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ABSTRACT: Glioblastoma (GBM) is the most malignant and lethal brain tumor in adults, with limited therapeutic
options and dismal prognosis. Atractylenolide-II (AT-II) is a major bioactive compound from Atractylodes macrocephala
Koidz. (Baizhu in Chinese), with anti-inflammatory and anti-tumor activities. However, the anti-tumor effects of AT-II
on GBM cells remain unclear. In the present study, the cytotoxicity of AT-II on GBM cells was analyzed using CCK-8
assay, and it revealed that the cell viability was inhibited by AT-II in a dose-dependent manner. The results of Transwell
migration assay indicated that AT-II treatment significantly inhibited the cell migration. Furthermore, the cell cycle
arrest at G0/G1 phase in AT-II treated cells was presented in the flow cytometry data. Consistently, real-time PCR and
western blotting revealed a remarkable decrease of the CCNA and CCNB expression upon AT-II treatment. Moreover, the
phosphorylation of both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK)
was triggered by AT-II. Collectively, these results suggested that MAPK signaling was involved in AT-II induced cell cycle
arrest, contributing to the inhibition of cell viability and migration of GBM cells.
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INTRODUCTION

Glioblastoma (GBM) is recognized as the most frequent
and aggressive brain tumor, with poor prognosis and a
median survival of less than 15 months [1]. The first-
line treatment for GBM is surgical resection followed
by radiotherapy and temozolomide chemotherapy [2].
Despite the standard of care that provides temporary
relief, GBM is eventually recurrent and acquired resis-
tance. Moreover, GBM represents a challenge owing
to the heterogeneity and cellular stratification, which
enable tumor initiation, extensive proliferation and
invasiveness [3, 4]. As a result, it is urgent to develop
potential therapeutic agents.

Atractylodis macrocephalae Koidz. (Baizhu in Chi-
nese), a valuable traditional medical herb, has been
used for the treatment of gastrointestinal dysfunction,
osteoporosis, obesity, and cancer [5]. Atractylenolide
II (AT-II) is a sesquiterpene compound isolated from
Atractylodes macrocephala Koidz., and it exhibited anti-
inflammatory and anti-tumor activities, protecting ra-
diation damage and improving hyperlipidemia [6–8].
AT-II presented inhibitory effects on several tumor
cells, including cells of melanoma, colon tumor, gastric
carcinoma, and breast cancer [9–12]. Previous studies
indicated that AT-II induced apoptosis of prostate can-
cer cells via JAK/STAT3 signaling [13]. However, the
anti-tumor effects of AT-II on GBM cells remain unclear.

In this study, the inhibitory effects of AT-II on
the cell viability and migration of GBM cells were
analyzed. The cell cycle distribution and mitogen-
activated protein kinase (MAPK) signaling were fur-
ther investigated.

MATERIALS AND METHODS

Cell culture

Human GBM cell lines U-87 and U-251 were pur-
chased from the Chinese Academy of Sciences Cell
Bank (Shanghai, China). DMEM (Hyclone, Beijing,
China) and supplemented with 10% FBS (Hyclone)
and 1% penicillin-streptomycin (Gibco, Carlsbad, CA,
USA) were utilized to culture the GBM cell lines.
These cells were maintained in a 37 °C incubator (5%
CO2). The cells were treated with AT-II at indicated
concentrations, and DMSO was used as a control.

Cell viability assays

The cell viability assays were carried out using the Cell
Counting Kit-8 (CCK-8, Dojindo Laboratories, Shang-
hai, China) in 96-well plates. The U-87 and U-251
cells were seeded into each well at a density of 3000
cells per well; and then, incubated at 37 °C overnight.
Following treatment with AT-II (50, 100, 150, 200 µM)
for 24 h, the cells of each well were incubated with
10 µl CCK-8 at 37 °C for 1 h. Microplate reader
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(Bio-Rad, Hercules, CA, USA) was used to measure
the optical density (OD) at 450 nm with a reference
wavelength of 630 nm.

Transwell migration assay

The U-87 and U-251 cells resuspended in serum-free
medium were seeded into the upper Transwell cham-
ber (diameter: 6.5 mm, pore size: 8 µM; Corning,
Tewksbury, MA, USA) at a density of 1×104 cells/well,
and complete medium was added into the lower cham-
ber. Following incubation for 24 h, transmigrated cells
were fixed with 4% polyoxymethylene, and 0.1% crys-
tal violet (Beyotime Biotechnology, Shanghai, China)
was utilized to stain cells. Images were obtained using
a CKX31 microscope (Olympus, Tokyo, Japan).

Cell cycle analysis

To determine cell cycle distribution, the U-87 and U-
251 cells were cultured in 6-well plates and treated
with AT-II at 100 µM for 24 h. The cells were col-
lected and fixed with 70% ethanol at 4 °C overnight,
incubated with RNase at 37 °C for 30 min, and stained
with propidium iodide (PI) for 30 min in the dark.
The cell cycle distribution was determined using a flow
cytometry (BD Biosciences, Franklin Lakes, NJ, USA).

RNA extraction and real-time PCR

Total RNAs were extracted using RNAiso Plus (Takara,
Dalian, China), and cDNA was synthesized using
PrimeScript RT reagent Kit (Takara) according to
the manufacturer’s instruction. Real-time PCR was
conducted on ABI 7500 Real-Time PCR System us-
ing PowerUp SYBR Master Mix (Applied Biosystems,
Shanghai, China). Relative expression levels were
analyzed using the ∆∆CT method. GAPDH was used
as an internal control.

Western blotting

Cell lysates were prepared using RIPA lysis buffer (Be-
yotime Biotechnology), and the concentration of total
protein was quantified using the BCA Protein Assay
Kit (Takara). Samples containing equal amounts of
proteins were separated on 10% SDS-polyacrylamide
gels and transferred onto polyvinylidene fluoride mem-
branes. The membranes were then blocked with 5%
skimmed milk and incubated with primary antibodies
(1:2000) at 4 °C overnight, followed by incubation
with HRP-conjugated secondary antibodies (1:5000,
Proteintech). Immunoblot bands were visualized us-
ing GE (Amersham) ECL Prime Western Blotting (GE
Healthcare, Shanghai, China). CCNA antibody (8202-
1-AP), CCNB antibody (28603-1-AP), GAPDH anti-
body (60004-1-Ig), HRP-conjugated Goat Anti-Rabbit
IgG (SA00001-2), and HRP-conjugated Goat Anti-
Mouse IgG (SA00001-1) were purchased from Pro-
teintech (Wuhan, China). The following antibodies:
p38 (8690), p-p38 (4511), ERK (4695), and p-ERK

(4370) were purchased from Cell Signaling Technol-
ogy (Shanghai, China).

Statistical analysis

The data were presented as mean±SD. The statistical
analysis was determined using Student’s t-test for 2
groups and one-way ANOVA for more than 2 groups.
∗ p < 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

AT-II inhibited cell viability and migration of GBM
cells

To determine the anti-tumor effects of AT-II on GBM
cells, CCK-8 and Transwell assays were used to detect
cell viability and migration. Following treatment with
various concentrations of AT-II (50, 100, 150, 200 µM)
for 24 h, the results of CCK-8 assay showed that AT-
II significantly inhibited cell viability of the U-87 and
U-251 cells in a dose-dependent manner (Fig. 1A,B).
As shown in Fig. 1C-E, the migration ability of U-
87 and U-251 cells was remarkably inhibited by AT-
II treatment at 100 µM compared with the control
group. The proliferation and the migration of cancer
cells are major drivers for tumor progression. They
are also important indicators for evaluating prognosis
and efficacy of drug treatment. It was reported that
AT-II exhibited inhibitory effect on lung cancer cell
and B16 melanoma cells by reducing cell viability
and migration, which was consistent with our results.
These data indicated that AT-II might be a potential
candidate for GBM treatment.

AT-II induced cell cycle arrest at G0/G1 phase

Cell cycle is a sequence of tightly-controlled molecular
events ensuring accurate DNA replication and cell divi-
sion. Appropriate control of the cell cycle facilitates the
transition from quiescence (G0) to cell proliferation
and ensure the fidelity of the genetic transcript through
cell cycle checkpoints [14]. However, owing to abro-
gation of cell cycle checkpoints, cancer cells represent
dysregulation of cell cycle, which is a potential carcino-
genic mechanism resulting in sustain uncontrolled cell
proliferation and division [15]. Several studies reveal
that therapeutic agents with anti-cancer effects can
induce cell cycle arrest to inhibit proliferation of tumor
cells [16–19]. AT-II was previously found to induce cell
cycle arrest in cells of gastric cancer, prostate cancer
and melanoma [11, 13, 19]. In accordance with these
findings, we showed that AT-II treatment induced cell
cycle arrest at G0/G1 phase in the U-87 and U-251 cells
(Fig. 2A-C).

The activity of cyclins, cyclin-dependent kinases
(CDKs) and CDK inhibitor are required for cell cycle
progression. To confirm the potential mechanisms, we
detected cyclins and found that the mRNA and protein
levels of CCNA and CCNB were significantly decreased
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Fig. 1 Effects of AT-II on cell viability and migration. (A, B) The U-87 and U-251 cells were treated with different concentration
of AT-II, and CCK-8 assays were used to measure cell viability. (C) The U-87 and U-251 cells were treated with AT-II at 100 µM
for 24 h. Cell migration was measured using Transwell migration assay. (D, E) Migrated cell number was quantified using
ImageJ software. The bar indicates 100 µm. ∗p < 0.05, compared with control, n= 3.

upon AT-II treatment (Fig. 2D-H), suggesting that AT-
II-induced cell cycle arrest by downregulation of CCNA
and CCNB. However, the definite mechanisms are still
unclear. CCNA and CCNB were required for entering
mitosis, and their expression were increased in various
types of cancer. The downregulation of CCNA and
CCNB can lead to tumor regression. It is reported
that cell cycle arrest is the most prominent outcome
of the tumor suppressor p53 activation [20]. Upon
p53 activation, cell cycle proteins including CCNA,
CCNB and CDK1 are transcriptionally downregulated
[21]. Additionally, studies show that transcriptional
repression of these cell cycle regulators by p53 requires
the CDK inhibitor p21/CDKN1A [22]. These data
suggested that AT-II might induce cell cycle arrest by
silencing CCNA/CCNB-CDK family complex, via acti-
vation of tumor suppression gene and upregulation of
CDK inhibitor.

AT-II activated MAPK signaling in GBM cells

MAPK family plays a pivotal role in cellular responses,
including cell proliferation, differentiation, survival,
transformation and cell cycle. Phosphorylation of

MAPK inhibits the CDK-activating phosphatases to reg-
ulate cell cycle transitions [23]. To investigate the
mechanisms of cell cycle progression induced by AT-
II, phosphorylation of MAPK was determined using
western blotting. As presented in Fig. 3, AT-II treat-
ment significantly increased phosphorylation of ERK
and p38 MAPK in the two cell types.

Recent data suggest that ERK activation promotes
cell cycle arrest in response to oncogenic hyperprolif-
eration signals [24]. In addition, it is reported that
active phenolic compound hispolon induces cell cycle
arrest of hepatocellular carcinoma cells via suprression
of CCNA, CCNE, CDK2 and overexpression of p21, p27,
accompanied by activation of ERK [25]. p38 MAPK
is emerging as an important regulator that induces
proliferative arrest by p53 activation and upregulation
of CDK inhibitor p16 [26]. Studies also illustrate that
p38 phosphorylates tumor suppressor Retinoblastoma
(RB) to increase RB-E2F transcription factor affinity,
downregulate gene expression, delay cell cycle pro-
gression, and prevent proliferation of cancer cells [27].
Moreover, p38 is considered as a tumor suppressor
that targets p57Kip2 CDK inhibitor to repress CCNA-
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Fig. 2 Effects of AT-II on cell cycle arrest. The U-87 and U-251 cells were treated with AT-II at 100 µM for 24 h. (A-C) Cell
cycle distribution was determined using Flow cytometry. (D, E) The mRNA levels of CCNA and CCNB in the U-87 and U-251
cells were detected using real-time PCR. (F) Western blotting assays were used to measure the expression of CCNA and CCNB
in U-87 and U-251 cells. (G, H) Band densities of CCNA and CCNB protein in the U-87 and U-251 cells were analyzed using
ImageJ software. ∗ p < 0.05, compared with control, n= 3.

CDK2 activity and, hence, arrest the cell cycle [28].
Combination with our study, we hypothesized that ERK
and p38 MAPK phosphorylation by AT-II might target
CDK inhibitor to repress CCNA/CCNB-CDK family ac-
tivity, inducing cell cycle arrest at G0/G1 phase, and
inhibiting the proliferation and migration of GBM cells.

CONCLUSION

The present study indicated that AT-II is a candidate
agent for the treatment of GBM. The findings demon-
strated that AT-II treatment remarkably inhibited the
viability and migration of GBM cells. Induction of cell
cycle arrest by AT-II was found in GBM cells. Further-

more, MAPK signaling was involved in the inhibitory
effects of AT-II.
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