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ABSTRACT: This paper aims to numerically study two well-known difference formulas based on barycentric inter-
polation collocation method for the time fractional Allen-Cahn equation. The L1 formula and the fast convolution
algorithm are used to approximate the Caputo time fractional derivative respectively, and the barycentric interpolation
collocation method is applied to discretize the spatial derivative. Moreover, consistency analysis of semi-discretized
in space and fully discretized nonlinear scheme is demonstrated. The nonlinear term is treated by explicit scheme to
derive the discrete linear equations. Numerical experiments are presented to validate the theoretical results and show
the configurations of phase field evolution.
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INTRODUCTION

The Allen-Cahn equation was originally introduced
by Allen and Cahn [1] as a mathematical model for
antiphase domain coarsening in a binary alloy. After
that, Allen-Cahn equation has been widely applied to
various problems such as image analysis [2, 3], crystal
growth [4], phase transitions [5], and mean curvature
flaws [6]. Compared with a large number of studies
[7, 8] for the integer-order Allen-Cahn equation, there
are very less numerical results on the fractional-order
Allen-Cahn equations because the fractional derivative
brings up expensive computational cost, while the frac-
tional Allen-Cahn equation provides more comprehen-
sive explanation of memory, genetics, nonlocality and
path dependence involved in complex environments
due to the historical dependence and nonlocality of
fractional derivative. The time fractional Allen-Cahn
equation has a wide range of application prospects,
however, its analytical solution is often difficult or
impossible to find. Therefore, it is one of the main
topics for researchers. In this paper, we propose two
schemes based on barycentric Lagrange interpolation
collocation method for solving the time fractional
Allen-Cahn (TFAC) equation with Dirichlet boundary
condition, which may be written as

C
0 Dαt u(x, t) = ε2∆u(x, t)− F ′(u(x, t)) (1)

for (x, t) ∈ Ω× (0, T], where the phase field function
u(x, t) represents the concentration function of the
two metallic components of the alloy, ε is a positive
constant as an interface width parameter, and F(u) =
(u2−1)2/4 is bistable, F ′(u) = f (u) = u3 − u. Ω =

(a, b) × (c, d) is a sufficiently smooth and bounded
domain. The operator C

0 Dαt represents the Caputo
fractional derivative with the definition as following

C
0 Dαt u(x, t) =

1
Γ (1−α)

∫ t

0

∂σu(x,σ)
(t −σ)α

dσ (2)

for 0 < α < 1, where Γ (·) stands for the gamma
function.

Allen-Cahn equation can be viewed as the L2-
gradient flow with the following

E(u(x, t)) =

∫

Ω

ε2

2
|∇u(x, t)|2+ F(u(x, t))dx. (3)

By differentiating the energy E(u) with respect to
t, the TFAC equation is energy-decay, namely:

C
0 Dαt E(u(x, t))

=

∫

Ω

C
0 Dαt u(x, t)(−ε2∆u(x, t)+ F ′(u(x, t)))dx

= −
∫

Ω

�

C
0 Dαt u(x, t)
�2

dx⩽ 0 (4)

Recently, the development of fractional-order op-
erators has promoted the rapid development of the
extension of the fractional-order Allen-Cahn equation,
which has attracted more attention of many scholars.
Consequently, many scholars have devoted themselves
to the studies of various stable and efficient numerical
simulation methods. Du et al [9] proposed a convex
splitting scheme for the fractional Allen-Cahn equa-
tions. Liu et al [10] used a fast Caputo algorithm
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combined with Fourier spectral method to solve the
time fractional Allen-Cahn equation. Liao et al [11]
presented a second-order nonuniform time-stepping
scheme for the time fractional Allen-Cahn equation.
Ji et al [12] presented two fast L1 time-stepping
methods, including the backward Euler and stabilized
semi-implicit schemes, for the time fractional Allen-
Cahn equation. Hou et al [13] developed high-order
efficient schemes based on L1 discretization and the
extended scalar auxiliary variable approach for the
time fractional Allen-Cahn equation. Quan et al [14]
established the energy stability of high-order L2-type
schemes for time-fractional phase-field equations; fur-
thermore, a fractional energy law was established for
the L2 implicit-explicit scheme. Jia et al [15] used the
fractional backward difference formula (FBDF) com-
bined with the spectral method to solve the fractional
Allen-Cahn equation, and analyzed the error of the
numerical format. Guo et al [16] used the novel adap-
tive Crank-Nicolson-type scheme to solve the time frac-
tional Allen-Cahn equation. Wang et al [17] proposed
a local discontinuous Galerkin method combined with
nonuniform time discretizations for the time-fractional
Allen-Cahn equation.

Compared to many works of TFAC equation de-
pending on mesh partition, the barycentric interpola-
tion collocation is a revolutionary meshless method.
It has captured attention of scholars due to its high
accuracy and ability to treat irregular domains. The
barycentric interpolation formula is accurate highly,
fast, stable and easy on program implementation,
which was lately extended to solve various partial
differential equations, including nonlinear parabolic
partial differential equations [18], the optimal con-
trol problem [19], Sine-Gordon equation [20], high-
dimensional Fredholm integral equation [21], integer-
order Allen-Cahn equation [22], etc. Recently,
Yi et al [23] presented the error analysis of the
barycentric Lagrange interpolation collocation scheme.
Li et al [24] adopted the barycentric interpolation col-
location algorithm to solve the fractional differential
equations, and error analysis of the Gauss quadrature
formula with weights ρ(τ) = (t −τ)(ξ−α) is provided.

The L1 difference scheme is a classical discretiza-
tion method in time for the Caputo derivative, ad-
dressing a weak singularity difficulty at t = 0. In
recent years, it has attracted the attention of numerous
academics [26–30]. Tang et al [26] first proved the
analysis of energy dissipation and numerical stability of
time-fractional gradient flow equations. They applied
the L1 scheme to the time-fractional derivative with
treating other terms in an implicit way. In [27], a
time-stepping L1 scheme for the sub-diffusion equation
with a Riemann-Liouville time fractional derivative
was developed and analyzed. Zhou and Stynes [28]
proved the optimal convergence rate of L1 scheme for
the time fractional initial-value problem.

To our knowledge, nobody uses barycentric in-
terpolation collocation method for the time fractional
Allen-Cahn equation. Based on the above works,
we focus on two fully discrete schemes for the TFAC
equation, which are L1 scheme and fast convolu-
tion algorithm in time combined with the barycen-
tric interpolation collocation method in space. More-
over, we will give consistency analysis of the semi-
discretized scheme in space and fully discretized non-
linear scheme.

EFFICIENT NUMERICAL ALGORITHM

Barycentric Lagrange interpolation collocation
method

In this paper, a novel meshless method is presented
to discretize TFAC equation in space. Suppose M + 1
distinct nodes xk (k = 0,1, . . . , M) be given, together
with a set of functional value vk at the discrete node xk
correspondingly. Let Q(x) denotes interpolation poly-
nomial to be the approximate value of v(x), satisfying
Q(xk) = vk (k = 0,1, . . . , M).

According to the Weierstrass theorem, polynomial
Q(x) is unique, which can be rewritten in Lagrange
interpolation polynomial form

v(x)≈Q(x) =
M
∑

k=0

Lk(x)vk, k = 0,1, . . . , M , (5)

where Lk(x) is the Lagrange basis function and

Lk(x) =

M
∏

i ̸=k
(x − x i)

M
∏

i ̸=k
(xk − x i)

, k = 0,1, . . . , M .

Define L(x) = (x − x0)(x − x1) · · · (x − xM ), thus
the basis function Lk(x) and Q(x) can be expressed in
another form

Lk(x) = L(x)
ωk

x − xk
, k = 0,1, . . . , M , (6)

Q(x) = L(x)
M
∑

k=0

ωk

x − xk
vk, (7)

where ωk = 1/
∏

k ̸=i
(xk − x i) is the barycentric weighet.

Supposing Q(x) = 1, then replacing the assump-
tion in the Eq. (7), it can be derived that

1= L(x)
M
∑

k=0

ωk

x − xk
. (8)

The barycentric Lagrange interpolation formula
for v(x) can be expressed, with combining Eqs. (7)
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and (8) and cancelling the common polynomial L(x).

Q(x) =

M
∑

k=0

ωk
x−xk

vk

M
∑

k=0

ωk
x−xk

:=
M
∑

k=0

ψk(x)vk, (9)

where

ψk(x) =
ωk

x−xk

M
∑

k=0

ωk
x−xk

.

The barycentric Lagrange interpolation formula
has excellent numerical stability when selecting the
Chebyshev points, so discrete nodes and corresponding
barycentric weights are as follows

xk = cos
�

k
Mπ
�

, k = 0, 1, . . . , M . (10)

ωk = (−1)kδk, δk =

� 1
2 , k = 0 or M ,
1, else.

(11)

Thus, the µ-order derivative of Q(x) at the differ-
ent node x i (i = 0,1, . . . , M) can be obtained

Q(µ)(x i) =
M
∑

k=0

ψ(µ)
k
(x i)vk :=

M
∑

k=0

D(µ)ik vk (12)

for µ = 1, 2, . . . , where D(µ)ik = ψ
(µ)
k
(x i) denotes the

element of the differentiation matrix D(µ).
By Eqs. (9)–(12), we have [25]






D(1)ik =
wk
wi

1
(x i−xk)

, i ̸= k,

D(1)ii = −
M
∑

k=0,k ̸=i
D(1)ik ,

(13)











D(2)ik =−2 wk
wi

1
x i−xk

∑

j ̸=i

w j

wi

1
x i−x j

+ 1
x i−xk

, i ̸= k,

D(2)ii =−
M
∑

k=0,k ̸=i
D(2)ik .

(14)

And the elements of the differentiation matrix D(µ)

can be calculated by mathematical induction method











D(µ)ik = µ
�

D(µ−1)
ii D(1)ik −

D(µ−1)
ik

(x i−xk)

�

, i ̸= k,

D(µ)ii = −
M
∑

k=0,k ̸=i
D(µ)ik .

(15)

L1 difference scheme

The L1 difference scheme is a classical discretization
method in time for the Caputo-type fractional deriva-
tive, addressing a weak singularity difficulty at t = 0.
Based on the L1 formula, we discretize TFAC equation
in time direction in this paper. Firstly, we introduce a
uniform mesh with the time size τ := ts− ts−1 = T/N ,

s = 1,2, . . . , N . Thus, C
0 Dαt u(x , t) at t = ts+1 can be

approximated by L1 discretization as follows

C
0 Dαt u(x , ts+1)≈

1
Γ (1−α)

s+1
∑

j=1

∫ t j

t j−1

∂pu(x , p)

(ts+1 − p)α
dp

=
1

Γ (1−α)

s+1
∑

j=1

u(x , t j)−u(x , t j−1)

τ

∫ t j

t j−1

1
(ts+1−p)α

dp+Rs+1

=
τ−α

Γ (2−α)

s+1
∑

j=1

bs+1− j[u(x , t j)−u(x , t j−1)]+Rs+1. (16)

where b j = ( j+1)1−α− j1−α, 0⩽ j ⩽ s, and Rs+1 is the
truncation error for the (s+1)-th step.

Consequently, the Caputo-type time fractional
derivative is approximated by the following L1 scheme

Dαt us+1 ≈
τ−α

Γ (2−α)

�

b0us+1 −
s
∑

j=1

(bs− j − bs+1− j)u
j − bsu

0
�

:= ζ(τ,α)
�

b0us+1 −
s
∑

j=1

(bs− j − bs+1− j)u
j − bsu

0
�

, (17)

where us+1 is the approximation value of u(x , ts+1) at
the time node ts+1, ζ(τ,α) = τ−α/Γ (2−α).

And a consistency and stability [29] bounds the
truncation error in the computed solution us+1 by

|Rs+1|⩽ Cτ2−α, (18)

where C is a positive constant.

Fast convolution algorithm

In this subsection, a fast convolution algorithm [30]
is proposed to save computing time and storage space
caused by the memory dependence of the Caputo
derivative. We can split the L1 scheme of Caputo
derivative into the sum of two parts, including a history
part and a local part, which are expressed by

C
0 Dαt us+1 =

1
Γ (1−α)

∫ ts

0

u′(x , p)
(ts+1− p)α

dp

+
1

Γ (1−α)

∫ ts+1

ts

u′(x , p)
(ts+1− p)α

dp

:= Ch(ts+1)+ Cl(ts+1), (19)

where the equality defines the history part Ch(ts+1) and
the local part Cl(ts+1), respectively.

For the local part, we apply the standard L1 ap-
proximation. And the convolution integral of u(t)with
the kernel function t−α−1 is approximated by the sum-
of-exponentials (SOE) approximation. Suppose a sub-
interval [∆t, T] ∈ (0, T] is given, with an adequate
small parameter ϵ (0 < ϵ ⩽ 1), there exist a set of
positive values si and positive weights ωi (i = 1, 2, . . . )
correspondingly, satisfying that
�

�

�

�

1
tα+1
−

Nexp
∑

i=1

ωie
−si t

�

�

�

�

⩽ ϵ, t ∈ [∆t, T], (20)
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where Nexp represents the number of exponentials,
which can be calculated by

Nexp = O
�

�

log
1
ϵ

��

log
T
∆t
+ log log

1
ϵ

�

+
�

log
1
∆t

��

log
1
∆t
+ log log

1
ϵ

�

�

. (21)

Thus, fast evaluation F αt of L1 scheme can be
included from (17)

F αt us+1 = ζ(τ,α)(us+1−us)

+
1

Γ (1−α)

�

us

τα
−

u0

tαs+1

−α
Nexp
∑

i=1

ωiΥi(ts+1)
�

(22)

for 1 ⩽ s < N , where Υi(ts+1) = e(−si∆t)Υi(ts) +
∫ ts

ts−1
e−si(ts+1−σ)u(σ)dσ, 1⩽ s < N , Υi(t1) = 0. Particu-

larly, F αt u1 = ζ(τ,α)(u1−u0).
Let FRs+1u = C

0 Dαt us+1 − F αt us+1, the following
lemma in [30] provides an error bound for the fast
evaluation

�

�
FRs+1u
�

�⩽
τ2−α

Γ (2−α)

�

1−α
12
+

22−α

2−α
−(1+2−α)
�

max
0⩽t⩽ts+1

|ut t |

+
αϵts

Γ (1−α)
max

0⩽t⩽ts

|u| (23)

Compared with computational results, both fast
evaluation and direct L1 scheme have the same error
accuracy when ϵ is sufficiently small. However, the
memory requirement and computational cost of the
fast algorithm are O(Nexp) and O(NNexp), respectively,
decreasing from O(N) and O(N2), which demonstrates
that the fast algorithm has obvious advantages.

SEMI-DISCRETIZED SCHEME BASED ON
BARYCENTRIC INTERPOLATION COLLOCATION
METHOD

Semi-discretized scheme in space for TFAC
equation

In this section, we present efficient numerical algo-
rithms to discretize the TFAC equation based on the
BLIC method in space. First, the function u(x , y, t)
at the node (xk, yl , t) can be written in the barycenter
Lagrange interpolation formula

u(x , y, t) =
M
∑

i=0

N
∑

j=0

ψi(x)γ j(y)u(xk, yl , t) (24)

for 0⩽ k ⩽ M , 0⩽ l ⩽ N .
Consider u(x , y, t) to find the second-order partial

derivatives of variables x and y , respectively, namely














ux x (x , y, t) =
M
∑

i=0

N
∑

j=0
ψ′′i (x)γ j(y)u(xk, yl , t),

uy y(x , y, t) =
M
∑

i=0

N
∑

j=0
ψi(x)γ′′j (y)u(xk, yl , t),

(25)

where ψk(x), γ j(y) are basis functions on the direc-
tions of x and y .

Substituting Eqs. (23) and (24) into TFAC equa-
tion, implies that

C
0 Dαt u(xk, yl , t)− ε2

M
∑

i=0

N
∑

j=0

ψ′′i (x)γ j(y)u(xk, yl , t)

−ε2
M
∑

i=0

N
∑

j=0

ψi(x)γ
′′
j(y)u(xk, yl , t)+ f (u(xk, yl , t))=0 (26)

with boundary conditions

u(x0, yl , t) = χ1(yl , t), u(xM , yl , t) = χ2(yl , t),
u(xk, y0, t) = g1(xk, t), u(xk, yN , t) = g2(xk, t),

for l = 0, 1, . . . , N and k = 0,1, . . . , M .
The semi-discretized scheme in space for the TFAC

equation is derived by matrix form

C
0 Dαt Uh−diag (ε2)

�

C (2)⊗IN+IM⊗D(2)
�

Uh+ f (Uh) = 0, (27)

where Uh = [u00(t), . . . , u0N (t), u10(t), . . . , u1N (t),
uM0(t), . . . , uMN (t)]T, and ⊗ is kronecker product of
matrix.

Consistency analysis of semi-discretized scheme

In this section, we present consistency estimates of the
semi-discretized scheme based on approximation prop-
erties of the barycentric Lagrange interpolation. For
unknown function u(x , y), the corresponding barycen-
tric Lagrange interpolation function is uh(x , y), and the
error ζ(x , y) holds the following definition

ζ(x , y) = u(x , y)−uh(x , y) (28)

The approximation properties of the barycentric
Lagrange interpolation have been presented in [23] as
follow

Lemma 1 If u(x , y) ∈ C (n+1)(Ω), Ω = [a, b]× [c, d] is
smooth and bounded domain, holds










max |ζ(x , y)|⩽ ∥u(n+1)∥∞
�

cx (
eLx
2M )

M + cy(
eL y
2N )

N
�

,

max | ∂
2ζ(x ,y)
∂ x2 |⩽ ∥u(n+1)∥∞

�

cx (
eLx

2(M−2) )
M−2 + cy(

eL y
2N )

N
�

,

max | ∂
2ζ(x ,y)
∂ y2 |⩽ ∥u(n+1)∥∞

�

cx (
eLx
2M )

M + cy(
eL y

2(N−2) )
N−2),

where Lx =
b−a

2 , L y =
d−c

2 , cx and cy are positive
constants.

Suppose u(xk, yl , t) is the corresponding barycen-
tric Lagrange interpolation of u(x , y, t), and differen-
tial operator G holds the property

Gu(x , y, t) := C
0 Dαt u(x , y, t)− ε2∆u(x , y, t)

+ f (u(x , y, t)) = 0. (29)
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Gu(xk, yl , t) := C
0 Dαt u(xk, yl , t)− ε2∆u(xk, yl , t)

+ f (u(xk, yl , t)) = 0. (30)

and
lim

(k,l)→∞
Gu(xk, yl , t) = 0. (31)

Next, we will give the consistency analysis of
spatial semi-discrete collocation schemes.

Theorem 1 If u(x , y, t) ∈ C (n+1)(Ω) × C2(0, T], Ω =
[a, b] × [c, d], and u(xk, yl , t) is the corresponding
barycentric Lagrange interpolation of u(x , y, t) and the
nonlinear term f (u) satisfies the Lipschitz condition, we
have

max |u(x , y, t)−u(xk, yl , t)|

⩽ C


u(n+1)




∞

�

� eLx

2(M−2)

�M−2
+
� eL y

2(N−2)

�N−2
�

, (32)

where C, Ci (i = 1,2, 3,4), C11, C12 are positive con-
stants. Lx =

b−a
2 , L y =

d−c
2 , M + 1, N + 1 are nodes

of x and y directions.

Proof : Combining Eqs. (29) and (30), we have

Gu(x , y, t)−Gu(xk, yl , t) = C
0 Dαt [u(x , y, t)−u(xk, yl , t)]

− ε2[ux x (x , y, t)−ux x (xk, yl , t)]

− ε2[uy y(x , y, t)−uy y(xk, yl , t)]

+ f (u(x , y, t))− f (u(xk, yl , t))

:= η1+η2+η3+η4, (33)

where

η1 := C
0 Dαt [u(x , y, t)−u(xk, yl , t)],

η2 := −ε2[ux x (x , y, t)−ux x (xk, yl , t)],

η3 := −ε2[uy y(x , y, t)−uy y(xk, yl , t)],

η4 := f (u(x , y, t))− f (u(xk, yl , t)).

(34)

According to the definition (2), using integration
by parts and applying Lemma 1, we obtain

|η1|⩽
�

�

�

�

t1−α

Γ (2−α)
[ut(x , y, t)−ut(xk, yl , t)]

�

�

�

�

+

�

�

�

�

1
Γ (1−α)

∫ t

0

(t−σ)1−α

1−α
[ut t(x , y,σ)−ut t(xk, yl ,σ)]dσ

�

�

�

�

⩽
�

�

�

�

t1−α

Γ (2−α)
[ut(x , y, t)−ut(xk, yl , t)]

�

�

�

�

+

�

�

�

�

1
Γ (1−α)

t2−α

α−2
[ut t(x , y,ς)−ut t(xk, yl ,ς)]

�

�

�

�

⩽
�

C11∥ut∥∞+C12∥ut t∥∞
�

∥u(n+1)∥∞
�

�eLx

2M

�M
+
�eL y

2N

�N
�

⩽ C1∥u(n+1)∥∞
�

�eLx

2M

�M
+
�eL y

2N

�N
�

. (35)

|η2|= ε2
�

�ux x (x , y, t)−ux x (xk, y, t)

+ux x (xk, y, t)−ux x (xk, yl , t)
�

�

⩽ C2∥u(n+1)∥∞
�

� eLx

2(M −2)

�M−2
+
�eL y

2N

�N
�

. (36)

|η3|= ε2
�

�uy y(x , y, t)−uy y(x , yl , t)

+uy y(x , yl , t)−uy y(xk, yl , t)
�

�

⩽ C3∥u(n+1)∥∞
�

�eLx

2M

�M
+
� eL y

2(N −2)

�N−2
�

. (37)

As f (u) satisfies the Lipschitz condition, we can
suppose there exists a positive constant K , which holds

|η4|= | f (u(x , y, t))− f (u(xk, yl , t))|
⩽ K |u(x , y, t)−u(xk, yl , t)|

⩽ C4∥u(n+1)∥∞
�

�eLx

2M

�M
+
�eL y

2N

�N
�

. (38)

Substituting (35)–(38) into (33), the proof com-
pleted. 2

FULLY DISCRETIZED SCHEME

In this part, we will establish fully discretized schemes
of problem (1) by discretizing the temporal direction
with L1 scheme. First, apply L1 scheme to discretize
the C

0 Dαt Uh of Eq. (27) at time node ts+1

ζ(τ,α)
�

b0Us+1
h −

s
∑

j=1

(bs− j − bs+1− j)U
j
h − bsU

0
h

�

−diag (ε2)(C(2)⊗IN+IM⊗D(2))Us+1
h + f (Us+1

h ) = 0. (39)

Next, we will give the consistency analysis of fully
discrete nonlinear scheme.

Theorem 2 If u(x , y, t) ∈ C (n+1)(Ω) × C2(0, T], Ω =
[a, b] × [c, d], and u(xk, yl , ts) is the corresponding
numerical solution of u(x , y, t) and the nonlinear term
f (u) satisfies the Lipschitz condition, we have

|u(x , y, t)−u(xk, yl , ts)|⩽

C̃
�

τ2−α+∥u(n+1)∥∞
�

� eLx

2(M−2)

�M−2
+
� eL y

2(N−2)

�N−2
��

, (40)

where C̃ is a positive constant.

Proof : Let u(x , y, ts) be the corresponding numerical
solution of u(x , y, t) solved by L1 scheme in time, we
obtain

C
0D

α
t u(x , y, ts)−ε2∆u(x , y, ts)+ f (u(x , y, ts)) = Rs, (41)

where Rs is the truncation error in time direction.
Combine Eq. (1) with Eq. (41), we obtain the

following result based on the truncation error bound
for the L1 scheme from (18)
�

�
C
0 Dαt u(x , y, t)− C

0D
α
t u(x , y, ts)
�

�= |Rs|⩽ Cτ2−α. (42)
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Eq. (41) is discretized by BLIC scheme in space,
and suppose u(xk, yl , ts) is the numerical solution of
u(x , y, ts) based on the BLIC method, it holds

C
0D

α
t u(xk, yl , ts)− ε2∆u(xk, yl , ts)+ f (u(xk, yl , ts))

= Rs +ηk,l , (43)

where ηk,l is the truncation error in space.
Combine Eq. (41) with Eq. (43), we have

C
0D

α
t [u(x , y, ts)− (u(xk, yl , ts)]

− ε2[∆u(x , y, ts)−∆u(xk, yl , ts)]

+ [ f (u(x , y, ts))− f (u(xk, yl , ts))] = −ηk,l . (44)

From (44) and using similar techniques in Theo-
rem 2 based on the nonlinear term which satisfies the
Lipschitz condition, we can obtain

|ηk,l |⩽ C̄∥u(n+1)∥∞
�

� eLx

2(M−2)

�M−2
+
� eL y

2(N−2)

�N−2
�

. (45)

According to (42) and (45), the consistency anal-
ysis of fully discrete nonlinear scheme can be derived

|u(x , y, t)−u(xk, yl , ts)|⩽ C̃
�

τ2−α+



u(n+1)




∞

�

� eLx

2(M−2)
)M−2 +
� eL y

2(N−2)
)N−2
�

�

. (46)

2

The nonlinear term is treated by explicit scheme
with the second order stabilized term to derive fully
discrete scheme:

ζ(τ,α)
�

b0Us+1
h −

s
∑

j=1

(bs− j − bs+1− j)U
j
h− bsU

0
h

�

−diag (ε2) · (C(2)⊗ IN + IM ⊗D(2))Us+1
h

+ f (Ũs
h)+κτ(U

s+1
h −Us

h) = 0, (47)

where Ũ
s
h = 2Us

h − Us−1
h . In particular, the first-order

form is used to solve Ũ
1
h when s = 0. κ is a stabilized

parameter.
By arranging the Eq. (47) and defining λ =

ζ(τ,α)b0+κτ, we obtain DI-BLIC scheme:

�

λI−diag (ε2) · (C(2)⊗ IN + IM ⊗D(2))
�

Us+1
h =

ζ(τ,α)
s
∑

j=1

(bs− j − bs+1− j)U
j
h+κτUs

h

− f (Ũs
h)+ζ(τ,α)bsU

0
h, s = 0, 1, . . . , K . (48)

Similarly, we construct a fast numerical algorithm
based on fast evaluation (22) in time named FDI-BLIC

scheme:
�

ζ(τ,α)I−diag (ε2) · (C(2) ⊗ IN+IM ⊗D(2))+κτI
�

Us+1
h

−
α

Γ (1−α)

Nex p
∑

i=1

ωiΥi(ts+1) =
�

ζ(τ,α)+κτ+
1

Γ (1−α)τα

�

Us
h

− f (Ũs
h)+

1
Γ (1−α)tαs+1

U0
h, s = 0, 1, . . . , K . (49)

NUMERICAL EXPERIMENTS

In this section, we present several numerical examples
to demonstrate the accuracy and stability of the pro-
posed method. For convenience, some definitions are
given

E∞ =
∥Uh−Ue∥∞
∥Ue∥∞

,

Order=
log(E∞(τ1))− log(E∞(τ1/2))

log(τ1)− log(τ1/2)
,

(50)

where Uh, Ue denote numerical solutions and exact
solutions, respectively, and ∥ · ∥∞ is the L∞ norm.

Problem 1

This example is presented to verify the accuracy and
convergence of proposed schemes. Considering on
[0,1]2×(0, T]with ε= 0.1, κ= 3, M = N = 12, T = 1,
the following time fractional Allen-Cahn equation is
provided.

C
0 Dαt u−ε2∆u+ f (u)=G, in Ω× [0, T],
u(x , y, 0) = u0(x , y), (x , y) ∈ Ω,

u(x , y, t) = 0, (x , y, t) ∈ ∂Ω× [0, T],
(51)

where

G(x , y, t) =
Γ (6)
Γ (6−α)

t5−α sin(πx) sin(πy)

+2ε2π2 t5 sin(πx) sin(πy)

+ (t5 sin(πx) sin(πy))3− t5 sin(πx) sin(πy), (52)

and the exact solution is

u(x , y, t) = t5 sin(πx) sin(πy). (53)

The results are in Tables 1–3: with different frac-
tional order α = 0.2, 0.5,0.8, both DI-BLIC and FDI-
BLIC schemes for the time fractional Allen-Cahn equa-
tion have 2−α temporal accuracy, which are consistent
with theoretical convergence orders in time. In addi-
tion, the CPU time of FDI-BLIC scheme has significantly
reduced compared with the DI-BLIC scheme.

To test the convergence rate of different fractional
order α in space, we choose above parameters with
τ = 0.0001, ε = 0.5, and the computational results
are presented in Fig. 1. One may see that convergence
rates in space coincide with what we expected. The
barycentric Lagrange collocation scheme has exponen-
tial convergence.
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Table 1 Errors, convergence rates and computational time of u solved by different schemes (α= 0.2).

τ E∞(DI-BLIC) Order Time E∞(FDI-BLIC) Order Time

1/2500 9.9605 ×10−7 − 57.05 9.9605 ×10−7 − 34.88
1/5000 2.7967×10−7 1.8325 132.09 2.7968×10−7 1.8324 72.59

1/10000 7.8708×10−8 1.8291 309.81 7.8691×10−8 1.8295 164.25
1/20000 2.2201×10−8 1.8259 890.63 2.2249×10−8 1.8224 371.83

Table 2 Errors, convergence rates and computational time of u solved by different schemes (α= 0.5).

τ E∞(DI-BLIC) Order Time E∞(FDI-BLIC) Order Time

1/2500 1.4079 ×10−5 − 61.36 1.4079 ×10−5 − 34.88
1/5000 5.0320×10−6 1.4843 142.89 5.0320×10−6 1.4843 73.81

1/10000 1.7927×10−6 1.4890 332.25 1.7927×10−6 1.4890 159.70
1/20000 6.3748×10−7 1.4917 915.05 6.3748×10−7 1.4917 369.53

2 3 4 5 6 7 8

(M,N)

-6

-5

-4

-3

-2

-1

lo
g

1
0
(e

rr
o
r)

=0.2

=0.5

=0.8

(a) DI-BLIC

2 3 4 5 6 7 8

(M,N)

-6

-5

-4

-3

-2

-1

lo
g

1
0
(e

rr
o
r)

=0.2

=0.5

=0.8

(b) FDI-BLIC

Fig. 1 The convergence rates in space of different fractional
rate α for Problem 1 (τ= 0.0001).

0 0.5 1 1.5 2 2.5 3

t

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E
=0.2

=0.5

=0.8

=0.99

(a) DI-BLIC

0 0.5 1 1.5 2 2.5 3

t

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E

=0.2

=0.5

=0.8

=0.99

(b) FDI-BLIC

Fig. 2 The curve of energy E with ε= 0.3, κ= 2 at different
time by for Problem 2.

Table 3 Errors, convergence rates and computational time of u solved by different schemes (α= 0.8).

τ E∞(DI-BLIC) Order Time E∞(FDI-BLIC) Order Time

1/2500 1.9463 ×10−4 − 56.41 1.9463 ×10−4 − 34.09
1/5000 8.4888×10−5 1.1971 133.48 8.4888×10−5 1.1971 72.45

1/10000 3.6992×10−5 1.1984 321.00 3.6992×10−5 1.1984 159.70
1/20000 1.6112×10−5 1.1991 1042.44 1.6112×10−5 1.1991 386.58
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Problem 2

In order to investigate time evolution of the energy for
two-dimensional time fractional Allen-Cahn equation
with initial condition, the numerical experiment is
considered on [0, 1]2× (0, 3] with the initial condition

u0(x , y) = ε2 cos(πx) cos(πy). (54)

Parameters are as follows: ε= 0.3, κ= 2, M = N = 12 ,
τ = 0.0001 and α = 0.2, 0.5,0.8, 0.99, respectively. In
Fig. 2, the energy decay at all time with different frac-
tional order α, consistent with the energy dissipation
law of problem (1) physically.

Problem 3

Considering the following initial condition:

u0(x , y) = h1(x , y)h2(x , y), (55)

where

h1 =











tanh( 3
ε ((x−0.5)2+(y−0.4)2−(0.25)2)), x > 0.3,

tanh( 3
ε ((y−0.4)2−(0.15)2)), −0.3⩽ x ⩽ 0.3,

tanh( 3
ε ((x+0.5)2+(y−0.4)2−(0.25)2)), x < −0.3.

h2 =











tanh( 3
ε (x

2+(y−0.6)2−(0.25)2)), y > 0.4,

tanh( 3
ε (x

2−(0.15)2)), −0.4⩽ y ⩽ 0.4,

tanh( 3
ε (x

2+(y+0.6)2−(0.25)2)), y < −0.4.

We set the parameters Ω= [−1, 1]2×(0,15], ε= 0.08,
κ = 2, M = N = 30, τ = 0.001 and α = 0.5,0.7, 0.9,
respectively. Fig. 3 shows the interface shirking dy-
namics exists for different α, for example, numerical
solutions change from dumbbell shape, then evolving
into an ellipse, merging into the small dot with the
passage of time when α = 0.9. Additionally, the shirk-
ing speed slows down significantly with the fractional
order α decreasing.

Problem 4

Consider the following initial condition

u0(x , y) = − tanh
�

z(x , y)/
p

2ε
�

,

z(x , y) =max{z1(x , y), z2(x , y), z3(x , y)},
(56)

where

z1(x , y) =
Æ

x2+(y −2)2−2+1.5ε,

z2(x , y) =
Æ

x2+ y2−1.5,

z3(x , y) =
Æ

x2+(y +2)2−2+1.5ε.

(57)

By setting ε= 0.1, κ= 3, M = N = 40, τ= 0.001, T =
15, Fig. 4 shows that the equation appears coarsening
phenomenon as time evolves with different fractional
order α. Obviously, the impact of the fractional order
α on the interface evolution can be concluded when
Ω = [−2, 2]2, as α increases the coarsening dynamics
becomes quick significantly, which is consistent with
physical properties of fractional derivatives.

(a) t = 2,α= 0.5 (b) t = 5,α= 0.5

(c) t = 10,α= 0.5 (d) t = 15,α= 0.5

(e) t = 2,α= 0.7 (f) t = 5,α= 0.7

(g) t = 10,α= 0.7 (h) t = 15,α= 0.7

(i) t = 2,α= 0.9 (j) t = 5,α= 0.9

(k) t = 10,α= 0.9 (l) t = 15,α= 0.9

Fig. 3 Snapshots of the numerical approximation of u with
different α at different time for Problem 3.
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(a) t = 2,α= 0.5 (b) t = 6,α= 0.5

(c) t = 10,α= 0.5 (d) t = 15,α= 0.5

(e) t = 2,α= 0.7 (f) t = 6,α= 0.7

(g) t = 10,α= 0.7 (h) t = 15,α= 0.7

(i) t = 2,α= 0.9 (j) t = 6,α= 0.9

(k) t = 10,α= 0.9 (l) t = 15,α= 0.9

Fig. 4 Snapshots of the numerical approximation of u with
different α at different time for Problem 4.

(a) t = 280,α= 0.5 (b) t = 300,α= 0.5

(c) t = 360,α= 0.5 (d) t = 400,α= 0.5

(e) t = 280,α= 0.7 (f) t = 300,α= 0.7

(g) t = 360,α= 0.7 (h) t = 400,α= 0.7

(i) t = 280,α= 0.9 (j) t = 300,α= 0.9

(k) t = 360,α= 0.9 (l) t = 400,α= 0.9

Fig. 5 Snapshots of the numerical approximation of u with
different α at different time for Problem 5.
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Problem 5

In this example, consider the following initial condition

u0(x , y) = (x2−1)(y2−1) sin(πx) sin(πy). (58)

We consider the TFAC equation on the computational
domainΩ= [−1,1]2×(0, T]with zero Dirichlet bound-
ary condition and set the parameters ε = 0.1, κ = 4,
M = N = 20, T = 400, τ = 0.01, α = 0.5,0.7, 0.9,
respectively.

Comparing snapshots of numerical approximation
of u for different fractional order α in Fig. 5, it can
observed that coarsening phenomena of TFAC equation
appears with the evolution of time. Moreover, the
fractional order α can control the sharpness of the
interface.

CONCLUSION

In this paper, combined with the L1 scheme and
barycentric interpolation collocation method, a high
order accurate numerical algorithm for the TFAC equa-
tion is developed, and a fast convolution evaluation
is also developed to save computational cost. Fur-
thermore, consistency analysis of semi-discretized and
fully discrete nonlinear schemes have been presented.
Numerical examples are demonstrated to validate the
efficiency of the proposed method and show the config-
urations of phase field evolution. And the coarsening
or shirking speed slows down when the fractional order
decreases. The DI-BLIC and FDI-BLIC schemes have
the same error accuracy when parameter ϵ is suffi-
ciently small. However, the fast convolution algorithm
greatly reduces the computational cost compared with
L1 difference formula, In the future, we will consider
applying our numerical method to other time fractional
nonlinear equations.
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