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ABSTRACT: The decycling number∇(G) of a graph G is the smallest number of vertices whose deletion yields a forest.
Bau and Beineke proved that κ(G) ⩽ ∇(G) + 1 for every graph G, where κ(G) is the connectivity of G (Australas J
Combin, 25:285-298, 2002). In this paper, we consider graphs with κ(G) =∇(G)+1 and establish sufficient conditions
for such graphs to be Hamiltonian, pancyclic and edge-Hamilton, respectively. To our knowledge, this is the first result
studying Hamilton problem in terms of decycling number. It is well-known that determining the decycling number of
a graph is equivalent to finding the greatest order of an induced forest and some sufficient conditions for Hamiltonian
graphs are also sufficient for the existence of completely independent spanning trees. This paper may provide a new
condition implying completely independent spanning trees.
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INTRODUCTION

Graphs considered in this paper are finite, simple and
connected. For general theoretic notations, we follow
Bondy and Murty [1]. Throughout the paper, the letter
G denotes a graph. κ(G) and α(G) denote the connec-
tivity and independence number of G, respectively.

A cycle passing through all the vertices of a graph
is called a Hamilton cycle. A graph is said to be
Hamiltonian if it has a Hamilton cycle. We say that
a graph is pancyclic if it contains cycles of all possible
length from three up to the order of the graph. A
graph is called an edge-Hamilton graph if every edge
of the graph lies in a Hamilton cycle. Edge-Hamilton
graphs and pancyclic graphs are generalizations of
Hamiltonian graphs.

The decision problems that whether a graph con-
tains a Hamilton cycle is one of the most famous NP-
complete problems, and so it is unlikely that there
exist good characterizations of such graphs. Although
the Hamilton problem has been widely studied, re-
searchers only went an initial step towards the suffi-
cient and necessary conditions which ensure the exis-
tence of a Hamilton cycle. For this reason, it is natural
to ask for sufficient or necessary conditions. The first
sufficient condition for a graph to be Hamiltonian is
due to Dirac in 1952 [2].

Theorem 1 Every graph with n ⩾ 3 vertices and mini-
mum degree at least n/2 is Hamiltonian.

In 1971, Bondy [3] raised a sufficient condition for
a graph to be pancyclic.

Theorem 2 Let G be a Hamiltonian graph on n vertices
and m edges. If m ⩾ n2/4, then G is either pancyclic or
else is K n

2 , n
2
.

Since then, many other interesting sufficient or
necessary conditions for a graph to be Hamiltonian
have been obtained, see [4, 5]. In particular, Chvátal
and Erdös [6] proved that every graph G on at least
three vertices and α(G) ⩽ κ(G) has a Hamilton cycle.
In other words, forbidding small connectivity admits a
Hamilton cycle. It is interesting that many sufficient
conditions for Hamiltonicities on classical graph prop-
erties can be naturally extended to the random graphs,
see [7, 8]. Shang gave a sufficient condition for sub-
graphs random bipartite graph [9]. Furthermore, He
studied the bipancyclicity of random bipartite graphs
[10].

If S ⊆ V (G) and G − S is acyclic, then S is said to
be a decycling set of G (also known as feedback vertex
set). The smallest size of a decycling set of G is said
to be decycling number of G and is denoted by ∇(G).
A decycling set of this cardinality is called a ∇-set.
In theory, determining the decycling number ∇(G) of
graph is equivalent to finding the order of a greatest
induced forest. The decycling number problem has a
long and rich history and classical question concern
its computation. However, it has been shown that
determining the decycling number of graphs is NP-
hard [11]. Indeed, only a few of graphs are available,
such as cubic graphs [12]. It is worth noting that
Bau and Beineke [13] considered the relation between
decycling number and connectivity of graphs.

Theorem 3 For every graph G, κ(G)⩽∇(G)+1.
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Motivated by the results above, in this paper we
will characterize the Hamiltonian, pancyclic and edge-
Hamilton properties in graphs with κ(G) = ∇(G) + 1.
Here, the purpose that κ(G) = ∇(G) + 1 is to forbid
small connectivity. Note that G − S is a tree for every
∇-set S in such graphs. From now on, we use t to
denote the number of leaves in G− S.

The main results of this paper are presented as
follows.

Theorem 4 Let G be a graph with κ(G) =∇(G)+1. If
there exists a ∇-set S of G such that ∇(G)⩾ t −1, then
G is Hamiltonian.

The condition that ∇(G) ⩾ t − 1 could not be
weaken, due to the well-known 1-tough property [14].

Proposition 1 If a graph G has a Hamilton cycle, then
for each nonempty set S ⊆ V (G), the graph G−S has at
most |S| components.

For example, the graph G as shown in Fig. 1
satisfies κ(G) = 2,∇(G) = 1 and t = 3 (∇(G)< t−1).
However, G −{s, u} has 3 components, i.e., it fails the
necessary condition of Proposition 1. Hence it is not
Hamiltonian.

Fig. 1 |S|= 1, t = 3.

In 1971, Bondy [3] proposed his meta-conjecture:
Almost any nontrivial condition on a graph which
implies that the graph is Hamiltonian also implies that
the graph is pancyclic. The following theorem supports
his meta-conjecture in some sense.

Theorem 5 Let G be a graph with κ(G) =∇(G)+1. If
there exists a ∇-set S of G such that ∇(G)⩾ t, then G is
pancyclic.

Our next result shows that the condition in Theo-
rem 5 also ensures edge-Hamilton.

Theorem 6 Let G be a graph with κ(G) =∇(G)+1. If
there exists a ∇-set S of G such that ∇(G)⩾ t, then G is
edge-Hamilton.

In the rest of this paper, we will prove our main
results. A brief word about our notation. For W ⊆
V (G), by G −W and G[W ] we mean the subgraphs
induced by V (G)−W and G[W ], respectively. For a
vertex v ∈ V (G), we denote by d(v) the degree of v,
and by N(v) the neighborhood of v. Given a subgraph
H of G, we let NH(v) = N(v) ∩ V (H), and dH(v) =
|NH(v)|. If S ⊆ V (G), we define NH(v) = N(v)∩ V (H)
and dS(v) = |NS(v)|. We call a vertex of degree i a i-
vertex. Given a tree T and a path P = v1v2 · · · vq (q⩾ 1)
on T , where v1 is a leaf of T , then P is called a pendant
path of T if it is a maximal path with no vertex of
degree ⩾ 3 (see Fig. 2).

Fig. 2 v1v2 · · · v4 is a pendant path.

PROOF OF THEOREMS

In order to prove Theorem 4, we need the following
lemmas.

Lemma 1 If G has a bipartition V (G) = S+T such that:
(a) G[T] is a tree, (b) every i-vertex of G[T] is adjacent
to at least |S|+1− i vertices of S, and (c) |T |−2⩾ |S|⩾
t − 1, where t is number of leaves of G[T], then G is
Hamiltonian.

Lemma 2 Let G be a graph with κ(G) = ∇(G) + 1. If
∇(G)⩾ |V (G)| −∇(G)−1, then G is Hamiltonian.

Proof : If ∇(G) ⩾ |V (G)| −∇(G)− 1, then ∇(G) + 1 ⩾
|V (G)|/2. It follows that,

δ(G)⩾ κ(G) =∇(G)+1⩾
|V (G)|

2
.

According to Theorem 1, G is Hamiltonian. 2

Combining Lemma 1 and Lemma 2, one can easily
prove Theorem 4.

Proof of Theorem 4

Let S be a ∇-set of G such that |S| ⩾ t − 1. Define
T = G − S. Then every i-vertex of T is adjacent to at
least |S|+1− i vertices of S, since δ(G)⩾ κ(G) = |S|+
1. If |T | − 2 ⩾ |S|, then the theorem is true according
to Lemma 1. Otherwise, |S| ⩾ |T | − 1, then ∇(G) ⩾
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|V (G)| −∇(G)− 1. So, the theorem holds in this case,
due to Lemma 2.

Now, our goal is to prove Lemma 1. We first give
a result which is a weaker version of Lemma 1.

Lemma 3 If G has a bipartition V (G) = S+T such that:
(1) G[T] is a tree, (2) every i-vertex of G[T] is adjacent
to at least |S|+1−i vertices of S, and (3) |S|= t−1, where
t is number of leaves of G[T], then G is Hamiltonian.

Proof : We will write T rather than the more customary
G[T]. It suffices to prove the lemma in the case that
every i-vertex of T is adjacent to |S|+ 1− i vertices of
S, i.e, every vertex of T has degree |S|+ 1 in G. Note
that every leaf of T is adjacent to all vertices of S.

We apply induction on t. For t = 2, put S =
{s1}. In this case, T is a path. Suppose that T =
v1v2 · · · vn, n ⩾ 2. Then s1v1v2 · · · vns1 is a Hamilton
cycle. Now, assume that t = k+1 with k⩾ 2 and set S =
{s1, s2, . . . , sk}. Choose a pendant path P = u1u2 · · ·uq
with q⩾ 1, where u1 is a leaf of T . Since uq is a 2-vertex
of T , uq is adjacent to |S|−1 vertices of S. Without loss
of generality, let NS(uq) = {s1, s2, . . . , sk−1} and let u be
a vertex (other than uq−1) adjacent to uq on T . Then we
have dS(u)⩽ k−2, since dT (u)⩾ 3. So, we assume that
s1 /∈ NS(u). Let G1 = G− (P ∪{s1}), T1 = T −V (P) and
S1 = S−{s1}. Then, G1 has a bipartition V (G1) = T1+S1
satisfies (1), (2), and (3). Based on the induction
hypothesis, G1 is Hamiltonian. For any leaf l1 of T1
(in G1), there exists a Hamilton cycle C1 of G1 passes
through l1. Since l1 has only one neighbour in T1, C1
passes through an edge si l1, where, si1 is a vertex of
S1. We get a Hamilton cycle of G by replacing the edge
si1 l1 of C1 with the path si1 u1u2 · · ·uqs1l1. The proof is
completed. 2

For example, Fig. 3 shows a construction of a
Hamilton cycle.

Remark 1 Remark that we restrict the number of
edges between S and T (every i-vertex of T is adjacent
to |S|+1− i vertices of S) in the proof of Lemma 3. In
the proofs of Lemma 1, Lemma 4, Lemma 6, Lemma 7
and Lemma 9, we will keep this restriction.

By refining slightly the proof of Lemma 3, one can
obtain Lemma 1.

Proof of Lemma 1

We finish this lemma by applying double induction on
t and |T |.

For t = 2, we prove it by using induction on |T |. If
|T |= 3, then |S|= 1. Based on Lemma 3, the statement
is true. Assume that T = v1v2 · · · vk, k ⩾ 4 and set S =
{s1, s2, . . . , si}, 2⩽ i ⩽ k−2 (note that the case |S|= 1
could be treated by Lemma 3). Without loss of gen-
erality, we may assume that NS(v2) = {s1, s2, . . . , si−1}.
define G0 = G−{v1, si}, T0 = T−{v1} and S0 = S−{si}.
Then, G0 has a bipartition V (G0) = T0+S0 satisfies (a),
(b), and (c). By the induction hypothesis on |T |, G0 has
a Hamilton cycle, say C0. It follows that there exists a
vertex si0 ∈ S−{si} such that C0 passes through the edge
si0 vk. Replacing the edge si0 vk by the path si0 v1si vk
turns into a Hamilton cycle of G.

Now, assume that t = m ⩾ 3. If |T | = m+ 1, then
|S|= m−1. Based on Lemma 3, the statement is true.
Now, assume that |T | = k with k ⩾ m+ 2 and let S =
{s1, s2, . . . , si}, where m⩽ i ⩽ k−2. We distinguish two
cases.

Case 1. There is a pendant path P1 on T with
|P1|= 1.

In this case, suppose that P1 = u1. Let u be a
vertex adjacent to u1 on T and assume that NS(u) ⊆
{s1, s2, . . . , si−2}. Denote G1 = G − {u1, si}. It is easy
to check that G1 satisfies (a), (b), and (c). By the
induction hypothesis on t, G1 has a Hamilton cycle,
say C1. For a leaf l1 of T − {u1}, there exists a vertex
si1 ∈ S−{si} such that C1 passes through the edge si1 l1.
Replacing the edge si1 l1 by the path si1 u1si l1 makes up
a Hamilton cycle of G.

Case 2. Every pendant path on T contains at least
two vertices.

Under this case, we use induction on |T |. First,
choose a pendant path P2 = w1w2 · · ·wq of T , q ⩾
2. Assume, without loss of generality, that NS(w2) ⊆
{s1, s2, . . . , si−1}. Let G2 = G−{w1, si}. Then G2 satisfies
(a), (b), and (c). By the induction hypothesis on |T |,

Fig. 3 A construction of a Hamilton cycle.
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G2 contains a Hamilton cycle C2. For a leaf l2 of T−P2,
there exists a vertex si2 ∈ S − {si} such that C2 passes
through the edge si2 l2. Replacing the edge si2 l2 by the
path si2 w1si l2 turns into a Hamilton cycle of G.

We are now ready to prove Theorem 5 employing
the ideas in Theorem 4. First, we also give two lemmas.

Lemma 4 If G has a bipartition V (G) = S+T such that:
(a) G[T] is a tree, (b) every i-vertex of G[T] is adjacent
to at least |S|+1−i vertices of S, and (c) |T |−2⩾ |S|⩾ t,
where t is number of leaves of G[T], then G is pancyclic.

Lemma 5 Let G be a graph with κ(G) = ∇(G) + 1. If
∇(G)⩾ |V (G)| −∇(G)−1, then G is pancyclic.

Proof : If ∇(G) ⩾ |V (G)| − ∇(G) − 1, then ∇(G) +
1 > |V (G)|/2. Thereby, δ(G) > |V (G)|/2. Based on
Theorem 2, G is a pancyclic. 2

Proof of Theorem 5

Let S be a ∇-set of G such that |S| ⩾ t. Define T =
G − S. Then every i-vertex of T is adjacent to at least
|S|+1− i vertices of S, since δ(G)⩾ |S|+1. If |T |−2⩾
|S|⩾ t, then our theorem is true according to Lemma 4.
Otherwise, |S|⩾ |T |−1, i.e.,∇(G)⩾ |V (G)|−∇(G)−1.
By Lemma 5, the theorem holds.

To prove Lemma 4, we raise the following result.

Lemma 6 If G has a bipartition V (G) = S+T such that:
(1) G[T] is a tree, (2) every i-vertex of G[T] is adjacent
to at least |S|+1− i vertices of S, and (3) |S|= t, where
t is the number of leaves of G[T], then G is pancyclic.

Proof : Let n denote the number of vertices in G. We
establish the lemma in the same way as we did in
Lemma 3. We use induction on t.

For t = 2, let S = {s1, s2}. For |T | = 2, there is
nothing to prove, so assume that T = v1v2 · · · vm, where
m⩾ 3 and m+2= n. Notice that for a given integer i
with 1 ⩽ i ⩽ m, vi is adjacent to at least one vertex of
S. Without loss of generality, assume that vi is adjacent
to s1. Then s1v1v2 · · · vis1 is a cycle of length i + 1. In
addition, by Lemma 3, G has a Hamilton cycle, i.e., a
cycle of length n. Thereby, the lemma holds for t = 2.

Let us now consider the case t = k ⩾ 3. We choose
a pendant path P = u1u2 · · ·uq with q ⩾ 1 on T and a
vertex u adjacent to uq. We may as well suppose that
NS(u) ⊆ {s1, s2, . . . , sk−2}.

These cycles can be constructed as follows.
Let G1 = G − (V (P)∪ {sk}). Then G1 satisfies (1),

(2) and (3). It follows that G1 is pancyclic, in other
words, G1 has cycles of length from 3 up to n− q− 1.
Pick a cycle C1 of length n− q− 1 in G1 and a leaf l1
of T − P. Then there exists a vertex si0 ∈ S−{sk} such
that C1 passes through the edge si0 l1. For each 1⩽ j ⩽
q, if u j is adjacent to sk, then we complete a cycle of
length n− q + j by replacing the edge si0 l1 with path
si0 u1 · · ·u jsk l1; otherwise, u j is adjacent to every one of
S − {sk}, then we complete a cycle of length n− q+ j

by replacing the edge si0 l1 with path si0 u ju j−1 · · ·u1sk l1.
In addition, G1 also has a cycle C2 of length n− q− 2.
What’s more, the cycle C2 must contain a leaf l2 of T −
P, since T − P has at least two leaves. Thereby, there
exists a vertex si1 ∈ S−{sk} such that C2 passes through
the edge si1 l2. We get a cycle of length n−q by replacing
si1 l2 with path si1 u1sk l2. This builds the lemma. 2

Proof of Lemma 4

Let n denote the number of vertices in G. We achieve
the lemma by applying induction on |S|. According to
Lemma 6, the lemma holds for |S| = t. Assume that
|S| = k, where |T | − 2 ⩾ k > t. Put S = {s1, s2, . . . , sk}.
Let T1 = T , S1 = S−{sk} and G1 = G−{sk}. Since each i-
vertex u in T satisfies dS1

(u)⩾ dS(u)−1= |S|−i+1−1=
|S1|−i+1, G1 has a bipartition V (G1) = T1+S1 satisfies
(a), (b), and (c). By the induction hypothesis, G1 is a
pancyclic graph, i.e., G1 has cycles of length j for all
3 ⩽ j ⩽ n− 1. Therefore, G has cycles of length j for
all 3 ⩽ j ⩽ n− 1. Further, according to Lemma 1, G is
Hamiltonian. That is to say G has a cycle of length n.
It follows that G is a pancyclic graph.

In the remainder of this paper, we will finish the
proof of Theorem 6. The actual proof will be preceded
by two lemmas.

Lemma 7 If G has a bipartition V (G) = S+T such that:
(a) G[T] is a tree, (b) every i-vertex of G[T] is adjacent
to at least |S|+1−i vertices of S, and (c) |T |−2⩾ |S|⩾ t,
where t is the number of leaves of G[T], then G is an
edge-Hamilton graph

Lemma 8 Let G be a graph with κ(G) = ∇(G) + 1. If
∇(G)⩾ |V (G)| −∇(G)−1, then G is Edge-Hamilton.

In order to prove Lemma 8, we should introduce
anther concept. A graph G is called a Hamilton-
connected graph if every two vertices of G are con-
nected by a Hamilton path. Surely, all Hamilton-
connected graphs are edge-Hamilton. Benhocine and
Wojda [15] have shown the following result.

Theorem 7 Let G be a 2-connected graph on n ⩾ 3
vertices. If

dG(u, v) = 2 =⇒ max{dG(u), dG(v)}⩾
n+1

2

for every pair of vertices u and v in G, then G is Hamilton-
connected.

Proof of Lemma 8

Combining the conditions that κ(G) = ∇(G) + 1 and
∇(G) ⩾ |V (G)| − ∇(G) − 1, we deduce that G is 2-
connected and 2∇(G)+2⩾ |V (G)|+1. Hence

δ(G)⩾ κ(G) =∇(G)+1⩾
|V (G)|+1

2
.

Based on Theorem 7, G is Hamilton-connected. It
follows that G is edge-Hamilton.
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Theorem 6 follows from Lemma 7 and Lemma 8.
Its proof is similar to that of Theorem 5. So, we omit
it here.

In the following, we will prove Lemma 7. First, we
also provide a weaker version.

Lemma 9 If G has a bipartition V (G) = S+T such that:
(1) G[T] is a tree, (2) every i-vertex of G[T] is adjacent
to at least |S|+1−i vertices of S, and (3) |S|= t, where t
is the number of leaves of G[T], then G is edge-Hamilton.

Proof : We complete this lemma by applying induction
on t as well. For t = 2, let S = {s1, s2}. It is easy to
check that the lemma holds for |T |= 2, so suppose that
T = v1v2 · · · vm with m⩾ 3. When considering an edge
sv, where s ∈ S and v ∈ T , we only refer to the edge
s1v2, since the other cases resemble it. If v3 is adjacent
to s1, then s1v2v1s2vmvm−1 · · · v3s1 is a Hamilton cycle
with the edge s1v2. Otherwise, v3 is adjacent to s2, then
v2s1vmvm−1 · · · v3s2v1v2 is a Hamilton cycle with s1v2.
Notice that from procedure of finding Hamilton cycle
passing through s1v2, it is easy to find a Hamilton cycle
passing through any given edge on T . In addition,
v1v2 · · · vms1s2v1 is a Hamilton cycle containing the
edge s1s2. Hence, the statement is true for t = 2.

Let us consider the case t = k ⩾ 3 and set S =
{s1, s2, . . . , sk}.

(I). Edge x y on T .
We first choose a pendant path P = v1v2 · · · vq,

q ⩾ 1, such that x , y /∈ P. Let further v (other than
vq−1) be a vertex adjacent to vq on T . We suppose that
NS(v) ⊆ {s1, s2, . . . , sk−2}. Let G1 = G − (V (P) ∪ {sk}).
Then G1 satisfies (1), (2), and (3), which implies that
G1 has a Hamilton cycle C1 containing x y . For a
leaf l1 of T − P, there exists a vertex si1 ∈ S − {sk}
such that C1 passes through the edge si1 l1. If vq is
adjacent to sk, then we make up a Hamilton cycle of G
containing the edge x y by replacing si1 l1 with the path
si1 v1v2 · · · vqsk l1. Otherwise, vq is adjacent to every
vertex of S −{sk}, then we complete a Hamilton cycle
of G containing the edge x y by replacing si1 l1 with the
path si1 vq vq−1 · · · v1sk l1.

(II). Edges sz, where s ∈ S and z ∈ T .
Here, we only refer to the edge s1z, since the other

cases resemble it. Pick a pendant path P = u1u2 · · ·uq
with q ⩾ 1, such that z belongs to T − P. Choose a
vertex u (other than uq−1) adjacent to uq on T .

Case 1. u is adjacent to s1.
Assume that NS(u)⊆ {s1, s2, . . . , sk−2}. Denote then

G1 = G − (V (P) ∪ {sk}). Then G1 satisfies (1), (2)
and (3), which yields that G1 has a Hamilton cycle C1
passing through the edge s1z. Since T − P contains at
least two leaves, there is an edge si1 l1 on C1, where
si1 ∈ S − {sk} and l1 is a leaf of T − (V (P) ∪ {z}). If
uq is adjacent to sk, then we form a Hamilton cycle
of G passing through the edge s1z by replacing si1 l1
with path si1 u1u2 · · ·uqsk l1. Otherwise, uq is adjacent to

every vertex of S−{sk}, then we complete a Hamilton
cycle of G passing through the edge s1z by replacing
si1 l1 with the path si1 uquq−1 · · ·u1sk l1.

Case 2. u and s1 are non-adjacent.
We may assume that NS(u) ⊆ {s3, s4, . . . , sk}, as

well. Let G2 = G − (V (P) ∪ {s2}). Then we can find
a Hamilton cycle C2 of G2 containing the edge s1z. Let
l2 be a leaf of T − (P ∪ {z}). Then there is a vertex
si2 ∈ S − {s2} such that the edge si2 l2 lies in C2. If uq
is adjacent to s2, then we make up a Hamilton cycle of
G passing through the edge s1z by replacing si2 l2 with
the path si2 u1u2 · · ·uqs2l2. Otherwise, uq is adjacent to
every vertex s ∈ S − {s2}, then we finish a Hamilton
cycle G with the edge s1z by replacing si2 l2 with the
path si2 uquq−1 · · ·u1s2l2.

(III). Edge sis j with 1⩽ i < j ⩽ k.
We only refer to the edge s1s2. Choose a pendant

path P = w1w2 · · ·wq with q ⩾ 1 and a vertex w (other
than wq−1) adjacent to wq on T .

Case 1. w is adjacent to both s1 and s2.
Without loss of generality, suppose that NS(w) ⊆

{s1, s2, . . . , sk−2}. Denote G1 = G− (V (P)∪{sk}). Then
G1 has a Hamilton cycle C1 passing through the edge
s1s2. Furthermore there is an edge si1 l1 in C1, where
si1 ∈ S−{sk} and l1 is a leaf of T − P. If wq is adjacent
to sk, then we complete a Hamilton cycle of G with the
edge s1s2 by replacing si1 l1 with path si1 w1w2 · · ·wqsk l1.
Otherwise, wq is adjacent to every vertex S−{sk}, then
we complete a Hamilton cycle G with the edge s1s2 by
replacing si1 l1 with path si1 wqwq−1 · · ·w1sk l1.

Case 2. w is adjacent to neither s1 nor s2.
Under this case, NS(w) ⊆ {s3, s4, . . . , sk}. Note that

wq is adjacent to at least one of {s1, s2}. Suppose that
wq is adjacent to s1 and let G2 = G−(V (P)∪{s1, s2}). By
Lemma 4, G2 has a Hamilton cycle C2. Pick a leaf l2 of
T − P. Then there exists a vertex si2 ∈ S−{s1, s2} such
that C2 passes through the edge si2 l2. Consequently,
we complete a Hamilton cycle of G with the edge s1s2
by replacing the edge si2 l2 with path si2 w1 · · ·wqs1s2l2.

Case 3. w is adjacent to only one of {s1, s2}.
Assume that w is adjacent to s2 and NS(w) ⊆

{s2, s3, . . . , sk−1}. Denote G3 = G− (V (P)∪{sk}). Then
G3 has a Hamilton cycle C3 passing through the edge
s2w. We replace s2w with s2s1w1w2 · · ·wqw, forming a
Hamilton cycle of G with the edge s1s2. 2

Proof of Lemma 7

Similarly, we use double induction method on t and T .

(I). Edge x y on T .
For t = 2, we prove our statement by using in-

duction on |T |. When |T | = 4, we have |S| = 2.
As we discussed in Lemma 9, the statement is true.
So, assume that T = v1v2 · · · vn, n ⩾ 5 and let S =
{s1, s2, . . . , si}, 2< i ⩽ n−2. Without loss of generality,
assume that v1 ̸= x , y and NS(v2) = {s1, s2, . . . , si−1}.
Define G0 = G−{v1, si}. Then G0 satisfies (a), (b), and
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(c). It follows that there is a Hamilton cycle C0 of G0
passing through the edge x y . Further, there exists a
vertex si0 in S−{si} such that the edge si0 vn belongs to
C0. Replacing the edge si0 vn by the path si0 v1si vn turns
into a Hamilton cycle of G containing the edge x y .

For t = m ⩾ 3, we prove that by using induction
on |T |. If |T | = m+ 2, then |S| = m. As we proved in
Lemma 9, the statement is true. Let |T | = k ⩾ m+ 3
and S = {s1, s2, . . . , si}, m< i ⩽ k−2. We deal with the
following cases.

Case 1. T contains at least two pendant paths
consisting of only one vertex.

In this case, we choose a pendant path P1 = u1,
such that u1 ̸= x , y . Let u be a vertex adjacent to u1
on T . We suppose that NS(u) ⊆ {s1, s2, . . . , si−2}. Let
G1 = G − {u1, si}. It is easy to check that G1 satisfies
(a), (b), and (c). By the induction hypothesis on t, G1
is edge-Hamilton, in other words there is a Hamilton
cycle C1 of G1 passing through the edge x y . Pick a leaf
l1 of T − {u1}. Then there exists i1 ∈ {1,2, . . . , i − 1}
such that C1 passes through the edge si1 l1. Replacing
the edge si1 l1 by path si1 u1si l1 turns into a Hamilton
cycle of G containing the edge x y .

Case 2. T contains at most one pendant path
consisting of only one vertex.

Under this case, we choose a pendant P2 =
w1w2 · · ·wq, q⩾ 2 on T such that x , y ∈ T−P. Suppose
first that NS(w2) = {s1, s2, . . . , si−1}. Let now G2 =
G − {w1, si}. By induction hypothesis on |T |, there is
a Hamilton cycle C2 of G2 passing through the edge
x y . Pick a leaf l2 of T − P2. Then there exists i2 ∈
{1,2, . . . , i − 1} such that C2 passes through the edge
si2 l2. Replacing the edge si2 l2 by path si2 w1si l2 turns
into a Hamilton cycle of G containing the edge x y .

(II). Edges sz, where s ∈ S and z ∈ T .
For t = 2, set T = v1v2 · · · vn. We only treat

the edge s1v2, since we could solve the other cases
analogously. As before, we prove our statement by
using induction on n. When n = 4, we have |S| = 2.
According to Lemma 9, the statement is true. Assume
that n⩾ 5, let S = {s1, s2, . . . , si} with 2< i ⩽ n−2.

Case 1. v3 is adjacent to s1.
Let G1 = G−{s1}. By (I), G1 has a Hamilton cycle

C1 passing through the edge v2v3. We replace the edge
v2v3 with path v2s1v3, forming a Hamilton cycle of G
with the edge s1v2.

Case 2. v3 is not adjacent to s1.
Define G2 = G − {v1, v2, s1}. Then G2 satisfies

(a), (b), and (c). By induction hypothesis, G2 has a
Hamilton cycle C2 passing through s2vn. Replacing the
edge s2vn by the path s2v1v2s1vn turns into a Hamilton
cycle of G with the edge s1v2.

Suppose that the result is true for t ⩽m−1. For t =
m ⩾ 3, we prove it by induction on |T | and. Choose a
vertex of S and a vertex of T , say s1 and z, respectively.
If |T | = m+ 2, then |S| = m. According to Lemma 9,

the edge s1z lies in a Hamilton cycle. Assume that |T |=
k ⩾m+3 and let S = {s1, s2, . . . , si} with m< i ⩽ k−2.

T has at least three pendant paths, we deal with
the following cases.

Case 1. T contains at least two pendant paths
consisting of only one vertex.

In this case, we choose a pendant which consist
of only one vertex, say u1, such that u1 ̸= z. Let u be
a vertex adjacent to u1 on T , then dT (u) ⩾ 3. Thus,
u is adjacent to at most i + 1 − 3 = i − 2 vertices of
S. If u is adjacent to s1, we suppose that NS(u) ⊆
{s1, s2, . . . , si−2}. Let G3 = G−{u1, si}. It is easy to check
that G3 has a bipartition V (G3) = (T−{u1})+(S−{si})
satisfies (a), (b), and (c). By the induction hypothesis
on t, G3 is edge-Hamilton, in other words G3 has
a Hamilton cycle C3 containing the edge s1z. Pick
a leaf l3 of T − {u1, z} (T has at least three leaves)
such that C3 passes through l3. Since one neighbour
of l3 must belongs to (S1 − {si}). Then there exists
i3 ∈ {1,2, . . . , i − 1} such that C3 passes through the
edge si3 l3. Replacing the edge si3 l3 by the path si3 u1si l3
turns into a Hamilton cycle of G containing the edge
s1z. Otherwise, suppose that NS(u) ⊆ {s3, · · · , si}. Let
G
′

3 = G − {u1, s2}. Then G
′

3 contains a Hamilton cycle
C
′

3 passing through s1z. Pick a leaf l
′

3 of T − {u1, z}.
Then there exists i

′

3 ∈ {1, . . . , i−1, i} such that C
′

3 passes
through the edge si′3

l
′

3. Replacing the edge si′3
l
′

3 by path

si′3
u1si l

′

3 turns into a Hamilton cycle of G containing the
edge s1z.

Case 2. T contains at most one pendant path
consisting of one vertex.

Under this case, T contains at least two pendant
paths which consists of more than one vertex. We
choose a pendant path P2 = w1w2 · · ·wq on T such
that z ∈ T − P2. If w2 is adjacent to s1, we suppose
that NS(w2) = {s1, s2, . . . , si−1} (dS(w2) = i + 1 − 2 =
i − 1). Let G4 = G −{w1, si}, then G4 has a bipartition
V (G4) = (T − {w1}) + (S − {si}) satisfies (a), (b), and
(c). By induction hypothesis on |T |, there is a Hamilton
cycle C4 of G4 passing through s1z. Pick a leaf l4 of
T−(V (P2)∪{z}). Then there exists i4 ∈ {1,2, . . . , i−1}
such that C4 passes through the edge si4 l4. Replacing
the edge si4 l4 by path si4 w1si l4 turns into a Hamilton
cycle of G containing s1z. Otherwise, suppose that
NS(w2) = {s2, s3, . . . , si}. We consider the following two
subcases.

Subcase 2.1. There is a vertex s
′

in S−{s1}, such
that s

′
is adjacent to z.

Let G
′

4 = G − {w1, s1}. Then G
′

4 has a bipartition
V (G

′

4) = (T − {w1}) + (S − {s1}) satisfies (a), (b), and
(c). By the induction hypothesis on |T |, G

′

4 contains
a Hamilton cycle C

′

4 passing through s
′
z. We replace

s
′
z by the path s

′
w1s1z, forming a Hamilton cycle

containing s1z.
Subcase 2.2. z is only adjacent s1.
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Since every j-vertex of T is adjacent to at least
|S|+ 1− j vertices of S, dT (z) ⩾ |S|. Thereby, T has
at least |S| ⩾ 4 pendant paths. Under the case, T
contains at most one pendant path consisting of one
vertex, this implies that there is at least tree pendant
paths consisting of at least two vertices. Assume that
P3 = a1a2 · · · aq, q ⩾ 2 is pendant path of T . Then
|T | ⩾ 1 + |S| + 1 + 1 + q − 1 ⩾ |S| + q + 2. Thereby,
|T − P3| ⩾ |S|. By repeating the procedure of II in
Lemma 9, one can get a Hamilton cycle with the edge
s1z.

(III). Edges sis j , where si , s j ∈ S.
Here, we only consider s1s2. The proof follows by

induction on |S|. If |S| = t, then our statement is true
and assume that |S|= k where t < k ⩽ |T |−2, let G1 =
G−{s2}. According to part II, G1 has a Hamilton cycle
with the edge s1l1, where l1 is a leaf of T . Replacing
s1l1 with s1s2l1 forms a Hamilton cycle of G containing
the edge s1s2.

CONCLUSION

In this paper, we discover the new applications of decy-
cling number, that is giving sufficient conditions for a
class of graphs to be Hamiltonian, pancyclic and edge-
Hamilton, respectively. This opens a new perspective
for the study of Hamilton problem. In the proofs, we
mainly use the double induction on t and |T |. Here,
the pendant path plays a huge role. The difficulty in
the proof is the construction of edge-Hamilton graphs.
In addition, we try to solve the Hamilton problem in
graphs with κ(G) =∇(G), the proof is still incomplete.

Let T1, T2, . . . , Tk be spanning trees in a graph G.
For any two vertices u, v of G, if the paths from u to
v in these k trees are pairwise openly disjoint, then
we say that T1, T2, . . . , Tk are completely independent
spanning trees in G. By the definition, completely inde-
pendent spanning trees are also edge-disjoint spanning
trees. It is worth mentioning some sufficient conditions
for Hamiltonicity also guarantees the existence of com-
pletely independent spanning trees [16]. It happened
that our conditions is proposed in terms of decycing
number. It is our hope that researchers alike will find
in this work inspiration and ideas to further light on
this fascinating topic, especially, explore a sufficient

condition for the existence of completely independent
spanning trees.
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(No. 22DZ2229014).
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