preliminary age prediction model utilizing a
DNA methylation-based approach. Four models based
on the methylated gene were provided with an error
margin of predicted age approximately 11 to 13 years
from the actual age. These models hold significant
potential in providing valuable insights for forensic age
estimation purposes.
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