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ABSTRACT: In this paper, we consider the following nonlinear fractional Kirchhoff equation

�

a+ b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)su(x) = f (u(x)),

where 0 < s < 1, a > 0 and b ⩾ 0. We first establish a maximum principle for anti-asymmetric functions on any
half space, and then obtain a Liouville theorem to the above nonlinear fractional Kirchhoff equations in the whole
space. In particular, we derive key ingredients for proving the symmetry and monotonicity of positive solutions to the
nonlinear fractional Kirchhoff equations, which indicate that fractional Kirchhoff De Giorgi conjecture is valid under
some conditions. We believe that the results obtained here can be conveniently applied to study a variety of properties
for solutions to fractional Kirchhoff equations.
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INTRODUCTION

In this paper, we investigate the following nonlinear
fractional Kirchhoff equation
�

a+ b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)su(x) = f (u(x)), (1)

with a > 0, b ⩾ 0, s ∈ (0,1) are real valued constants,
and
∫

Rn

|(−∆)
s
2 u|2 dx =

∫

Rn

∫

Rn

|u(x)−u(y)|2

|x − y|n+2s
dy dx . (2)

Here the fractional Laplacian is defined as

(−∆)su(x) = Cn,sP.V.

∫

Rn

u(x)−u(y)
|x − y|n+2s

dy, (3)

where P.V. stands for the Cauchy principal value and
constant Cn,s = 21− n

2+sπ−
n
2

s(1−s)
Γ (2−s) > 0. Let

L2s =
§

u ∈ L1
loc(R

n)
�

�

�

∫

Rn

|u(x)|
1+ |x |n+2s

dx <∞
ª

,

and

H s(Rn) =
§

u ∈ L2(Rn)
�

�

�

|u(x)−u(y)|
|x − y|

n
2+s
∈ L2(Rn×Rn)
ª

.

One can easily verify that for any u ∈ C1,1
loc (R

n) ∩
L2s(Rn)∩H s(Rn), the integral on the right hand side
of the definition (2) and (3) are well-defined.

We call Eq. (1) a nonlinear fractional Kirch-
hoff equation because of the appearance of the term
b
∫

Rn |(−∆)
s
2 u|2 dx . Indeed, if choosing s = 1 and

n = 3, then (1) transforms to the following classical
Kirchhoff-type equation

−
�

a+ b

∫

R3

|∇u|2 dx
�

∆u(x) = f (x , u), (4)

which is degenerate if b = 0 and non-degenerate oth-
erwise. If we replace R3 by a bounded domain Ω ⊂ R3

in (4), then we get the Kirchhoff Dirichlet problem

−
�

a+ b

∫

Ω

|∇u|2 dx
�

∆u(x) = f (x , u),

which is related to the stationary analog of the follow-
ing equation

ρ
∂ 2u
∂ t2
−
�

p0

h
+

E
2L

∫ L

0

�

�

�

∂ u
∂ x

�

�

�

2
dx
�

∂ 2u
∂ x2

= 0 (5)

proposed by Kirchhoff in [1] as an extension of the
classical D’Alembert wave equation for free vibrations
of elastic strings. In particular, Eq. (5) received much
attention after Lions in [2] proposed an abstract frame-
work to the problem. In recent years, Kirchhoff equa-
tions especially those involving fractional and nonlo-
cal operators, have been studied by more and more
scholars and a series of results have been obtained,
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such as [3] for existence and multiplicity of solutions
of fractional Kirchhoff superlinear equations, [4] for
multiplicity and asymptotic behavior of solutions to
fractional-p Kirchhoff-type equations, [5] for ground
state solutions for a class of fractional Kirchhoff equa-
tions, [6] for existence and multiplicity of nontrivial
non-negative entire (weak) solutions of a stationary
nonlocal Kirchhoff eigenvalue problem, [7] for a Hopf
lemma and the symmetry of solutions for fractional
Kirchhoff equations, [8] for existence of sign-changing
solutions for nonlinear fractional Kirchhoff equations,
[9, 10] for non-degeneracy of positive solutions for
fractional Kirchhoff problems.

When a = 1, b = 0, then (1) can be reduced to the
following fractional equation

(−∆)su(x) = f (u(x)).

There have seen a series of results on fractional differ-
ential equations during the last decade (see [11–18]
and references therein). The nonlocality of fractional
operators bring many new difficulties comparing with
the Laplacian. To treat fractional operators, the ex-
tension method [19] turns the nonlocal problem in-
volving the fractional Laplacian into a local one in
higher dimensions; the method of moving planes in
integral forms [20] investigates fractional equations
by showing that they are equivalent to corresponding
integral equations; a direct method of moving planes
[21] is even valid for fully nonlinear nonlocal operators
and the fractional p-Laplacians (see [22–25]); the
sliding method [26–28] lies in comparing values of
the solution for the equation at two different points,
between which one point is obtained from the other
by sliding the domain in a given direction; an asymp-
totic method of moving planes [29, 30] investigates
qualitative properties of positive solutions for frac-
tional parabolic equations. Finally, we also encour-
age readers to read [31]. Gu et al [31] established
fast numerical approaches to solve a class of initial-
boundary problem of time-space diffusion equation
involving the fractional Laplacian, which are worthy
of our attention.

It is well known that the classical Liouville theorem
states: Any harmonic function on Rn bounded from
below or from above is constant. Liouville theorems
are very important in studying elliptic equations and
systems. For example, they played an essential role
in deriving a priori bounds for solutions in [32, 33]
and were used to obtain uniqueness of solutions in
[34]. Liouville theorems have also been used to prove
the equivalence between fractional equations and the
corresponding integral equations, thus one can employ
integral equations methods, such as method of moving
planes in integral forms to study qualitative properties
of the solutions for the original fractional differential
equations. Recently, Wu and Chen [35] derived a
Liouville theorem for fractional p-harmonic functions

by a maximum principle on any half space. Later,
Dai et al [36] proved a Liouville theorem for pseudo-
relativistic Schrödinger equations; He et al [37] ob-
tained a Liouville theorem for fully nonlinear nonlocal
harmonic equations.

Inspired by the papers [35–37], we are interested
in a Liouville theorem and monotonicity for solutions
to the following nonlinear fractional Kirchhoff equa-
tion
�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)su(x)= f (u(x)), x ∈ Rn. (6)

For this problem, Eq. (6) contains not only the
nonlocal operator (−∆)su but also nonlocal term
∫

Rn |(−∆)
s
2 u|2 dx , which makes the research of this

problem more interesting. The key is to establish a
maximum principle for anti-asymmetric functions in
an unbounded region. The main difficulty is the con-
struction of antisymmetric auxiliary functions when
establishing the maximum principle of antisymmetric
functions in unbounded regions.

Theorem 1 (Liouville theorem) Suppose that u(x) ∈
C1,1

loc (R
n) ∩L2s(Rn) ∩ H s(Rn) is a bounded solution to

Eq. (6) and f is non-increasing with respect to u.
Then for any x ∈ Rn, we have u(x) ≡ C with C

satisfying f (C) = 0.

Remark 1 When a = 1, b = 0 and f ≡ 0, Theorem 1
will reduce to [35, Theorem 1]. For unbounded solu-
tions, the theorem may not true. For instance, when
f (u) = 0, if u(x) = x i , i = 1,2, . . . , n, then one can eas-
ily check that
�

a+ b
∫

Rn |(−∆)
s
2 u|2 dx
�

(−∆)su(x) = 0.

In order to prove Theorem 1, we need a maximum
principle for anti-asymmetric functions on a half space,
in an unbounded region, without assuming that the
function vanishes near infinity.

Before stating the maximum principle, we intro-
duce some notation. Choose any direction to be the x1
direction. For λ ∈ R, let

Tλ = {x ∈ Rn|x1 = λ}

be the moving plane,

Σλ = {x ∈ Rn|x1 > λ}

be a region to one side of the plane Tλ,

xλ = (2λ− x1, x2, . . . , xn)

be the reflection of x about Tλ. Denote

uλ(x) = u(xλ) and wλ(x) = uλ(x)−u(x).

Denote I(u) = a+ b
∫

Rn |(−∆)
s
2 u|2 dx , from (2), a > 0

and b ⩾ 0, by a simple computation, one has

I(u) = I(uλ) and I(u)> 0.
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Theorem 2 (Maximum principle for anti-symmetric
functions) Assume that wλ ∈ C1,1

loc (R
n) ∩ L2s(Rn) ∩

H s(Rn) is bounded from above. If cλ(x) is nonnegative
in Σλ and














�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swλ(x)+cλ(x)wλ(x)⩽0,

at points x ∈ Σλ where wλ(x)>0,
wλ(xλ) = −wλ(x), x ∈ Σλ,

(7)

then
wλ(x)⩽ 0, x ∈ Σλ. (8)

Furthermore, assume that

�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swλ(x)+ cλ(x)wλ(x)⩽ 0

at points x ∈ Σλ where wλ(x) = 0, (9)

then

either wλ < 0 in Σλ or wλ = 0 in Rn. (10)

This maximum principle will be powerful in carry-
ing out the method of moving planes on unbounded
domains. Now we introduce the results about De
Giorgi conjecture related to the nonlinear fractional
Kirchhoff equation. The well-known De Giorgi conjec-
ture [38]may be stated as: If u is a solution of equation

−∆u(x) = u(x)−u3(x), q x ∈ Rn

such that |u(x)|⩽ 1, lim
x1→±∞

u(x1, x ′) = ±1, for all x ′ ∈

Rn−1 and ∂ u
∂ x1
> 0. Then there exists a vector a ∈ Rn−1

and a function u1 : R→ R such that

u(x1, x ′) = u1(x1+a · x ′), ∀ x ∈ Rn.

We derive

Theorem 3 Suppose that u ∈ C1,1
loc (R

n) ∩ L2s(Rn) ∩
H s(Rn) is a solution to
�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)su(x) = f (u(x)), x ∈Rn, (11)

and satisfies that

|u(x)|⩽ 1, ∀ x ∈ Rn,

u(x1, x ′)→±1 uniformly in x ′ = (x2, . . . , xn) ∈ Rn−1,

as x1→±∞, (12)

and

f (z) is non-increasing for |z| sufficiently close to 1. (13)

Then there exists A> 0 such that

∂ u
∂ x1
⩾ 0 for all x with |x1|⩾ A. (14)

Remark 2
(i) Here the condition on f is satisfied for f (u) = u−

u3, as given in the De Giorgi Conjecture.
(ii) Conclusion (14) implies that

wλ(x)⩽ 0, ∀ x ∈ Σλ for all sufficiently large λ,

which actually provides a starting point to move
the plane Tλ in studying the symmetry and mono-
tonicity of solutions for the nonlinear fractional
Kirchhoff equation (11).

PROOF OF MAXIMUM PRINCIPLE FOR
ANTI-SYMMETRY FUNCTIONS

Before proving the maximum principle for anti-
symmetry functions, we first prove an important
Lemma.

Lemma 1 Assume that ϕ ∈ C∞0 (R
n) and ε > 0, then

for all small δ > 0, there holds

|I(u)(−∆)s(εϕ)|⩽ εCδ I(u)+ Cδ2−2s I(u),

where I(u) = a+ b
∫

Rn |(−∆)
s
2 u|2 dx, the constant C is

independent of ε, while Cδ may dependent on δ.

Proof : For simplicity, we assume Cn,s = 1. For any δ
and x ∈ Rn, we have

I(u)(−∆)s(εϕ)(x) = I(u)P.V.

∫

Rn

ε(ϕ(x)−ϕ(y))
|x − y|n+2s

dy

= I(u)P.V.
�

∫

Bδ(x)

ε(ϕ(x)−ϕ(y))
|x − y|n+2s

dy

+

∫

Bc
δ
(x)

ε(ϕ(x)−ϕ(y))
|x − y|n+2s

dy
�

.

By ϕ ∈ C∞0 (R
n), we derive

�

�

�

�

∫

Bc
δ
(x)

ε(ϕ(x)−ϕ(y))
|x − y|n+2s

dy

�

�

�

�

⩽ εC
∫

Bc
δ
(x)

1
|x − y|n+2s

dy

⩽ εCδ.

On the other hand, by Taylor expansion, for any fixed
x , we obtain

εϕ(x)− εϕ(y) = ε∇ϕ(x) · (x − y)+O(|x − y|2).

Since the anti-symmetry of ε∇ϕ(x) · (x − y) for y ∈
Bδ(x), we have

P.V.

∫

Bδ(x)

ε∇ϕ(x) · (x − y)
|x − y|n+2s

dy = 0.

Then
�

�

�

�

P.V.

∫

Bδ(x)

ε(ϕ(x)−ϕ(y))
|x − y|n+2s

dy

�

�

�

�

=

�

�

�

�

P.V.

∫

Bδ(x)

O(|x − y|2)
|x − y|n+2s

dy

�

�

�

�

⩽ Cδ2−2s.
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Hence,

|I(u)(−∆)s(εϕ)|⩽ εCδ I(u)+ Cδ2−2s I(u),

which completes the proof. 2

Next we will prove maximum principle for anti-
symmetric functions in unbounded domains (Theo-
rem 2).

Proof of Theorem 2

We use the contradiction arguments. Suppose that (8)
is false, we have

M := sup
Σλ

wλ(x)> 0.

Since wλ(x) is bounded from above on Rn, then we
have immediately 0 < M < +∞. We will discuss the
following two cases; Case (i): the supremum M may be
attained in Σλ and Case (ii): the supremum M may not
be attained because the domain Σλ is unbounded. In
both cases, we obtain contradictions and then proved
(8) is true.

Case (i): If this supremum M can be attained in
Σλ, say at the point x̃ , then we have

�

a+ b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swλ( x̃)

= I(u)Cn,s P.V.

∫

Rn

wλ( x̃)−wλ(y)
| x̃ − y|n+2s

dy

= I(u)Cn,s P.V.

∫

Σλ

wλ( x̃)−wλ(y)
| x̃ − y|n+2s

+
wλ( x̃)+wλ(y)
| x̃ − yλ|n+2s

dy

⩾ I(u)Cn,s2wλ( x̃)

∫

Σλ

1
| x̃ − yλ|n+2s

dy > 0, (15)

where the second inequality from bottom is due to | x̃−
y|< | x̃− yλ| and the last inequality is due to wλ( x̃)> 0
and I(u) > 0. Therefore, by non-negative property of
cλ, we obtain

�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swλ( x̃)+ cλ( x̃)wλ( x̃)> 0.

This contradicts the first inequality of (7). Thus (8) is
right.

Case (ii): If this supremum M cannot be attained,
by the definition of supremum, there exist sequences
x k ∈ Σλ and 0 < βk < 1 with βk → 1 as k→∞ such
that

wλ(x
k)⩾ βk M . (16)

Denote dk := 1
2 dist(x k, Tλ). Set

Ψ(x) =

(

e
|x |2

|x |2−1 , |x |< 1,
0, |x |⩾ 1.

It is well known that Ψ(x) ∈ C∞0 (R
n), thus

|(−∆)sΨ(x)| ⩽ C for all x ∈ Rn. Obviously,
Ψ(0) =maxRnΨ(x) = 1. Let

Ψk(x) = Ψ(
x−(x k)λ

dk
) and Ψ̃k(x) = Ψk(x

λ) = Ψ(
x−x k

dk
).

Then Ψ̃k(x)− Ψk(x) is anti-symmetry with respect to
Tλ. Taking ϵk = (1−βk)M , we obtain

wλ(x
k)+ ϵk[Ψ̃k −Ψk](x

k)⩾ M .

Denote

wk(x) := wλ(x)+ ϵk[Ψ̃k −Ψk](x).

So wk(x) is also anti-symmetric with respect to Tλ.
Since for any x ∈ Σλ\Bdk

(x k), wλ(x) ⩽ M and
Ψ̃k(x) = Ψk(x) = 0, we have

wk(x
k)⩾ wk(x), ∀ x ∈ Σλ\Bdk

(x k).

Hence the supremum of wk(x) in Σλ is achieved in
Bdk
(x k). Thus, there exists a point x̄ k ∈ Bdk

(x k) such
that

wk( x̄
k) = sup

x∈Σλ
wk(x)⩾ M . (17)

By the choice of ϵk, it is easy to verify that wλ( x̄ k) ⩾
βk M > 0.

x1

Tλ
Σλ = {x ∈ Rn | x1 > λ}

x k

x̄ k

Bdk
(x k)

Fig. 1 The maximum point.

Now we will evaluate the upper bound and the
lower bound of
�

a+ b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swk( x̄
k), (18)

respectively, then to derive a contradiction.
As a consequence of the first inequality to (7),

cλ(x)⩾ 0 and Lemma 1, we obtain the upper bound

�

a+ b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swk( x̄
k)

⩽ −cλ( x̄
k)wλ( x̄

k)+ εkCδ I(u)+ Cδ2−2s I(u)

⩽ εkCδ I(u)+ Cδ2−2s I(u). (19)
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Next, we estimate the lower bound of (18) by direct
calculations. We have
�

a+ b

∫

Rn
|(−∆)

s
2 u|2 dx
�

(−∆)swk( x̄
k) = I(u)(−∆)swk( x̄

k)

= I(u)(−∆)s[wλ( x̄k)+ ϵk(Ψ̃ −Ψ)( x̄k)]

= I(u)Cn,sP.V.

∫

Rn

wλ( x̄k)+ϵk(Ψ̃−Ψ)( x̄k)−wλ(y)−ϵk(Ψ̃−Ψ)(y)
| x̄k − y|n+2s

dy

= I(u)Cn,sP.V.
�

∫

Σλ

wλ( x̄k)+ϵk(Ψ̃−Ψ)( x̄k)−wλ(y)−ϵk(Ψ̃−Ψ)(y)
| x̄k − y|n+2s

dy

+

∫

Σλ

wλ( x̄k)+ ϵk(Ψ̃ −Ψ)( x̄k)+wλ(y)+ ϵk(Ψ̃ −Ψ)(y)
| x̄k − yλ|n+2s

dy
�

= I(u)Cn,sP.V.

∫

Σλ

�

1
| x̄k − y|n+2s

−
1

| x̄k − yλ|n+2s

�

×
�

wλ( x̄
k)+ ϵk(Ψ̃ −Ψ)( x̄k)−wλ(y)− ϵk(Ψ̃ −Ψ)(y)

�

dy

+ I(u)Cn,s2
�

wλ( x̄
k)+ ϵk(Ψ̃ −Ψ)( x̄k)

�

∫

Σλ

1
| x̄k − yλ|n+2s

dy

:= J1 + J2. (20)

We first estimate J1. Since 1
| x̄k−y|n+2s − 1

| x̄k−yλ|n+2s > 0, for
all y ∈ Σλ, we have

J1 ⩾ 0, (21)

due to (17). Then we derive

J2 = I(u)2Cn,s

�

wλ( x̄
k)+ϵk(Ψ̃−Ψ)( x̄ k)

�

∫

Σλ

1
| x̄ k− yλ|n+2s

dy

⩾ C M I(u)

∫

Σλ

1
| x̄ k − yλ|n+2s

dy

⩾ C M I(u)

∫

Σλ

1
|x k − yλ|n+2s

dy, (22)

where the last inequality we have used the fact

| x̄ k − y|⩽ | x̄ k − x k|+ |x k − y|⩽
3
2
|x k − y|.

Let E = {y | 2 < y1 − x k
1 < 3, |y ′ − (x k)′| < 1}, t =

y1 − x k
1 , ρ = |y ′ − (x k)′| and ωn−2 denotes the area of

unit sphere in Rn−1. Now we estimate the last integral
in (22) as
∫

Σλ

1
|x k − yλ|n+2s

dy ⩾
∫

E

1
|x k − y|n+2s

dy

=

∫ 3

2

∫ 1

0

ωn−2ρ
n−2

(t2+ρ2)
n+2s

2

dρ dt

=

∫ 3

2

∫
1
t

0

ωn−2(t l)n−2 t

tn+2s(1+ l2)
n+2s

2

dl dt

⩾
∫ 3

2

1
t1+2s

∫
1
3

0

ωn−2ln−2

(1+ l2)
n+2s

2

dl dt

⩾ c1

∫ 3

2

1
t1+2s

dt = c2 > 0. (23)

Hence, from (22) and (23), we obtain

J2 ⩾ C1M I(u). (24)

Combining (20), (21) and (24), we deduce
�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swk( x̄
k)⩾ C1 I(u)M . (25)

Then combining (19) and (25), we derive

C1 I(u)M ⩽ ϵkCδ I(u)+ Cδ2−2s I(u).

It follows from I(u)> 0 that

C1M ⩽ ϵkCδ + Cδ2−2s.

Now we choose δ small such that

Cδ2−2s ⩽
C1

3
M ,

then for such δ, let k →∞, thus ϵk = (1− βk)M is
small such that

ϵkCδ ⩽
C1

3
= M ,

which contradicts with M > 0. Hence (8) is true.
Next, we will prove (10). Since we have proved

that wλ(x)⩽ 0, x ∈ Σλ, if there exists a point x0 ∈ Σλ
such that

wλ(x0) = min
x∈Σλ

wλ(x) = 0.

Then by

�

a+ b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swλ(x0)

= I(u)Cn,s P.V.

∫

Rn

−wλ(y)
|x0 − y|n+2s

dy

= I(u)Cn,s P.V. wλ(y)

∫

Σλ

� 1
|x0− yλ|n+2s

−
1

|x0− y|n+2s

�

dy

⩾ 0.

Thus from (9) and I(u)> 0, we have wλ = 0 a.e. in Σλ
and hence wλ = 0 a.e. in Rn.

This completes the proof of Theorem 2. 2

LIOUVILLE THEOREM

In this section, let us prove Theorem 1 by the maximum
principle for anti-symmetry functions (Theorem 2).

Proof of Theorem 1

We show that u(x) is symmetric with respect to any
hyper plane. Let x1 be any given direction in Rn,

Tλ = {x ∈ Rn | x1 = λ for λ ∈ Rn}

be a plane perpendicular to x1 axis, and Σλ be a region
to one side of the plane Tλ.
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We have

�

a+ b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swλ(x)

= f (uλ(x))− f (u(x)) = −cλ(x)wλ(x),

here cλ(x) =
f (uλ(x))− f (u(x))

u(x)−uλ(x)
⩾ 0 at points x ∈Σλ where

uλ > u due to nonincreasing properties of f with
respect to u.

Applying Theorem 2, we derive

wλ(x)⩽ 0, x ∈ Σλ.

Through the same discussion, we obtain

wλ(x)⩾ 0, x ∈ Σλ.

Hence, we have

wλ(x)≡ 0, x ∈ Σλ. (26)

Therefore, this implies that u(x) is symmetric with
respect to plane Tλ for any λ ∈ R.

Since the x1-direction can be chosen arbitrarily,
(26) implies u is radially symmetric about any point.
Hence

u(x)≡ C .

Here u(x) ≡ C satisfies fractional Kirchhoff equation
(6) due to f (C) = 0. This completes the proof of
Theorem 1. 2

Proof of Theorem 3

In this section, we prove Theorem 3.
Proof : Let Tλ, Σλ, xλ, uλ, wλ and I(u) be defined as
before. In order to prove (14), we only need to prove

wλ(x) = uλ(x)−u(x)⩽ 0 for sufficiently largeλ. (27)

Indeed, for sufficiently large λ, (12) implies that uλ
and u are close to 1. At the same time, by (13), we
derive
�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swλ(x) = f (uλ)− f (u)⩽ 0

at the points x ∈ Σλ where

uλ(x)> u(x).

Then from Theorem 2, we obtain (27). Thus, a
standard arguments will lead to (14) for all |x1|⩾ A.

Now, we prove (27) by the contradiction argu-
ments. Suppose, by contradiction that

sup
Σλ

wλ(x) := B > 0. (28)

Then for any σ ∈ (0, 1), there exists x0 ∈ Σλ such that

wλ(x0)⩾ σB.

By rescaling, we may suppose that dist(x0, Tλ) = 2.
Define

γ(x) =

(

e
|x |2

|x |2−1 , |x |< 1,
0, |x |⩾ 1.

Obviously, γ(0) =maxRnγ(x) = 1. Set

Φ(x) = γ(x − xλ0 ) and Φλ(x) = γ(x − x0).

Then Φλ(x)−Φ(x) is an anti-symmetric function with
respect to the plane Tλ.

Next, take ϵ = (1−σ)B > 0 such that

wλ(x0)+ ϵ(Φλ(x0)−Φ(x0))⩾ B.

Similar to the proof in Theorem 2, there exists a point
x̄ ∈ B1(x0) such that

wλ( x̄)+ ϵ(Φλ( x̄)−Φ( x̄))
=max

Σλ
[wλ(x)+ ϵ(Φλ(x)−Φ(x))]⩾ B. (29)

Then we estimate the upper lower bounds of

�

a+ b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)swλ (30)

at the maximum point x̄ .
On the one hand, as in the proof of Theorem 2, we

can obtain the lower bound of (30) as

�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)s[wλ( x̄)+ ϵ(Φλ( x̄)−Φ( x̄))]

⩾ C1 I(u)B. (31)

On the other hand, since

wλ( x̄)+ϵ(Φλ( x̄)−Φ( x̄))> wλ(x0)+ϵ(Φλ(x0)−Φ(x0)),

Φ( x̄) = Φ(x0) = 0 and Φλ(x0) = 1⩾ Φλ( x̄), we obtain

wλ( x̄)⩾ wλ(x0)> 0.

It yields that
uλ( x̄)> u( x̄).

By the monotonicity of f and Lemma 1, we arrive at

�

a+b

∫

Rn

|(−∆)
s
2 u|2 dx
�

(−∆)s[wλ( x̄)+ϵ(Φλ( x̄)−Φ( x̄))]

⩽ f (uλ( x̄))− f (u( x̄))+ I(u)ϵCδ + C I(u)δ2−2s

⩽ I(u)ϵCδ + C I(u)δ2−2s.

Hence, this contradicts (31) when δ is small and σ is
sufficiently close to 1. This completes the proof. 2
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