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ABSTRACT: In this article, we investigate some properties of meromorphic solution of the following differential-
difference equation

n
∑

j=0

c j f (z+ j)+
n
∑

j=0

l j f ( j)(z+ j)+
m
∑

j=0

d j f ( j)(z)− c = ( f (z+η)− f (z)− b)eQ,

where n, m⩾ 1 are two integers, η is a constant with |η| ̸= n, Q is a polynomial. We study the growth of solutions of a
more general differential-difference equation given by Lü et al [Rest Math 74 (2019):1–18]. Meantime we obtain the
relation between degQ and ρ( f ).
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INTRODUCTION AND MAIN RESULTS

We assume that the reader is familiar with the basic
notation and fundamental results of Nevanlinna theory
[1]. Moreover, we use the notation ρ( f ) to denote the
order of growth of f , and λ( f ) to denote the exponents
of the zeros of f .

Recently, Li and Saleeby [2] considered exis-
tence and uniqueness of solutions of the following
functional-difference equations

f ′(z) = a f (g(z))+ b f (z)+ c, (1)

with a ̸= 0, b, c are constants. Such equations can be
thought of as generalizations of differential-difference
equations, and so they appear as models in a large
amount of different settings – for example, in the study
of wave motion, cell growth, wavelets, etc. Studies
of equations of a more general type than (1) have
appeared.

The purpose of this article is to study the growth
of solutions of a more general differential-difference
equation

n
∑

j=0

c j f (z+ j)+
n
∑

j=0

l j f ( j)(z+ j)+
m
∑

k=0

dk f (k)(z)− c

= ( f (z+η)− f (z)− b)eQ, (2)

where n, m ⩾ 1 are two integers, η (|η| ̸= n) is a
constant. And we obtian the following results.

Theorem 1 Let f be a transcendental entire function
with λ( f − a) < ρ( f ) = ρ <∞, where a is an entire

function satisfying ρ(a) < ρ, and let b, c, c j , l j ( j =
0, 1,2, . . . , n), dk (k = 0,1, 2, . . . , m) be entire function
such that T (r, b) = S(r, f ), T (r, c) = S(r, f ), ρ(c j) <
ρ−1, ρ(l j)< ρ−1, ρ(dk)< ρ−1. If f is a solution of
(2), then degQ = ρ( f )−1.

Remark 1 The condition ρ(c j)< ρ−1 in Theorem 1
cannot not be deleted. For example, the equation

e−z− 3
4 f (z+1)− e−4z−4 f (z+2) = f (z+ 1

2 )− f (z),

has a solution f (z) = ez2
, where c1 = e−z− 3

4 , c2 = e−4z−4

and eQ = 1. Here ρ(c1) = 1 = ρ( f )− 1, ρ(c2) = 1 =
ρ( f )−1. But, degQ = 0 ̸= 1= ρ( f )−1.

Some idea of the proof of Theorem 1 is based on [3].

Theorem 2 Let c j(z), l j(z) ( j = 0,1, 2, . . . , n), dk (k =
0, 1, 2, . . . , m) be meromorphic functions, and set

σ =max{σ(c j),σ(l j),σ(dk)}.

If f (z) (̸≡ 0) is a finite order transcendental meromor-
phic solution of equation

n
∑

j=0

c j f (z+ j)+
n
∑

j=0

l j f ( j)(z+ j)+
m
∑

k=0

dk f (k)(z)+c = 0, (3)

where c is a meromorphic function such that c ̸≡ 0 and
T (r, c) = S(r, f ), then we have
(i) if σ ⩾ λ f , then σ ⩾ σ( f )−1;
(ii) if σ < λ f , then λ f ⩾ σ( f )−1,
where λ f =max{λ( f ),λ(1/ f )}.
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Example 1 The equation

1
e

e−2z f (z+1)+
1
e

e−2z f ′(z+1)+
1
e4

e−4z f ′′(z+2)

− f ′′(z)−9 f ′(z)−19 f (z)−19+
1

e2z+1
= 0

has a solution f (z) = ez2
− 1. Here, 2 = λ f > σ = 1

and λ f > σ( f )− 1 = 1, the equation and its solution
satisfy Theorem 2(ii).

Theorem 3 Let c j(z), l j(z) ( j = 0,1, 2, . . . , n), dk (k =
0,1, 2, . . . , m), c be meromorphic functions, such that
T (r, c j) = S(r, f ), T (r, l j) = S(r, f ), T (r, dk) = S(r, f )
and T (r, c) = S(r, f ). If f (z) is a finite order transcen-

dental meromorphic solution of (3), and d
n
∑

j=0
c j+d0d−

c ̸= 0, then λ( f − d) = σ( f ), where d is a constant.

Example 2 The equation

1
e

f (z+1)+
1
e

f ′(z+1)+
1
e2

f ′′(z+2)− f (z)−2 f ′(z)

−
1

e (z+1)2
+

1
e (z+1)

+
2

e2(z+2)3
−

1
z
+

2
z2
= 0

has a solution f (z) = ez − 1
z . Here, d

e − d + 1
e (z+1)2 −

1
e (z+1) −

2
e2(z+2)3 +

1
z −

2
z2 ̸≡ 0 and λ( f ) = λ( f − d) =

σ( f ) = 1. The equation and its solution satisfy Theo-
rem 3.

PRELIMINARY LEMMAS

Lemma 1 ([1]) Suppose that f1, f2, . . . , fn (n ⩾ 2) are
meromorphic functions and g1, g2, . . . , gn are entire
functions satisfying the following conditions

(i)
n
∑

j=1
f je

g j ≡ 0;

(ii) g j − gk are not constants for 1⩽ j < k ⩽ n;
(iii) for 1 ⩽ j ⩽ n, 1 ⩽ h < k ⩽ n, T (r, f j) =

o{T (r, egh−gk )} (r →∞, r /∈ E), where E is a set of
r ∈ (0,∞) with finite linear measure.

Then f j ≡ 0 ( j = 1,2, . . . , m).

Lemma 2 ([4]) Let f be a non-constant meromorphic
function with ρ2( f )< 1 and let c be a non-zero complex
number and k be a positive integer. Then

m
�

r,
f (k)(z+ c)

f (z)

�

= S(r, f ),

outside of a possible exceptional set with finite logarith-
mic measure.

Lemma 3 ([5]) Let f be a non-constant meromorphic
function with ρ2( f ) < 1 and η be a nonzero constant.
Then

m
�

r,
f (z+η)

f (z)

�

= S(r, f ), m
�

r,
f (z)

f (z+η)

�

= S(r, f ).

PROOF OF Theorem 1

Let g = f − a. Then λ(g) = λ( f − a)< ρ( f ) = ρ(g) =
ρ. Hence

g = f − a = I(z)eS(z),

where I(z) is an entire function and S(z) is a nonzero
polynomial such that ρ(I) < ρ( f ) = ρ = deg S. Sub-
stituting f = a+ I(z)eS(z) into (2), we have

n
∑

j=0

c ja(z+ j)+
n
∑

j=0

c j I(z+ j)eS(z+ j) +
n
∑

j=0

l ja
( j)(z+ j)

+
n
∑

j=0

l j S̃ j(I(z+ j))eS(z+ j) +
m
∑

k=0

dkS j(I)e
S(z) +

m
∑

k=0

dka(k) − c

= (I(z+η)eS(z+η)+a(z+η)−I(z)eS(z)−a(z)−b)eQ(z). (4)

where

Sk(I) = I (k)+λk−1 I (k−1)+ · · ·+λ0 I ,

λ j (0⩽ j ⩽ k−1) are polynomials. And

eSk(I(z+k)) = Ĩ (k)(z+k)+λ̃k−1 Ĩ (k−1)(z+k)+· · ·+λ̃0 Ĩ(z+k),

λ̃ j (0⩽ j ⩽ k−1) are polynomials. Eq. (4) implies that

φ1eS(z)+φ2 = (φ3eS(z)+φ4)e
Q(z), (5)

where

φ1 =
n
∑

j=0

c j I(z+ j)eS(z+ j)−S(z)

+
n
∑

j=0

l j
eS j(I(z+ j))eS(z+ j)−S(z)+

m
∑

k=0

dkSk(I),

φ2 =
n
∑

j=0

c ja(z+ j)+
m
∑

k=0

dka(k)+
n
∑

j=0

l ja
( j)(z+ j)− c,

φ3 = I(z+η)eS(z+η)−S(z)− I(z),
φ4 = a(z+η)− a(z)− b.

Since ρ(I) < ρ = ρ(eS) and ρ(eS(z+ j)−S(z)) < ρ =
ρ(eS), we have ρ(Sk(I)) < ρ, ρ(eSk(I(z + k))) < ρ.
Hence ρ(φi) < ρ (i = 1,2, 3,4). We assume that
φ3 ̸= 0. Otherwise, if φ3 = 0, then eS(z+η)−S(z) = I(z)

I(z+η) .
Hence we have

m(r, eρ(z+η)−ρ(z)) = O(rρ( f )−1),

m
�

r,
I(z)

I(z+η)

�

= O(rρ(I)−1+ϵ).

It is impossible. Next, we divide the proof into the
following two cases.
Case 1: φ2 = 0.

We assume that φ1 ̸= 0. Otherwise, Eq. (5)
becomes eS(z) = −φ4

φ3
, so ρ = ρ(eS(z)) = ρ(−φ4

φ3
) < ρ,

which is impossible. By φ1 ̸= 0 and (5), we have

φ1eS(z) = (φ3eS(z)+φ4)e
Q(z).
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If φ4 ̸= 0, then φ3eS(z) +φ4 has the same zeros with
φ1. By the Nevanlinna’s second fundamental theorem,
we have

T (r, eS)⩽ N̄(r, eS)+ N̄(r, 1
eS )+ N̄
�

r,
1

eS + φ4
φ3

�

+S(r, eS)

⩽ N(r, 1
φ1
)+ S(r, eS)⩽ T (r,φ1)+ S(r, eS) = S(r, eS),

this is impossible. Hence, φ4 = 0 and φ1 = φ3eQ(z),
that is

n
∑

j=0

c j
I(z+ j)
I(z+η)

eS(z+ j)−S(z)+
n
∑

j=0

l j

S̃ j(I(z+ j))

I(z+η)
eS(z+ j)−S(z)

+
m
∑

k=0

dk
Sk(I)

I(z+η)
= (eS(z+η)−S(z)−

I(z)
I(z+η)

)eQ(z). (6)

Let S(z) = bmzm + bm−1zm−1 + · · · + m0, where bm ̸=
0, bm−1, . . . , b0 are constants and m is a positive integer.
By ρ(c j)<ρ−1, ρ(l j)<ρ−1, ρ(d j)<ρ−1, we have
m= ρ(eS) = ρ > 1. Hence m⩾ 2. So

eS(z+ j)−S(z) = e jmbmzm−1
eS j(z) = eS j(z)w j(z), ⩽ j ⩽ n,

where w = embmzm−1
and deg S j ⩽ m − 2. By ρ(I) <

ρ(eS) = ρ(w)+1. By Lemma 2 and Lemma 3, we have

m
�

r,
I(z+ j)
I(z+η)

�

= S(r, w), m
�

r,
I (k)(z+ c)

I(z)

�

= S(r, w).

Eq. (6) implies that

�

eS(z+η)−S(z)−
I(z)

I(z+η)

�

eQ(z) =
n
∑

j=0

gn− jw
j +M(z)

= Fn(w)+M(z), (7)

where gn− j =
�

c j
I(z+ j)
I(z+η) + l j

S̃ j(I(z+ j))
I(z+η)

�

eS j , Fn(w) =
n
∑

j=0
gn− jw

j and M(z) =
m
∑

k=0
dk

Sk(I)
I(z+η) .

By ρ(c j)<ρ−1=ρ(w) and ρ(gk)<ρ−1=ρ(w),
we have

m(r, gn− j) = S(r, w),

m(r, 1
gn− j
) = S(r, w),

m(r, M(z)) = S(r, w).

Next, we prove m(r, Fn(w)) = nm(r, w) + S(r, w).
Since

T (r, Fn(w)) = nT (r, w)+ S(r, w).

It is obviously that

N(r, Fn(w)) = nN(r, w)+ S(r, w).

Hence

m(r, Fn(w)) = nm(r, w)+ S(r, w)

= n
|m||bm|
π

(1+ o(1))rs−1+ S(r, w).

Together with m(r, M(z)) = S(r, w), we have

m(r, (eS(z+η)−S(z)−
I(z)

I(z+η)
)eQ) = m(r, Fn(w)+M(z))

= n
|m||bm|
π

(1+ o(1))rs−1+ S(r, w). (8)

Eqs. (6) and (8) imply that degQ ⩽ ρ − 1. If
degQ < ρ−1 ,then

m(r, (eS(z+η)−S(z)−
I(z)

I(z+η)
)eQ)

= |η|
|m||bm|
π

(1+ o(1))rs−1+ S(r, w). (9)

Together (8) with (9), we have |η| = n, this is
impossible. Hence degQ = ρ−1.
Case 2: φ2 ̸= 0.

If φ1 = 0, then

0=
φ1

I(z+η)
= Fn(w)+M(z),

So

0= m(r, Fn(w)+M(z)) = nm(r, w)+ S(r, w)

= n
|m||bm|
π

(1+ o(1))rs−1+ S(r, w),

which is impossible. Hence φ1 ̸= 0. Eq. (5) implies
that φ3eS(z)+φ4 has the same zeros with φ1eS(z)+φ2.
If φ3(z0)eS(z0)+φ4(z0) = 0, then

φ1(z0)e
S(z0)+φ2(z0) = 0

and
φ4(z0)
φ3(z0)

−
φ2(z0)
φ1(z0)

= 0.

If φ4
φ3
− φ2
φ1
̸≡ 0, then by the Nevanlinna’s second funda-

mental theorem, we obtain

T (r, eS)⩽ N̄(r, eS)+N̄
�

r,
1
eS

�

+N̄
�

r,
1

eS+φ4
φ3

�

+S(r, eS)

⩽ N
�

r,
1

φ4
φ3
− φ2
φ1

�

+ S(r, eS) = S(r, eS),

which is impossible. Hence

φ4

φ3
−
φ2

φ1
= 0,

that is
φ4

φ3
=
φ2

φ1
= t.

Substituting φ4 = tφ3,φ2 = tφ1 into (5), we obtain
φ3eQ(z) = φ1. Using the same method as Case 1, we
also obtain degQ = ρ−1.
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PROOF OF Theorem 2

(i): If σ ⩾ λ f and σ < σ( f )− 1, then λ f < σ( f )− 1.
Hence we have

f (z) =
I1(z)
I2(z)

es(z), (10)

where I1(z) and I2(z) are the canonical product formed
by zeros and poles of f (z), respectively, and

�

λ(I1) = σ(I1) = λ( f )< σ( f )−1,
λ(I2) = σ(I2) = λ(

1
f )< σ( f )−1.

(11)

Set

s(z) = bnzn+ bn−1zn−1+ · · ·+ b1z+ b0, (12)

where bn(̸= 0), . . . , b0 are constants and deg(s(z)) =
n = σ( f ). Since λ f < σ( f ) − 1, we obtain n ⩾ 2.
Eq. (10) implies that

¨

f (z+ j)= I1(z+j)
I2(z+j)e

s(z+j),

f (k)(z+ j)=( I1(z+ j)
I2(z+ j)e

s(z+j))(k)=φk(z+ j)es(z+j),
(13)

where φk(z + j) is a polynomial formed by I1(z+ j)
I2(z+ j) ,

s(z+ j) and their derivatives. Eqs. (13) and (3) imply
that

n
∑

j=0

(c j
I1(z+ j)
I2(z+ j)

+ l jφ j(z+ j))es(z+ j)

+
m
∑

k=0

dkφk(z)e
s(z)+ c = 0. (14)

By (11), we have

max{σ(l jφ j(z+ j)),σ(dkφk(z))}
⩽max{σ,σ(I1),σ(I2)}⩽max{σ,λ f }< n−1,

σ

�

c j
I1(z+ j)
I2(z+ j)

�

⩽max{σ,λ f }< n−1. (15)

For i ̸= j, we have deg(s(z+ i)− s(z+ j)) = m−1⩾ 1.
By (15), we have

T
�

r, c j
I1(z+j)
I2(z+j)

+l jφ j(z+j)
�

=o(T (r, es(z+i)−s(z+j))), (16)

T (r, dkφk(z)) = o(T (r, es(z+i)−s(z+ j))). (17)

By Lemma 1, (16) and (17), we have c = 0, a
contradiction. So σ ⩾ σ( f )−1.

(ii): If σ < λ f , using the similar way as (i), we have
λ f ⩾ σ( f )−1

PROOF OF Theorem 3

Substituting f (z) = w(z)+ d into (3), we have

n
∑

j=0

c j w(z+ j)+
n
∑

j=0

l j w
( j)(z+ j)+

m
∑

k=0

dkw(k)(z)

+ d
n
∑

j=0

c j + d0d + c = 0. (18)

Let

W (z) =
n
∑

j=0

c j w(z+ j)+
n
∑

j=0

l j w
( j)(z+ j)+

m
∑

j=0

dkw(k)(z).

m
�

r, 1
f −d

�

= m
�

r, 1
w

�

, (19)

By Lemma 2 and Lemma 3, we have

m
�

r,
W (z)
w(z)

�

= m
�

r,
n
∑

j=0

(c j
w(z+ j)

w(z)
+l j

w( j)(z+ j)
w(z)

)+
m
∑

k=0

dk
w(k)(z)
w(z)

�

⩽
n
∑

j=0

m
�

r, c j
w(z+ j)

w(z)

�

+
n
∑

j=0

m
�

r, l j
w( j)(z+ j)

w(z)

�

+
m
∑

k=0

m
�

r, dk
w(k)(z)
w(z)

�

= S(r, w). (20)

By (18), (20) and d
n
∑

j=0
c j + d0d + c ̸= 0, we have

m
�

r, 1
f −d

�

= m
�

r, 1
w

�

= m
�

r,
d

n
∑

j=0
c j+d0d+c

w

�

+m
�

r, 1

d
n
∑

j=0
c j+d0d+c

�

= m
�

r, W
w

�

+ S(r, w) = S(r, w) = S(r, f ).

So λ( f − d) = σ( f ).
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