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ABSTRACT: In this paper, we introduce a modified PRP-type conjugate gradient (CG) method for impulse noise removal
in the second phase of the two-phase method. A nice property of the scheme is that the search direction at each iteration
satisfies the sufficient descent condition independent of any line search. Under the Armijo-type line search, its global
convergence result is proved. Numerical comparison is given to illustrate that the proposed method for removing
impulse noise is promising.
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INTRODUCTION

Image processing is a highly diverse field which in-
cludes subfields such as image recognition, image
segmentation, and image denoising [1, 2]. Image
denoising is a typical inverse problem and is hard to
be solved. A common type of noise in images is the
impulse noise which can be further categorized the
two types: salt-and-pepper noise, for which the noisy
pixels can take only the maximal and minimal pixel
values, and the random-valued noise, for which the
noisy pixels can take any random values between the
maximal and minimal pixel values.

Numerous methods for restoring images corrupted
by impulse noise have been proposed in past years.
Among these methods, two methods are the most
popular among research activities. One is the median
filter and its several remedies [3–5]which are based on
nonlinear digital filters [6]. However, its performance
is not good when the noise level is high since they
always fail to obtain local image features such as the
possible presence of edges. Another is variational
method [7], which is depended on variational frame-
work and is capable of preserving the details and the
edges. But, these methods change the gray level of
each pixel including uncorrupted ones.

In order to avoid the disadvantages of the methods
mentioned above, Chan et al [8] proposed a two-phase
method based on the adaptive median filter method
(AMF) [3] and the variational method [7, 9, 10]. More
precisely, the noise pixels are first detected by using
AMF method and then they are restored by minimizing
an objective function Gα with an ℓ1 data-fitting term
and a regularization term involving an edge-preserving
potential functionϕα(t) [8]. The objective functionGα

is computed as follows:
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where N ⊂ A is the set of the noisy candidates,
which are detected by AMF method in the first phase,
A = {1,2, 3, . . . , M} × {1,2, 3, . . . , N} is the index set
of X denoting the original image with M -by-N pixels,
Vi, j is the set of the four closest neighbors of the
pixels at the position (i, j) ∈ A , yi, j is the observed
pixel value of the image at the position (i, j), β is the
regularization parameter, u = [ui, j]i, j∈N is a column
vector of length c ordered lexicographically with c
denoting the number of elements of N , and ϕα is an
edge-preserving function.

Because of introducing the regularization term
involving pertinent prior information, the two-phase
method can preserve the details and the edges of the
image and unchange the uncorrupted pixels. How-
ever, the objective function Gα to be minimized is
nonsmooth as it includes a nonsmooth ℓ1 data-fitting
term, and so it is destined to the high cost of getting
the minimizer. In order to overcome the drawbacks,
Chan et al [11] proved that the nonsmooth ℓ1 data-
fitting term can be dropped because it is useless in
the second phase. The objective function Gα(1) is
converted to Fα(2) as follows:
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Despite minimizing Fα instead of Gα in the sec-
ond phase, the quality of the restored images is not
affected. Some related results are showed in [12, 13].
Thus, the 2-phase method for impulse noise removal
can be viewed as a minimization unconstrained opti-
mization problem of the new objective function Fα.
Numerous methods have been proposed by authors to
minimizeFα. Besides, Yin et al [14] recently proposed
a generalized hybrid conjugate gradient projection
method-based algorithm to restore image by solving
large-scale convex constrained equations.

In this paper, we are interested in the conjugate
gradient (CG) type method for minimizing the new
objective function Fα. Yu et al [15] introduced a
descent spectral CG method for impulse noise removal,
in which the search direction is descent with C ⩾ 1/4.
Recently, Liu et al [9] suggested a modified three
term PRP-type CG method for removing impulse noise,
in which the search direction satisfies the sufficient
descent condition by r ⩾ 0. For the above-mentioned
methods, the search direction satisfies the sufficient
descent condition with some extra restrictions, which
may lead to bad results. Hence, developing the search
direction satisfies the sufficient descent condition with-
out any restriction is significative.

As far as we know, Cheng [16] proposed a mod-
ified PRP-type CG method for solving unconstrained
optimization problems. An attractive feature of the
proposed method is that the search direction obtained
satisfies the sufficient descent condition regardless of
any restriction. Motivated by [9] and [16], we in-
troduced a descent PRP-type CG method in which the
search direction generated at each iteration is suffi-
cient descent without any restriction. In numerical
experiments, we employ the salt-and-pepper noise and
ϕα(t) is defined by the Huber function [17]. The
preliminary numerical results show that the proposed
method outperforms other competitors to remove salt-
and-pepper noise.

ALGORITHM

In this section, we first review a general formula of CG
method and the related works. Then, we present a
modified PRP CG method for minimizing Fα. In what
follows, all vectors are column vectors, ∥ · ∥ is denoted
by the Euclidian norm and the superscript ⊤ indicates
transposition.

Because of its simplicity and low memory require-
ments, the nonlinear CG methods have been applied to
solve unconstrained optimization problem:

min f (x), x ∈ Rn, (3)

where f : Rn → R is a continuously differentiable
function, g(xk) = gk = ∇ f (xk) and it is the gradient
of the objective function f at the point xk. A conjugate
gradient method generates a sequence of iterative

points {xk} described by

xk+1 = xk +αkdk, k = 0, 1, . . . ,

where xk is the k-th iterative point, αk > 0 is called the
stepsize, and dk is search direction computed by

d0 = −g0, dk = −gk +βkdk−1, k = 1, 2, . . . ,

where βk is a scalar parameter. In this paper, we fo-
cus on the famous Polak-Ribiére-Polyak (PRP) method
[18, 19] in which βk is computed by

βPRP
k =

g⊤k yk−1

∥gk−1∥2
,

with yk−1 = gk − gk−1. By the Gram-Schmidt orthgo-
nalization, Cheng [16] introduced a CG method based
on PRP method and the search direction is defined as:

dk = −gk +β
PRP
k dk−1−βPRP

k

g⊤k dk−1

∥gk∥2
gk.

A nice property is that such defined direction dk
satisfied sufficient descent condition independent of
any line search.

Recently, Liu et al [9] proposed a three-term CG
method involving the modified PRP CG method as
follows:

dk = −gk +β
mPRP
k dk−1+θk yk−1, (4)

where βmPRP
k = 1

∥gk−1∥2

�

yk−1−
r∥yk−1∥2dk−1
∥gk−1∥2

�⊤
gk,

θk = −
g⊤k dk−1

∥gk−1∥2
, and r ⩾ 0. They proved that this

method satisfies the sufficient descent condition with
r ⩾ 0. Observe that if r < 0, this search direction may
generate an ascent direction.

Motivated by the above articles, we consider a
modified PRP CG method such that the search direction
is generated by the following way:

dk = −gk +β
mPRP
k dk−1−βmPRP

k

g⊤k dk−1

∥gk∥2
gk, (5)

Notice that such defined direction dk satisfies the suffi-
cient descent condition at each iteration without r ⩾ 0.
Obviously,

g⊤k dk = −∥gk∥2. (6)

Furthermore, we obtain that

∥gk∥⩽ ∥dk∥.

Next, we list the detailed process of Algorithm 1 based
on the above analysis.

Algorithm 1
Step 0. Given an initial point x0 ∈ Rn, and

0< ρ < 1, σ > 0, and τ > 0. Set k = 0.
Step 1. If the stopping criteria holds, stop. Other-

wise go to Step 2.
Step 2. Compute the direction dk as follows:
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• If k = 0, then dk = −gk.

• If k > 0, then

dk = −gk +β
mPRP
k dk−1−βmPRP

k

g⊤k dk−1

∥gk∥2
gk,

where

βmPRP
k =

1
∥gk−1∥2

�

yk−1−
r∥yk−1∥2dk−1

∥gk−1∥2

�⊤
gk, (7)

and r is a constant.
Step 3. Set xk+1 = xk+αkdk, when the step-sizeαk

is computed by using the following technique based on
the Armijo line search, that is αk = tkρ

i , with i being
the smallest nonnegative integer such that

− f (xk +αkdk)⩽ f (xk)−σα2
k||dk||2, (8)

where tk =min{τ∥gk∥2/∥dk∥2, 1}.
Step 4. Set k := k+1, go to Step 1.

GLOBAL CONVERGENCE ANALYSIS

In this section, the global convergence of Algorithm 1
is established and the following assumption is needed.

Assumption 1
(i) The level set Λ= {X | f (X )⩽ f (X0)} is bounded.
(ii) In some neighborhood Ñ of Ω, the objective func-

tion f is continuously differentiable and its gradi-
ent g is Lipschitz continuous in Ñ , i.e., there exists
a constant L > 0 such that

∥g(x)− g(y)∥⩽ L∥x − y∥, ∀x , y ∈ Ñ ,

which imply that there exists a positive constant γ
so that

∥g(x)∥⩽ γ, ∀x ∈ Ñ .

Lemma 1 Let Assumption 1 hold, and the sequence {dk}
be generated by Algorithm 1, then the sequence {∥dk∥}
is bounded.

Proof : By Eq. (7), we have

�

�βmPRP
k

�

�⩽
1

∥gk−1∥2
|g⊤k yk−1|+

|r|∥yk−1∥2|g⊤k dk−1|
∥gk−1∥4

⩽
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∥gk−1∥2
∥gk∥∥yk−1∥+

|r|∥yk−1∥2∥gk∥∥dk−1∥
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. (9)

By (9) and the Assumption 1, we obtain
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=
�

1+2Lτ+2|r|L2τ2
�

∥gk∥
⩽ (1+2Lτ+2|r|L2τ2)γ.

Due to d0 = −g0, we have ∥d0∥ ⩽ γ. Then, the se-
quence ∥dk∥ generated by Algorithm 1 is bounded. 2

Lemma 2 Let Assumption 1 hold, and the sequence {dk}
be generated by Algorithm 1, then we have

lim
k→∞

α2
k∥dk∥2 = 0.

Proof : By (8), we have

σα2
k∥dk∥2 ⩽ f (xk)− f (xk+1) (10)

By adding (10), the above equations for k= 0,1, 2, . . . ,
we obtain

σ

∞
∑

k=0

α2
k∥dk∥2 ⩽

∞
∑

k=0

( f (xk)− f (xk+1))⩽ f (x0)<∞.

which mean that

lim
k→∞

α2
k∥dk∥2 = 0.

2

Theorem 1 Let Assumption 1 hold, and the sequence
{dk} be generated by Algorithm 1, then the conclusion
holds that

lim inf
k→∞
∥gk∥= 0.

Proof : If
lim inf
k→∞

αk > 0,

by (6), Lemma 1 and Lemma 2, we obtain that

lim inf
k→∞
∥gk∥= 0.

If
lim inf
k→∞

αk = 0,

there exists an infinite index set K so that

lim inf
k∈K ,k→∞

αk = 0.
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From the definition of αk, we can find that ρ−1αk
does not satisfy the line search and the inequality holds
as follows:

f (xk +ρ
−1αkdk)> f (xk)−δρ−2α2

k∥dk∥2. (11)

By Assumption 1, we get that

f (xk +ρ
−1αkdk)− f (xk)

=

∫ 1

0

g(xk + tρ−1αkdk)
⊤(ρ−1αkdk)dt

=

∫ 1

0

[g(xk + tρ−1αkdk)− g(xk)]
⊤](ρ−1αkdk)dt

+ρ−1αk g⊤k dk

⩽
1
2

Lρ−2α2
k∥dk∥2+ρ−1αk g⊤k dk

=
1
2

Lρ−2α2
k∥dk∥2−ρ−1αk∥gk∥2. (12)

Combining (12) with (6) and (11), we obtain that

∥gk∥2 ⩽ ρ−1
�

1
2

L+δ
�

αk∥dk∥2.

Due to Lemma 1, Lemma 2 and

lim inf
k→∞

αk = 0,

we have
lim

k→∞
∥gk∥= 0.

To sum up, the conclusion holds. 2

Remark 1 According to [13, Proposition 1], the Fα is
smooth when ϕα is smooth. In this paper, the edge-
preserving potential function is defined as the Huber
function:

ϕα =

�

t2

2α , if |t|⩽ α,
|t| − α2 , otherwise,

(13)

where α > 0. Obviously, Fα is continuously differ-
entiable, convex, and its gradient ∇Fα is first order
Lipschitz continuous. Furthermore, the global mini-
mum of Fα exists. Interested readers may refer to [9,
Propositions 1–3]. Hence, Algorithm 1 can be used for
restoring the images corrupted by impulse noise, which
has some nice features, such as simplicity, sufficient
descent direction without any restriction, and global
convergence.

Remark 2 To minimize Fα by Algorithm 1, we view
u as a column vector of length c lexicographically, in
which c is the number of elements of N . In fact,
Fα can be viewed as a special case of the problem
(3), thus, Algorithm 1 proposed for the problem (3)
is reasonable.

NUMERICAL PERFORMANCE

In this section, we presented the results of a series
of experiments to illustrate the performance of Algo-
rithm 1 for removing the salt-and pepper impulse noise
and compare its performance with existing state-of-
the-art algorithm, including the three-term PRP con-
jugate method (referred as TPRP) [9]. The edge-
preserving potential function ϕα(t) is the Huber func-
tion (13) with α = 10. All experiments were imple-
mented under MATLAB (Version 2017b) environment
and run on a PC with 2.30 GHZ CPU processor and
8.0 GB memory.

In the experiments, we choose Lena (256× 256),
Cameraman (256 × 256), Barbara (512 × 512) and
Baboon (512 × 512) as the test images. Herein, the
peak signal noise ratio (PSNR) [20] is calculated to
quantify image quality upgradation after denoising
procedure, and the formula is defined as

PSNR= 10 log10
(N −1)2

1
MN

∑

i, j(u
∗
i, j − x i, j)2

.

In order to compare the effectiveness of the test
method fairly, the line search and the parameters
involved for competing method is from the original
paper. In this paper, the parameter in Algorithm 1
are chosen by betting the best PSNR values as follows:
σ= 0.5, ρ = 0.5 and τ=

p
99
8 . The stopping criteria of

the minimization are

|F(uk)− F(uk−1)|
F(uk)

⩽ ϵ or
∥uk −uk−1∥
∥uk∥

⩽ ϵ,

where ε= 10−4.
In this section, the numerical comparison were

conducted from two aspects. Firstly, we discuss the
parameter r in Algorithm 1 to obtain an acceptable im-
age restoration results. Therefore, we choose different
r to test the effectiveness of Algorithm 1. The detailed
numerical results are summarized in Table 1, which is
presented in the form “NI/CPU/PSNR”. “Niter” stands
for the number of iterations, “CPU” stands for the CPU
time required for the whole image denoising process,
and “NL” stands for the noise level. Table 1 shows that
Algorithm 1 performs best when the parameter r = 0.
Secondly, we investigate the computational efficiency
of TPRP method. The experiments are showed for
the average results from five different noise samples
of each image at each noise level. The results are
listed in Table 1. From Table 1, it is not difficult to
obtain that Algorithm 1 can successfully remove noise
with (r = −1), and TPRP method (r ⩾ 0) cannot be
used to deal with it. Then from Table 1, data format
in Table 2 is consistent with that in Table 1. “Niter”,
“CPU” and “PSNR” all stand for the average of the
corresponding data in Table 2. Table 2 indicates that
Algorithm 1 (r = 0) has absolute advantages in the
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Table 1 The results of the salt-and pepper noise removal via Algorithm 1 with different r.

r = −1 r = 0 r = 1

Image NL NI/CPU/PSNR NI/CPU/PSNR NI/CPU/PSNR

Lena 0.3 38/0.9442/39.5604 33/0.86/39.4508 37/0.9340/39.3387
0.5 53/1.6181/36.2405 50/1.52533/36.1649 53/1.6006/36.0527
0.7 72/2.1859/32.9788 69/2.1123/33.1216 80/2.1132/33.0879
0.9 163/3.1796/28.7250 148/2.8831/28.7093 163/3.1784/28.9564

Cameraman 0.3 58/1.3671/36.7560 54/1.2829/36.6279 56/1.3159/36.4710
0.5 70/2.0705/33.4324 68/2.0121/33.3550 68/2.0124/33.0973
0.7 94/2.5934/30.6907 93/2.4613/31.0721 96/2.5073/30.6286
0.9 179/3.6216/27.2220 178/3.6011/27.3443 188/3.5604/27.2268

Barbara 0.3 38/3.7640/35.0806 37/3.6570/35.1309 38/3.7061/35.1333
0.5 49/6.8907/32.4663 46/6.5241/32.4430 47/6.5971/32.4321
0.7 65/9.2749/30.6253 62/8.6846/30.6137 64/8.8865/30.5832
0.9 128/16.2696/28.5597 126/16.0954/28.5945 126/16.1282/28.5325

Baboon 0.3 41/4.0800/33.4618 41/3.9914/33.4610 41/4.1958/33.4452
0.5 52/7.2834/30.6219 51/7.2434/30.6342 53/7.4044/30.6004
0.7 72/9.7734/28.3937 69/9.4710/28.4093 73/9.8339/28.4142
0.9 124/19.9708/26.3612 120/18.2438/26.3470 127/18.9068/26.3780

Table 2 The results of the salt-and pepper noise removal via
TPRP method Algorithm 1 (r = 0).

Image NL TPRP method Algorithm 1 (r = 0)

NI/CPU/PSNR NI/CPU/PSNR

Lena 0.3 44/1.0767/39.1855 33/0.8764/39.2185
0.5 50/1.5559/36.1226 46/1.4669/36.0134
0.7 84/2.2515/33.0647 73/1.9696/33.1343
0.9 153/3.0341/28.4516 139/2.8404/28.7287

Cameraman 0.3 62/1.4605/36.4940 52/1.2778/36.5752
0.5 72/2.1133/33.6533 68/2.0466/33.5211
0.7 97/2.5047/30.4425 88/2.5140/30.7138
0.9 176/3.3631/27.1365 147/3.0963/27.2260

Barbara 0.3 39/4.1143/35.1078 37/3.9403/35.0755
0.5 49/7.7791/32.4582 47/7.5141/32.4067
0.7 64/10.0530/30.6405 62/10.1097/30.6096
0.9 125/18.5569/28.5923 120/17.3208/28.5258

Baboon 0.3 42/4.6022/33.4330 40/4.2608/33.4442
0.5 52/7.9431/30.5748 49/7.1642/30.6334
0.7 71/11.3374/28.4237 66/9.5323/28.4001
0.9 125/18.2859/26.3308 120/18.6282/26.3493

number of iterates and the CPU time, and it performs
best in removing the salt-and-pepper impulse noise
for most cases. Fig. 1 shows the flow chart of our
experiments. Fig. 2 gives that the restoration results
via TPRP method and Algorithm 1 (r = 0) for the test
images corrupted with 0.7 salt-and-pepper noise.

CONCLUSION

In this paper, we propose an efficient conjugate gradi-
ent method for impulse noise removal. An attractive
feature of the proposed method is that the search
direction obtained satisfies the sufficient descent con-
dition regardless of any restriction. And its global
convergence is proved under Armijo-type line search.
Numerical comparison is given to illustrate that the

proposed method (r = 0) for removing impulse noise is
promising and robust. Furthermore, in the Numerical
comparison section, we successfully use Algorithm 1
to remove noise with (r = −1), and TPRP method
(r ⩾ 0) cannot be used to deal with it. In this paper,
r is a constant and we try to construct different r to
satisfy different conditions to improve computational
efficiency in future.
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