# Growth of meromorphic solutions of complex differential and difference equations 

Yong Liu*, Haoyuan Wang<br>Department of Mathematics, Shaoxing University, Shaoxing, Zhejiang 312000 China<br>*Corresponding author, e-mail: liuyongsdu1982@163.com

Received 24 Jan 2022, Accepted 15 Jun 2023
Available online 16 Jan 2024
ABSTRACT: In this article, we investigate some properties of meromorphic solution of the following differentialdifference equation

$$
\sum_{j=0}^{n} c_{j} f(z+j)+\sum_{j=0}^{n} l_{j} f^{(j)}(z+j)+\sum_{j=0}^{m} d_{j} f^{(j)}(z)-c=(f(z+\eta)-f(z)-b) \mathrm{e}^{Q},
$$

where $n, m \geqslant 1$ are two integers, $\eta$ is a constant with $|\eta| \neq n, Q$ is a polynomial. We study the growth of solutions of a more general differential-difference equation given by Lü et al [Rest Math 74 (2019):1-18]. Meantime we obtain the relation between $\operatorname{deg} Q$ and $\rho(f)$.

KEYWORDS: meromorphic solution, complex differential-difference, value distribution, growth
MSC2020: 30D35 39A10

## INTRODUCTION AND MAIN RESULTS

We assume that the reader is familiar with the basic notation and fundamental results of Nevanlinna theory [1]. Moreover, we use the notation $\rho(f)$ to denote the order of growth of $f$, and $\lambda(f)$ to denote the exponents of the zeros of $f$.

Recently, Li and Saleeby [2] considered existence and uniqueness of solutions of the following functional-difference equations

$$
\begin{equation*}
f^{\prime}(z)=a f(g(z))+b f(z)+c \tag{1}
\end{equation*}
$$

with $a \neq 0, b, c$ are constants. Such equations can be thought of as generalizations of differential-difference equations, and so they appear as models in a large amount of different settings - for example, in the study of wave motion, cell growth, wavelets, etc. Studies of equations of a more general type than (1) have appeared.

The purpose of this article is to study the growth of solutions of a more general differential-difference equation

$$
\begin{array}{r}
\sum_{j=0}^{n} c_{j} f(z+j)+\sum_{j=0}^{n} l_{j} f^{(j)}(z+j)+\sum_{k=0}^{m} d_{k} f^{(k)}(z)-c \\
=(f(z+\eta)-f(z)-b) e^{Q}, \tag{2}
\end{array}
$$

where $n, m \geqslant 1$ are two integers, $\eta(|\eta| \neq n)$ is a constant. And we obtian the following results.

Theorem 1 Let $f$ be a transcendental entire function with $\lambda(f-a)<\rho(f)=\rho<\infty$, where $a$ is an entire
function satisfying $\rho(a)<\rho$, and let $b, c, c_{j}, l_{j}(j=$ $0,1,2, \ldots, n), d_{k}(k=0,1,2, \ldots, m)$ be entire function such that $T(r, b)=S(r, f), T(r, c)=S(r, f), \rho\left(c_{j}\right)<$ $\rho-1, \rho\left(l_{j}\right)<\rho-1, \rho\left(d_{k}\right)<\rho-1$. If $f$ is a solution of (2), then $\operatorname{deg} Q=\rho(f)-1$.

Remark 1 The condition $\rho\left(c_{j}\right)<\rho-1$ in Theorem 1 cannot not be deleted. For example, the equation

$$
\mathrm{e}^{-z-\frac{3}{4}} f(z+1)-\mathrm{e}^{-4 z-4} f(z+2)=f\left(z+\frac{1}{2}\right)-f(z)
$$

has a solution $f(z)=\mathrm{e}^{z^{2}}$, where $c_{1}=\mathrm{e}^{-z-\frac{3}{4}}, c_{2}=\mathrm{e}^{-4 z-4}$ and $\mathrm{e}^{Q}=1$. Here $\rho\left(c_{1}\right)=1=\rho(f)-1, \rho\left(c_{2}\right)=1=$ $\rho(f)-1$. But, $\operatorname{deg} Q=0 \neq 1=\rho(f)-1$.

Some idea of the proof of Theorem 1 is based on [3].
Theorem 2 Let $c_{j}(z), l_{j}(z)(j=0,1,2, \ldots, n), d_{k}(k=$ $0,1,2, \ldots, m$ ) be meromorphic functions, and set

$$
\sigma=\max \left\{\sigma\left(c_{j}\right), \sigma\left(l_{j}\right), \sigma\left(d_{k}\right)\right\}
$$

If $f(z)(\not \equiv 0)$ is a finite order transcendental meromorphic solution of equation

$$
\begin{equation*}
\sum_{j=0}^{n} c_{j} f(z+j)+\sum_{j=0}^{n} l_{j} f^{(j)}(z+j)+\sum_{k=0}^{m} d_{k} f^{(k)}(z)+c=0 \tag{3}
\end{equation*}
$$

where $c$ is a meromorphic function such that $c \not \equiv 0$ and $T(r, c)=S(r, f)$, then we have
(i) if $\sigma \geqslant \lambda_{f}$, then $\sigma \geqslant \sigma(f)-1$;
(ii) if $\sigma<\lambda_{f}$, then $\lambda_{f} \geqslant \sigma(f)-1$,
where $\lambda_{f}=\max \{\lambda(f), \lambda(1 / f)\}$.

Example 1 The equation

$$
\begin{aligned}
& \frac{1}{\mathrm{e}} \mathrm{e}^{-2 z} f(z+1)+\frac{1}{\mathrm{e}} \mathrm{e}^{-2 z} f^{\prime}(z+1)+\frac{1}{\mathrm{e}^{4}} \mathrm{e}^{-4 z} f^{\prime \prime}(z+2) \\
& \quad-f^{\prime \prime}(z)-9 f^{\prime}(z)-19 f(z)-19+\frac{1}{\mathrm{e}^{2 z+1}}=0
\end{aligned}
$$

has a solution $f(z)=\mathrm{e}^{z^{2}}-1$. Here, $2=\lambda_{f}>\sigma=1$ and $\lambda_{f}>\sigma(f)-1=1$, the equation and its solution satisfy Theorem 2 (ii).

Theorem 3 Let $c_{j}(z), l_{j}(z)(j=0,1,2, \ldots, n), d_{k}(k=$ $0,1,2, \ldots, m)$, $c$ be meromorphic functions, such that $T\left(r, c_{j}\right)=S(r, f), T\left(r, l_{j}\right)=S(r, f), T\left(r, d_{k}\right)=S(r, f)$ and $T(r, c)=S(r, f)$. If $f(z)$ is a finite order transcendental meromorphic solution of (3), and $d \sum_{j=0}^{n} c_{j}+d_{0} d-$ $c \neq 0$, then $\lambda(f-d)=\sigma(f)$, where $d$ is a constant.

Example 2 The equation

$$
\begin{aligned}
& \frac{1}{\mathrm{e}} f(z+1)+\frac{1}{\mathrm{e}} f^{\prime}(z+1)+\frac{1}{\mathrm{e}^{2}} f^{\prime \prime}(z+2)-f(z)-2 f^{\prime}(z) \\
& \quad-\frac{1}{\mathrm{e}(z+1)^{2}}+\frac{1}{\mathrm{e}(z+1)}+\frac{2}{\mathrm{e}^{2}(z+2)^{3}}-\frac{1}{z}+\frac{2}{z^{2}}=0
\end{aligned}
$$

has a solution $f(z)=\mathrm{e}^{z}-\frac{1}{z}$. Here, $\frac{d}{\mathrm{e}}-d+\frac{1}{\mathrm{e}(z+1)^{2}}-$ $\frac{1}{\mathrm{e}(z+1)}-\frac{2}{\mathrm{e}^{2}(z+2)^{3}}+\frac{1}{z}-\frac{2}{z^{2}} \not \equiv 0$ and $\lambda(f)=\lambda(f-d)=$ $\sigma(f)=1$. The equation and its solution satisfy Theorem 3.

## PRELIMINARY LEMMAS

Lemma 1 ([1]) Suppose that $f_{1}, f_{2}, \ldots, f_{n}(n \geqslant 2)$ are meromorphic functions and $g_{1}, g_{2}, \ldots, g_{n}$ are entire functions satisfying the following conditions
(i) $\sum_{j=1}^{n} f_{j} \mathrm{e}^{g_{j}} \equiv 0$;
(ii) $g_{j}-g_{k}$ are not constants for $1 \leqslant j<k \leqslant n$;
(iii) for $1 \leqslant j \leqslant n, 1 \leqslant h<k \leqslant n, \quad T\left(r, f_{j}\right)=$ $o\left\{T\left(r, \mathrm{e}^{g_{h}-g_{k}}\right)\right\}(r \rightarrow \infty, r \notin E)$, where $E$ is a set of $r \in(0, \infty)$ with finite linear measure.
Then $f_{j} \equiv 0(j=1,2, \ldots, m)$.
Lemma 2 ([4]) Let $f$ be a non-constant meromorphic function with $\rho_{2}(f)<1$ and let $c$ be a non-zero complex number and $k$ be a positive integer. Then

$$
m\left(r, \frac{f^{(k)}(z+c)}{f(z)}\right)=S(r, f)
$$

outside of a possible exceptional set with finite logarithmic measure.

Lemma 3 ([5]) Let $f$ be a non-constant meromorphic function with $\rho_{2}(f)<1$ and $\eta$ be a nonzero constant. Then
$m\left(r, \frac{f(z+\eta)}{f(z)}\right)=S(r, f), \quad m\left(r, \frac{f(z)}{f(z+\eta)}\right)=S(r, f)$.

## PROOF OF Theorem 1

Let $g=f-a$. Then $\lambda(g)=\lambda(f-a)<\rho(f)=\rho(g)=$ $\rho$. Hence

$$
g=f-a=I(z) \mathrm{e}^{S(z)},
$$

where $I(z)$ is an entire function and $S(z)$ is a nonzero polynomial such that $\rho(I)<\rho(f)=\rho=\operatorname{deg} S$. Substituting $f=a+I(z) \mathrm{e}^{S(z)}$ into (2), we have

$$
\begin{align*}
& \sum_{j=0}^{n} c_{j} \mathrm{a}(z+j)+\sum_{j=0}^{n} c_{j} I(z+j) \mathrm{e}^{S(z+j)}+\sum_{j=0}^{n} l_{j} \mathrm{a}^{(j)}(z+j) \\
& +\sum_{j=0}^{n} l_{j} \tilde{S}_{j}(I(z+j)) \mathrm{e}^{S(z+j)}+\sum_{k=0}^{m} d_{k} S_{j}(I) \mathrm{e}^{S(z)}+\sum_{k=0}^{m} d_{k} a^{(k)}-c \\
& =\left(I(z+\eta) \mathrm{e}^{S(z+\eta)}+a(z+\eta)-I(z) \mathrm{e}^{S(z)}-a(z)-b\right) \mathrm{e}^{Q(z)} . \tag{4}
\end{align*}
$$

where

$$
S_{k}(I)=I^{(k)}+\lambda_{k-1} I^{(k-1)}+\cdots+\lambda_{0} I
$$

$\lambda_{j}(0 \leqslant j \leqslant k-1)$ are polynomials. And
$\tilde{S}_{k}(I(z+k))=\tilde{I}^{(k)}(z+k)+\tilde{\lambda}_{k-1} \tilde{I}^{(k-1)}(z+k)+\cdots+\tilde{\lambda}_{0} \tilde{I}(z+k)$,
$\tilde{\lambda}_{j}(0 \leqslant j \leqslant k-1)$ are polynomials. Eq. (4) implies that

$$
\begin{equation*}
\phi_{1} \mathrm{e}^{S(z)}+\phi_{2}=\left(\phi_{3} \mathrm{e}^{S(z)}+\phi_{4}\right) \mathrm{e}^{Q(z)} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi_{1}= & \sum_{j=0}^{n} c_{j} I(z+j) \mathrm{e}^{S(z+j)-S(z)} \\
& +\sum_{j=0}^{n} l_{j} \widetilde{S}_{j}(I(z+j)) \mathrm{e}^{S(z+j)-S(z)}+\sum_{k=0}^{m} d_{k} S_{k}(I), \\
\phi_{2}= & \sum_{j=0}^{n} c_{j} a(z+j)+\sum_{k=0}^{m} d_{k} a^{(k)}+\sum_{j=0}^{n} l_{j} a^{(j)}(z+j)-c, \\
\phi_{3}= & I(z+\eta) \mathrm{e}^{S(z+\eta)-S(z)}-I(z), \\
\phi_{4}= & a(z+\eta)-a(z)-b .
\end{aligned}
$$

Since $\rho(I)<\rho=\rho\left(\mathrm{e}^{S}\right)$ and $\rho\left(\mathrm{e}^{S(z+j)-S(z)}\right)<\rho=$ $\rho\left(\mathrm{e}^{S}\right)$, we have $\rho\left(S_{k}(I)\right)<\rho, \rho\left(\widetilde{S}_{k}(I(z+k))\right)<\rho$. Hence $\rho\left(\phi_{i}\right)<\rho(i=1,2,3,4)$. We assume that $\phi_{3} \neq 0$. Otherwise, if $\phi_{3}=0$, then $\mathrm{e}^{S(z+\eta)-S(z)}=\frac{I(z)}{I(z+\eta)}$. Hence we have

$$
\begin{aligned}
& m\left(r, \mathrm{e}^{\rho(z+\eta)-\rho(z)}\right)=O\left(r^{\rho(f)-1}\right) \\
& m\left(r, \frac{I(z)}{I(z+\eta)}\right)=O\left(r^{\rho(I)-1+\varepsilon}\right)
\end{aligned}
$$

It is impossible. Next, we divide the proof into the following two cases.
Case 1: $\phi_{2}=0$.
We assume that $\phi_{1} \neq 0$. Otherwise, Eq. (5) becomes $\mathrm{e}^{S(z)}=-\frac{\phi_{4}}{\phi_{3}}$, so $\rho=\rho\left(\mathrm{e}^{S(z)}\right)=\rho\left(-\frac{\phi_{4}}{\phi_{3}}\right)<\rho$, which is impossible. By $\phi_{1} \neq 0$ and (5), we have

$$
\phi_{1} \mathrm{e}^{S(z)}=\left(\phi_{3} \mathrm{e}^{S(z)}+\phi_{4}\right) \mathrm{e}^{Q(z)} .
$$

If $\phi_{4} \neq 0$, then $\phi_{3} \mathrm{e}^{S(z)}+\phi_{4}$ has the same zeros with $\phi_{1}$. By the Nevanlinna's second fundamental theorem, we have

$$
\begin{aligned}
& T\left(r, \mathrm{e}^{S}\right) \leqslant \bar{N}\left(r, \mathrm{e}^{S}\right)+\bar{N}\left(r, \frac{1}{\mathrm{e}^{S}}\right)+\bar{N}\left(r, \frac{1}{\mathrm{e}^{S}+\frac{\phi_{4}}{\phi_{3}}}\right)+S\left(r, \mathrm{e}^{S}\right) \\
& \quad \leqslant N\left(r, \frac{1}{\phi_{1}}\right)+S\left(r, \mathrm{e}^{S}\right) \leqslant T\left(r, \phi_{1}\right)+S\left(r, \mathrm{e}^{S}\right)=S\left(r, \mathrm{e}^{S}\right)
\end{aligned}
$$

this is impossible. Hence, $\phi_{4}=0$ and $\phi_{1}=\phi_{3} \mathrm{e}^{Q(z)}$, that is

$$
\begin{align*}
& \sum_{j=0}^{n} c_{j} \frac{I(z+j)}{I(z+\eta)} \mathrm{e}^{S(z+j)-S(z)}+\sum_{j=0}^{n} l_{j} \frac{\tilde{S}_{j}(I(z+j))}{I(z+\eta)} \mathrm{e}^{S(z+j)-S(z)} \\
& +\sum_{k=0}^{m} d_{k} \frac{S_{k}(I)}{I(z+\eta)}=\left(\mathrm{e}^{S(z+\eta)-S(z)}-\frac{I(z)}{I(z+\eta)}\right) \mathrm{e}^{Q(z)} \tag{6}
\end{align*}
$$

Let $S(z)=b_{m} z^{m}+b_{m-1} z^{m-1}+\cdots+m_{0}$, where $b_{m} \neq$ $0, b_{m-1}, \ldots, b_{0}$ are constants and $m$ is a positive integer. By $\rho\left(c_{j}\right)<\rho-1, \rho\left(l_{j}\right)<\rho-1, \rho\left(d_{j}\right)<\rho-1$, we have $m=\rho\left(\mathrm{e}^{S}\right)=\rho>1$. Hence $m \geqslant 2$. So

$$
\mathrm{e}^{S(z+j)-S(z)}=\mathrm{e}^{j m b_{m} z^{m-1}} \mathrm{e}^{S_{j}(z)}=\mathrm{e}^{S_{j}(z)} w^{j}(z), \quad \leqslant j \leqslant n
$$

where $w=\mathrm{e}^{m b_{m} z^{m-1}}$ and $\operatorname{deg} S_{j} \leqslant m-2$. By $\rho(I)<$ $\rho\left(\mathrm{e}^{S}\right)=\rho(w)+1$. By Lemma 2 and Lemma 3, we have $m\left(r, \frac{I(z+j)}{I(z+\eta)}\right)=S(r, w), \quad m\left(r, \frac{I^{(k)}(z+c)}{I(z)}\right)=S(r, w)$.

Eq. (6) implies that

$$
\begin{align*}
\left(\mathrm{e}^{S(z+\eta)-S(z)}-\frac{I(z)}{I(z+\eta)}\right) \mathrm{e}^{Q(z)} & =\sum_{j=0}^{n} g_{n-j} w^{j}+M(z) \\
& =F_{n}(w)+M(z) \tag{7}
\end{align*}
$$

where $g_{n-j}=\left(c_{j} \frac{I(z+j)}{I(z+\eta)}+l_{j} \frac{\tilde{j}_{j}(I(z+j))}{I(z+\eta)}\right) \mathrm{e}^{S_{j}}, \quad F_{n}(w)=$ $\sum_{j=0}^{n} g_{n-j} w^{j}$ and $M(z)=\sum_{k=0}^{m} d_{k} \frac{S_{k}(I)}{I(z+\eta)}$.

By $\rho\left(c_{j}\right)<\rho-1=\rho(w)$ and $\rho\left(g_{k}\right)<\rho-1=\rho(w)$, we have

$$
\begin{aligned}
m\left(r, g_{n-j}\right) & =S(r, w) \\
m\left(r, \frac{1}{g_{n-j}}\right) & =S(r, w) \\
m(r, M(z)) & =S(r, w) .
\end{aligned}
$$

Next, we prove $m\left(r, F_{n}(w)\right)=n m(r, w)+S(r, w)$. Since

$$
T\left(r, F_{n}(w)\right)=n T(r, w)+S(r, w)
$$

It is obviously that

$$
N\left(r, F_{n}(w)\right)=n N(r, w)+S(r, w)
$$

Hence

$$
\begin{aligned}
m\left(r, F_{n}(w)\right) & =n m(r, w)+S(r, w) \\
& =n \frac{|m|\left|b_{m}\right|}{\pi}(1+o(1)) r^{s-1}+S(r, w)
\end{aligned}
$$

Together with $m(r, M(z))=S(r, w)$, we have

$$
\begin{array}{r}
m\left(r,\left(\mathrm{e}^{S(z+\eta)-S(z)}-\frac{I(z)}{I(z+\eta)}\right) \mathrm{e}^{\mathrm{Q}}\right)=m\left(r, F_{n}(w)+M(z)\right) \\
=n \frac{|m|\left|b_{m}\right|}{\pi}(1+o(1)) r^{s-1}+S(r, w) . \tag{8}
\end{array}
$$

Eqs. (6) and (8) imply that $\operatorname{deg} Q \leqslant \rho-1$. If $\operatorname{deg} Q<\rho-1$, then

$$
\begin{align*}
& m\left(r,\left(\mathrm{e}^{S(z+\eta)-S(z)}-\frac{I(z)}{I(z+\eta)}\right) \mathrm{e}^{Q}\right) \\
& \quad=|\eta| \frac{|m|\left|b_{m}\right|}{\pi}(1+o(1)) r^{s-1}+S(r, w) \tag{9}
\end{align*}
$$

Together (8) with (9), we have $|\eta|=n$, this is impossible. Hence $\operatorname{deg} Q=\rho-1$.
Case 2: $\phi_{2} \neq 0$.
If $\phi_{1}=0$, then

$$
0=\frac{\phi_{1}}{I(z+\eta)}=F_{n}(w)+M(z)
$$

So

$$
\begin{aligned}
0 & =m\left(r, F_{n}(w)+M(z)\right)=n m(r, w)+S(r, w) \\
& =n \frac{|m|\left|b_{m}\right|}{\pi}(1+o(1)) r^{s-1}+S(r, w),
\end{aligned}
$$

which is impossible. Hence $\phi_{1} \neq 0$. Eq. (5) implies that $\phi_{3} e^{S(z)}+\phi_{4}$ has the same zeros with $\phi_{1} \mathrm{e}^{S(z)}+\phi_{2}$. If $\phi_{3}\left(z_{0}\right) \mathrm{e}^{S\left(z_{0}\right)}+\phi_{4}\left(z_{0}\right)=0$, then

$$
\phi_{1}\left(z_{0}\right) \mathrm{e}^{S\left(z_{0}\right)}+\phi_{2}\left(z_{0}\right)=0
$$

and

$$
\frac{\phi_{4}\left(z_{0}\right)}{\phi_{3}\left(z_{0}\right)}-\frac{\phi_{2}\left(z_{0}\right)}{\phi_{1}\left(z_{0}\right)}=0 .
$$

If $\frac{\phi_{4}}{\phi_{3}}-\frac{\phi_{2}}{\phi_{1}} \not \equiv 0$, then by the Nevanlinna's second fundamental theorem, we obtain

$$
\begin{aligned}
T\left(r, \mathrm{e}^{S}\right) & \leqslant \bar{N}\left(r, \mathrm{e}^{S}\right)+\bar{N}\left(r, \frac{1}{\mathrm{e}^{S}}\right)+\bar{N}\left(r, \frac{1}{\mathrm{e}^{S}+\frac{\phi_{4}}{\phi_{3}}}\right)+S\left(r, \mathrm{e}^{S}\right) \\
& \leqslant N\left(r, \frac{1}{\frac{\phi_{4}}{\phi_{3}}-\frac{\phi_{2}}{\phi_{1}}}\right)+S\left(r, \mathrm{e}^{S}\right)=S\left(r, \mathrm{e}^{S}\right)
\end{aligned}
$$

which is impossible. Hence

$$
\frac{\phi_{4}}{\phi_{3}}-\frac{\phi_{2}}{\phi_{1}}=0
$$

that is

$$
\frac{\phi_{4}}{\phi_{3}}=\frac{\phi_{2}}{\phi_{1}}=t .
$$

Substituting $\phi_{4}=t \phi_{3}, \phi_{2}=t \phi_{1}$ into (5), we obtain $\phi_{3} \mathrm{e}^{Q(z)}=\phi_{1}$. Using the same method as Case 1, we also obtain $\operatorname{deg} Q=\rho-1$.

## PROOF OF Theorem 2

(i): If $\sigma \geqslant \lambda_{f}$ and $\sigma<\sigma(f)-1$, then $\lambda_{f}<\sigma(f)-1$. Hence we have

$$
\begin{equation*}
f(z)=\frac{I_{1}(z)}{I_{2}(z)} e^{s(z)}, \tag{10}
\end{equation*}
$$

where $I_{1}(z)$ and $I_{2}(z)$ are the canonical product formed by zeros and poles of $f(z)$, respectively, and

$$
\left\{\begin{array}{l}
\lambda\left(I_{1}\right)=\sigma\left(I_{1}\right)=\lambda(f)<\sigma(f)-1  \tag{11}\\
\lambda\left(I_{2}\right)=\sigma\left(I_{2}\right)=\lambda\left(\frac{1}{f}\right)<\sigma(f)-1
\end{array}\right.
$$

Set

$$
\begin{equation*}
s(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{1} z+b_{0} \tag{12}
\end{equation*}
$$

where $b_{n}(\neq 0), \ldots, b_{0}$ are constants and $\operatorname{deg}(s(z))=$ $n=\sigma(f)$. Since $\lambda_{f}<\sigma(f)-1$, we obtain $n \geqslant 2$. Eq. (10) implies that

$$
\left\{\begin{array}{l}
f(z+j)=\frac{I_{1}(z+j)}{I_{2}(z+j)} \mathrm{e}^{s(z+j)},  \tag{13}\\
f^{(k)}(z+j)=\left(\frac{I_{1}(z+j)}{I_{2}(z+j)} \mathrm{e}^{s(z+j)}\right)^{(k)}=\phi_{k}(z+j) \mathrm{e}^{s(z+j)},
\end{array}\right.
$$

where $\phi_{k}(z+j)$ is a polynomial formed by $\frac{I_{1}(z+j)}{I_{2}(z+j)}$, $s(z+j)$ and their derivatives. Eqs. (13) and (3) imply that

$$
\begin{align*}
& \sum_{j=0}^{n}\left(c_{j} \frac{I_{1}(z+j)}{I_{2}(z+j)}+l_{j} \phi_{j}(z+j)\right) \mathrm{e}^{s(z+j)} \\
&+\sum_{k=0}^{m} d_{k} \phi_{k}(z) \mathrm{e}^{s(z)}+c=0 . \tag{14}
\end{align*}
$$

By (11), we have

$$
\begin{aligned}
& \max \left\{\sigma\left(l_{j} \phi_{j}(z+j)\right), \sigma\left(d_{k} \phi_{k}(z)\right)\right\} \\
& \quad \leqslant \max \left\{\sigma, \sigma\left(I_{1}\right), \sigma\left(I_{2}\right)\right\} \leqslant \max \left\{\sigma, \lambda_{f}\right\}<n-1
\end{aligned}
$$

$$
\begin{equation*}
\sigma\left(c_{j} \frac{I_{1}(z+j)}{I_{2}(z+j)}\right) \leqslant \max \left\{\sigma, \lambda_{f}\right\}<n-1 \tag{15}
\end{equation*}
$$

For $i \neq j$, we have $\operatorname{deg}(s(z+i)-s(z+j))=m-1 \geqslant 1$. By (15), we have

$$
\begin{align*}
& T\left(r, c_{j} \frac{I_{1}(z+j)}{I_{2}(z+j)}+l_{j} \phi_{j}(z+j)\right)=o\left(T\left(r, \mathrm{e}^{s(z+i)-s(z+j)}\right)\right)  \tag{16}\\
& T\left(r, d_{k} \phi_{k}(z)\right)=o\left(T\left(r, \mathrm{e}^{s(z+i)-s(z+j)}\right)\right) \tag{17}
\end{align*}
$$

By Lemma 1, (16) and (17), we have $c=0$, a contradiction. So $\sigma \geqslant \sigma(f)-1$.
(ii): If $\sigma<\lambda_{f}$, using the similar way as (i), we have $\lambda_{f} \geqslant \sigma(f)-1$

## PROOF OF Theorem 3

Substituting $f(z)=w(z)+d$ into (3), we have

$$
\begin{align*}
& \sum_{j=0}^{n} c_{j} w(z+j)+\sum_{j=0}^{n} l_{j} w^{(j)}(z+j)+\sum_{k=0}^{m} d_{k} w^{(k)}(z) \\
&+d \sum_{j=0}^{n} c_{j}+d_{0} d+c=0 \tag{18}
\end{align*}
$$

Let

$$
\begin{gather*}
W(z)=\sum_{j=0}^{n} c_{j} w(z+j)+\sum_{j=0}^{n} l_{j} w^{(j)}(z+j)+\sum_{j=0}^{m} d_{k} w^{(k)}(z) \\
m\left(r, \frac{1}{f-d}\right)=m\left(r, \frac{1}{w}\right) \tag{19}
\end{gather*}
$$

By Lemma 2 and Lemma 3, we have

$$
\begin{align*}
& m\left(r, \frac{W(z)}{w(z)}\right) \\
& =m\left(r, \sum_{j=0}^{n}\left(c_{j} \frac{w(z+j)}{w(z)}+l_{j} \frac{w^{(j)}(z+j)}{w(z)}\right)+\sum_{k=0}^{m} d_{k} \frac{w^{(k)}(z)}{w(z)}\right) \\
& \leqslant \sum_{j=0}^{n} m\left(r, c_{j} \frac{w(z+j)}{w(z)}\right)+\sum_{j=0}^{n} m\left(r, l_{j} \frac{w^{(j)}(z+j)}{w(z)}\right) \\
& \quad+\sum_{k=0}^{m} m\left(r, d_{k} \frac{w^{(k)}(z)}{w(z)}\right)=S(r, w) \tag{20}
\end{align*}
$$

By (18), (20) and $d \sum_{j=0}^{n} c_{j}+d_{0} d+c \neq 0$, we have

$$
\begin{aligned}
m\left(r, \frac{1}{f-d}\right) & =m\left(r, \frac{1}{w}\right) \\
& =m\left(r, \frac{d \sum_{j=0}^{n} c_{j}+d_{0} d+c}{w}\right)+m\left(r, \frac{1}{d \sum_{j=0}^{n} c_{j}+d_{0} d+c}\right) \\
& =m\left(r, \frac{w}{w}\right)+S(r, w)=S(r, w)=S(r, f) .
\end{aligned}
$$

So $\lambda(f-d)=\sigma(f)$.

Acknowledgements: This research was supported by the NNSF of China (Nos. 10771121 and 11401387), the NSF of Zhejiang Province, China (Nos. LQ 14A010007).

## REFERENCES

1. Yi HX, Yang CC (2004) Uniqueness Theory of Meromorphic Functions, Springer Dordrecht, New York.
2. Li BQ, Saleeby EG (2007) On solutions of functional differential equatins $f^{\prime}(x)=a(x) f(g(x))+b(x) f(x)+$ $c(x)$ in the large. Isr $J$ Math 162, 335-348.
3. Lü F, Lü WR, Li CP, Xu JF (2019) Growth and uniqueness related to complex differential and difference equations. Results Math 74, 30.
4. Liu K, Laine I, Yang LZ (2021) Complex Delay-Differential Equations, Walter de Gruyter, Berlin.
5. Halburd RG, Korhonen RJ, Tohge K (2014) Holomorphic curves with shift-invariant hyperplane preimages. Trans Amer Math Soc 366, 4267-4298.
