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ABSTRACT: In this paper, we mainly investigate entire solutions of certain types of nonlinear differential equations
that are related to trigonometric identities, and obtain some interesting results. Besides, we give the growth of entire
solutions of nonlinear monomial differential-difference equations.
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INTRODUCTION

We use the standard notations of Nevanlinna theory
[1, 2], i.e., m(r, f ), N(r, f ) and T (r, f ) denote the prox-
imity function, the counting function and the charac-
teristic function of f , respectively. For the growth order
of f , we use the notation ρ( f ). It is an interesting
and quite difficult question to find all the meromorphic
solutions of a nonlinear differential equation or prove
that a nonlinear differential equation has no meromor-
phic solution. There have been some results obtained
lately that relate to the existence and the growth of
meromorphic solutions of various types of differential
equation, see [3–7] and references therein.

In 1939, by using Laguerre’s theorem on the in-
terlacing property of real zeros and critical points,
Titchmarsh [8] showed that the following differential
equation

f f ′′ = − sin2 z

has no real finite-order entire solutions other than
f (z) =± sin z. In 2019, Li et al [9] considered the more
general equation

f f ′′ = p(z) sin2 z, (1)

where p(z) 6≡ 0 is a polynomial with real coefficients
and real zeros. They obtained the following theorem:

Theorem A ([9]) Suppose that f is an entire function
satisfying (1). Then p(z) must be a nonzero constant,
and f (z) = a sin z, where a is a constant satisfying
a2 = −p.

Yang and Li [10] examined all the entire solutions
of the nonlinear differential equation

4( f (z))3+3 f ′′(z) = − sin 3z. (2)

Theorem B ([10]) Equation (2) admits exactly three
entire solutions, namely f1(z) = sin z, f2(z) =

p
3

2 cos z−
1
2 sin z and f3(z) = −

p
3

2 cos z− 1
2 sin z.

Equation (2) considered by Yang [11], Yang and Li
[10] comes from the formula: sin3z = 3 sin z−4sin3 z.
Later, Zhang and Yi [12] considered the more basic
trigonometric formula: sin(z1 + z2) = sin z1 cos z2 +
cos z1 sin z2. They gave all entire solutions of the
following equation

f (z1+ z2) = f (z1) f
′(z2)+ f (z2) f

′(z1),

where f (z) is a meromorphic function (see [12, Theo-
rem 1.2]). Particularly, the only entire solutions of the
differential equation

2 f (z) f ′(z) = sin 2z

are the four solutions f1,2(z) =±i cos z, f3,4(z) =± sin z
(see [12, Corollary 1.7]).

Recently, Gundersen et al [13] proved the follow-
ing result, which is related to the trigonometric identity
(cos z)2− (sin z)2 = cos 2z.

Theorem C ([13]) The only entire solutions of the dif-
ferential equation

( f (z))2− ( f ′(z))2 = cos2z

are the four solutions f (z) = ± cos z,±i sin z.

Being enlightened by Theorems A, B and C, we
will prove the next results, which are connected to the
trigonometric identity cos3z = cos3 z−3sin2 z cos z.
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Theorem 1 The only entire solutions of the differential
equation

( f (z))3−3 f (z)( f ′(z))2 = cos 3z (3)

have the form f (z) = c1 eiz + c2 e−iz , where c1, c2 are
constants satisfying c3

1 =
1
8 , c3

2 =
1
8 .

Theorem 2 The only entire solutions of the differential
equation

( f (z))3+3( f ′(z))2 f ′′(z) = cos3z (4)

have the form f (z) = c1 eiz + c2 e−iz , where c1, c2 are
constants satisfying c3

1 =
1
8 , c3

2 =
1
8 .

In the following, we continue to study the more
general equation of the form

p(z)( f (z))3+ q(z) f (z)( f ′(z))2 = cos(α(z)), (5)

where p(z), q(z) are polynomials with p(z)q(z) 6≡ 0,
and α(z) = az+ b, where a ∈ C\{0}, b ∈ C.

Theorem 3 If (5) admits an entire solution f , then
p(z) ≡ p, q(z) ≡ q are nonzero constants, and a satis-

fying a ∈
¦

3
Ç

−3p
q , −3

Ç

−3p
q ,

q

p
q , −

q

p
q

©

. Moreover, f
has the form

f (z) = C1 eλ1z + C2 eλ2z ,

where C1, C2 are nonzero constants satisfying C1C2 =
1/4p

2
3 . One of the following assertions holds:

(i) a =
q

p
q , then λ1 = i

q

p
q , λ2 = −i

q

p
q , 8pC2

1 C2 =
ei b and 8pC1C2

2 = e−i b;

(ii) a=−
q

p
q , then λ1 = i

q

p
q , λ2 =−i

q

p
q , 8pC2

1 C2 =
e−i b and 8pC1C2

2 = ei b;

(iii) a= 3
Ç

−3p
q , then λ1 =

Ç

3p
q , λ2 =−

Ç

3p
q , 8pC3

3 =
e−i b and 8pC3

4 = ei b;

(iv) a = −3
Ç

−3p
q , then λ1 =

Ç

3p
q , λ2 = −

Ç

3p
q ,

8pC3
3 = ei b and 8pC3

4 = e−i b.

Clearly, Theorem 3 is an extension of Theorem 1.
For possible future investigations, we hope to reduce
the condition α(z) = az+ b to α(z) is an non-constant
polynomial in (5). In addition, we also would like
to consider (5) with the condition α(z) being a non-
constant entire function.

Theorems A and C lead one to consider differential
equation of the form f f (k) = H(z), where k ¾ 1 and
H is an entire function with H(z) 6≡ 0. Gunder-
sen et al [13] considered entire solutions of nonlinear
monomial differential equations of the more general
form

f n0( f ′)n1( f ′′)n2 · · · ( f (k))nk = H(z), (6)

where H(z) is an entire function with H(z) 6≡ 0, k ¾ 1,
n0 ¾ 1 and nk ¾ 1. They showed a double inequality

for the growth of entire solutions of (6) and ρ( f ) =
ρ(H), where f is an entire solution of (6).

Closely related to differential expressions are dif-
ference expressions where the usual shift f ′(z) of a
meromorphic function will be replaced by the shift
f (z + c). We consider the following nonlinear mono-
mial differential-difference equations

f n0( f ′c )
n1( f ′′c )

n2 · · · ( f (k)c )
nk = H(z), (7)

where H(z) is an entire function with H(z) 6≡ 0, c is
a nonzero constant, fc = f (z + c), k ¾ 1, n0 ¾ 1 and
nk ¾ 1.

Theorem 4 If f is an entire solution with finite order
of a monomial differential-difference equation (7), then
ρ( f ) = ρ(H).

LEMMAS

Lemma 1 ([15]) Let η1, η2 be two complex numbers
such that η1 6= η2 and let f be a finite order meromor-
phic function. Let ρ be the order of f , then for each
ε > 0, we have

m
�

r,
f (z+η1)
f (z+η2)

�

= O(rρ−1+ε).

Lemma 2 ([15]) Let f be a meromorphic function with
order ρ = ρ( f ), ρ <∞, and let η be a fixed nonzero
complex number, then for each ε > 0, we have

T (r, f (z+η)) = T (r, f )+O(rρ−1+ε)+O(log r).

Lemma 3 ([14]) If f j(z), g j(z), (1¶ j ¶ n, n¾ 2), are
entire functions satisfying
(i)

∑n
j=1 f j(z)eg j(z) ≡ 0;

(ii) The orders of f j are less than that of egh−gk for
1¶ j ¶ n, 1¶ h< k ¶ n.

Then f j(z)≡ 0 for 1¶ j ¶ n.

Lemma 4 (Proposition 5.1, [2]) All non-trivial solu-
tions f of

f ′′+ P(z) f = 0,

where P(z) = anzn + · · ·+ a0, an 6= 0, have the order of
growth ρ( f ) = n+2

2 .

PROOF OF Theorem 1

Suppose that f is an entire solution of (3). Differenti-
ation of (3) gives

3 f 2 f ′−3( f ′)3−6 f f ′ f ′′ = −3sin 3z.

Thus, we have

− f 2 f ′+( f ′)3+2 f f ′ f ′′ = sin 3z. (8)

Differentiating (8) yields

−2 f ( f ′)2− f 2 f ′′+5( f ′)2 f ′′+2 f ( f ′′)2+2 f f ′ f ′′′

= 3cos 3z. (9)

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 49 (2023) 687

Combining (3) with (9), we have

−2 f ( f ′)2− f 2 f ′′+5( f ′)2 f ′′+2 f ( f ′′)2+2 f f ′ f ′′′

= 3 f 3−9 f ( f ′)2,

which gives that

f [−3 f 2+7( f ′)2− f f ′′+2( f ′′)2+2 f ′ f ′′′]

= −5( f ′)2 f ′′. (10)

Next, we will prove that f ′′/ f is an entire function.
Suppose that z0 is a zero of f , i.e., f (z0) = 0. From
(10), we have either f ′(z0) = 0 or f ′′(z0) = 0. If
f ′(z0) = 0, then f 3−3 f ( f ′)2 has a multiple zero at z0,
which contradicts (3) because cos3z has only simple
zeros. Thus, we have f ′(z0) 6= 0 and f ′′(z0) = 0.
Therefore, any zero of f must be both a simple zero
of f and a zero of f ′′, which implies that f ′′/ f must
be an entire function.

Taking Nevanlinna characteristic function of both
sides of (3), by using the lemma on the logarithmic
derivative, we get that

T (r, cos 3z) = T (r, f 3−3 f ( f ′)2) = m(r, f 3−3 f ( f ′)2)

¶ 3m(r, f )+2m
�

r, f ′

f

�

+O(1)

¶ 3T (r, f )+ S(r, f ).

This gives that ρ( f )¾ 1. Similarly,

3T (r, f ) = T
�

r,
cos3z

1−3( f ′/ f )2

�

¶ T (r, cos3z)+2T
�

r, f ′

f

�

+O(1)

¶ T (r, cos3z)+2N
�

r, f ′

f

�

+ S(r, f )

¶ T (r, cos3z)+2N (r, f )+2N
�

r, 1
f

�

+ S(r, f )

¶ T (r, cos3z)+2T (r, f )+ S(r, f ),

which implies that ρ( f )¶ 1. Hence, ρ( f ) = 1.
Set α = f ′′/ f . Since α is an entire solution and

ρ( f ) = 1, then we have, as r →∞,

T (r,α) = m(r,α) = m
�

r, f ′′

f

�

= S(r, f ) = O(log r).

Thus, α is a polynomial.
Rewrite α= f ′′/ f as

f ′′−α f = 0. (11)

By Lemma 4, we have 1=ρ( f ) = n+2
2 , where n denotes

the degree of α. Therefore, we obtain n = 0, which
implies that α is a constant. From (10) and (11), it
follows that

(2α2−α−3) f 2+(7α+7)( f ′)2+2 f ′( f ′′′−α f ′) = 0.

(11) gives that f ′′′−α f ′ = 0. Substituting this expres-
sion into the above equation yields

(7α+7)( f ′)2+(2α2−α−3) f 2 = 0. (12)

Clearly, f 6≡ 0 and f ′ 6≡ 0. We consider the following
two cases.

If 7α+ 7 = 0 and 2α2 −α− 3 = 0, then we have
α= −1. By (11), we get that

f (z) = c1 eiz + c2 e−iz ,

where c1, c2 are constants. Substituting this expression
into (3), we have

4c3
1 e3iz +4c3

2 e−3iz = cos3z =
e3iz + e−3iz

2
.

By Lemma 3, we have 4c3
1−

1
2 = 0, 4c3

2−
1
2 = 0. Hence,

we obtain c3
1 =

1
8 , c3

2 =
1
8 .

If 7α+7 6= 0 and 2α2 −α−3 = 0, then from (12)
we have f ′ ≡ 0. This implies that f is a constant, a
contradiction.

If 7α+7 6= 0 and 2α2 −α−3 6= 0, then f ′/ f = β ,

where β =
q

3−2a
7 is a nonzero constant. Then, we

have f = c3 eβz , where c3 ∈ C\{0}. Substituting this
expression into (3), we get that

c3
3(1−3β2)e3βz −

e3iz

2
−

e−3iz

2
= 0.

By Lemma 3, we get a contradiction.
The proof of Theorem 1 is complete.

PROOF OF Theorem 2

Suppose that f is an entire solution of (4). Differenti-
ation of (4) gives

3 f 2 f ′+6 f ′( f ′′)2+3( f ′)2 f ′′′ = −3 sin3z.

Thus, we have

f 2 f ′+2 f ′( f ′′)2+( f ′)2 f ′′′ = − sin3z. (13)

Differentiation of (13) gives

2 f ( f ′)2+ f 2 f ′′+2( f ′′)3+6 f ′ f ′′ f ′′′+( f ′)2 f (4)

= −3cos 3z. (14)

Differentiating (14) yields

2( f ′)3+6 f f ′ f ′′+ f 2 f ′′′+8 f ′ f ′′ f (4)+6 f ′( f ′′′)2

+12( f ′′)2 f ′′′+( f ′)2 f (5) = 9sin 3z. (15)

From (13) and (15), it follows that

2( f ′)3 +6 f f ′ f ′′ + f 2 f ′′′ +8 f ′ f ′′ f (4) +6 f ′( f ′′′)2

+12( f ′′)2 f ′′′+( f ′)2 f (5) =−9 f 2 f ′−18 f ′( f ′′)2−9( f ′)2 f ′′′.
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Rewrite the above equation as

f ′(9 f 2+2( f ′)2+6 f f ′′+18( f ′′)2+8 f ′′ f (4)+ f ′ f (5)

+6( f ′′′)2+9 f ′ f ′′′) = − f ′′′( f 2+12( f ′′)2). (16)

Next, we will prove that f ′′′/ f ′ is an entire func-
tion. Suppose that z0 is a zero of f ′, i.e., f ′(z0) = 0.
From (16), we have either f ′′′(z0) = 0 or f 2(z0) +
12( f ′′(z0))2 = 0.

If f ′′′(z0) 6= 0, then f 2(z0) + 12( f ′′(z0))2 = 0. It
follows from (14) that

10( f ′′(z0))
3 = 3 cos3z0.

From (4), we have

f 3(z0) = cos3z0.

If cos3z0 6= 0, then we have
�

f (z0)
f ′′(z0)

�3
= 10

3 , which con-

tradicts with f 2(z0)+ 12( f ′′(z0))2 = 0. Thus, we have
f (z0) = f ′′(z0) = cos3z0 = 0. Recall that f ′(z0) = 0.
We may observe that f 3+3( f ′)2 f ′′ has a multiple zero
at z0, which contradicts (4) because cos3z has only
simple zeros.

Hence, we have f ′′′(z0) = 0. Since sin 3z has only
simple zeros, f ′(z0) = 0 and f ′′′(z0) = 0, it follows
from (13) and (14) that f ′′(z0) 6= 0. Therefore, any
zero of f ′ must be both a simple zero of f ′ and a zero
of f ′′′, which implies that f ′′′/ f ′ must be an entire
function.

By a similar method to that in the proof of Theo-
rem 1, we have ρ( f ) = 1.

Set κ = f ′′′/ f ′ is an entire solution. Clearly, as
r →∞,

T (r,κ) = m(r,κ) = m
�

r, f ′′′

f ′

�

= S(r, f ) = O(log r).

Thus, we have that κ is a polynomial.
Rewrite κ= f ′′′/ f ′ in the form

f ′′′−κ f ′ = 0. (17)

Using Lemma 4 into (17), we have 1=ρ( f ) =ρ( f ′) =
n+2

2 , where n denotes the degree of κ. Thus, we have
n= 0, which implies that κ is a constant.

Combining (16) with (17), we have

(9+κ) f 2+6 f f ′′+(18+12κ)( f ′′)2+8 f ′′ f (4)

+ f ′ f (5)+(6κ2+9κ+2)( f ′)2 = 0.

From (17), we have f (4) −κ f ′′ = 0 and f (5) −κ f ′′′ =
0. By substituting those expressions into the above
equation, we have

(9+κ) f 2+6 f f ′′+(18+20κ)( f ′′)2

+(7κ2+9κ+2)( f ′)2 = 0. (18)

Differentiating (18) yields

(18+2κ) f f ′+6 f ′ f ′′+6 f f ′′′+(36+40κ) f ′′ f ′′′

+(14κ2+18κ+4) f ′ f ′′ = 0.

Combining the above equation with (17), we have

(9+4κ) f +(27κ2+27κ+5) f ′′ = 0. (19)

It follows from (17) and the differentiation of (19) that

(9+4κ) f ′+(27κ3+27κ2+5κ) f ′ = 0.

Since f is a transcendental function, we get that

27κ3+27κ2+5κ+9+4κ= 9(3κ2+1)(κ+1) = 0.

Hence, we have κ= −1 or κ= ±
p

3i
3 .

If κ=−1, then (19) gives that f + f ′′ = 0. Its gen-
eral solution is f (z) = c1 eiz + c2 e−iz , where c1, c2 are
constants. Substituting f (z) = c1 eiz + c2 e−iz into (4),
we have

(8c3
1 −1)e3iz +(8c3

2 −1)e−3iz = 0.

Applying Lemma 3 to the above equation, we have
8c3

1 −1= 0 and 8c3
2 −1= 0. Hence, we obtain c3

1 =
1
8 ,

c3
2 =

1
8 .

If κ=
p

3i
3 , then (19) gives that f +

p
3i f ′′ = 0. Its

general solution is f (z) = c3 eλz + c4 e−λz , where λ is
a nonzero constant satisfying λ2 =

p
3i
3 , and c3, c4 are

constants. Substituting f (z) = c3 eλz + c4 e−λz into (4),
we have

4
3 c3

3 e3λz+ 4
3 c3

4 e−3λz+8c2
3 c4 eλz+8c3c2

4 e−λz = e3iz+e−3iz .

Since λ2 =
p

3i
3 , we have λ 6=±3i. By Lemma 3, we get

a contradiction.
If κ= −

p
3i
3 , by the same arguments, we also get a

contradiction.
The proof of Theorem 2 is complete.

PROOF OF Theorem 3

Suppose that f is an entire solution of (5). Rewrite (5)
as

p f 3+ q f ( f ′)2 = cosα (20)

for simplicity. Differentiating (20) yields

3p f 2 f ′+ p′ f 3+ q( f ′)3+2q f f ′ f ′′+ q′ f ( f ′)2

= −a sinα. (21)

Differentiation of (21) gives

(6p+ q′′) f ( f ′)2+3p f 2 f ′′+6p′ f 2 f ′+ p′′ f 3

+5q( f ′)2 f ′′+2q′( f ′)3+2q f ( f ′′)2+2q f f ′ f ′′′

+4q′ f f ′ f ′′ = −a2 cosα. (22)
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From (20) and (22), it follows that

(6p+ q′′+ a2q) f ( f ′)2+3p f 2 f ′′+6p′ f 2 f ′

+(p′′+ a2p) f 3+5q( f ′)2 f ′′+2q′( f ′)3

+2q f ( f ′′)2+2q f f ′ f ′′′+4q′ f f ′ f ′′ = 0.

Then, we have

f
�

(6p+ q′′+ a2q)( f ′)2+3p f f ′′+6p′ f f ′

+(p′′+ a2p) f 2+2q( f ′′)2+2q f ′ f ′′′+4q′ f ′ f ′′
	

= ( f ′)2(−5q f ′′−2q′ f ′). (23)

Denote

β :=
−5q f ′′−2q′ f ′

f
. (24)

If z0 is a zero of f , i.e., f (z0) = 0, then from (23)
we have either z0 is a zero of f ′ or a zero of −5q f ′′ −
2q′ f ′. From (20), we may observe that z0 cannot
be zero of f ′ because cosα has only simple zeros.
Therefore, any zero of f must be a simple zero of f
and a zero of −5q f ′′−2q′ f ′. It follows from (24) that
β is an entire function.

By the lemma on logarithmic derivative, we get
that

T (r,β) = m(r,β) = m
�

r,
−5q f ′′−2q′ f ′

f

�

= S(r, f ).

Rewrite (24) in the form

5q f ′′+2q′ f ′+β f = 0. (25)

Differentiating (25) yields

5q f ′′′+7q′ f ′′+(2q′′+β) f ′+β ′ f = 0. (26)

Elimination of f ′′′ from (26) and (23), we get that

f
§�

6p+ q′′ + a2q−
2(2q′′ +β)

5

�

( f ′)2 +3p f f ′′

+
�

6p′ −
2β ′

5

�

f f ′ +(p′′ + a2p) f 2 +2q( f ′′)2

+
�

4q′ −
14q′

5

�

f ′ f ′′
ª

= ( f ′)2[−5q f ′′ −2q′ f ′]. (27)

Similarly, elimination of f ′′ from (27) and (25), we
have

f
§

�

6p+ q′′+ a2q−
2(2q′′+β)

5
−

4(q′)2

25q

�

( f ′)2

+
�

6p′−
2β ′

5
−

6pq′

5q
+

2q′β
25q

�

f f ′

+

�

p′′+ a2p−
3pβ
5q
+

2β2

25q

�

f 2
ª

= β f ( f ′)2.

Then, we obtain

µ( f ′)2+ν f f ′+ ι f 2 = 0, (28)

where µ= 6p+a2q+ q′′

5 −
4(q′)2

25q −
7β
5 , ν= 6p′− 2β ′

5 −
6pq′

5q +
2q′β
25q and ι = p′′+a2p− 3pβ

5q +
2β2

25q are small functions of
f .

Now, we show that µ≡ 0, ν≡ 0 and ι ≡ 0. To this
end, suppose that µ 6≡ 0. If f has finitely many zeros,
then we have f = ep eeq, where ep is a nonzero polyno-
mial and eq is a non-constant polynomial. Substituting
f = ep eeq into (20) yields

[p(ep)3+ q(ep)3(eq′)2]e3eq = cosα.

The left-hand side of the above equation has at most
finitely many zeros, but the right-hand side of the
above equation has infinitely many zeros. This is
impossible. Hence, f has infinitely many zeros. Recall
that any zero of f must be a simple zero of f . There-
fore, f has infinitely many simple zeros. We can choose
a simple zero z0 of f , but not the zero and the pole
of the coefficients of (28). From (28), it follows that
f ′(z0) = 0, which contradicts with z0 being a simple
zero of f . Hence, µ≡ 0. Moreover, (28) reduces to

ν f ′+ ι f = 0. (29)

By the same method as above, we can obtain ν ≡ 0,
and then ι ≡ 0. Therefore,

6p+ a2q+
q′′

5
−

4(q′)2

25q
−

7β
5
≡ 0,

6p′−
2β ′

5
−

6pq′

5q
+

2q′β
25q

≡ 0,

p′′+ a2p−
3pβ
5q
+

2β2

25q
≡ 0.

Rewrite the above three equations as

150pq+25a2q2+5qq′′−4(q′)2−35qβ ≡ 0, (30)

150p′q−10qβ ′−30pq′+2q′β ≡ 0, (31)

25p′′q+25a2pq−15pβ +2β2 ≡ 0. (32)

Eliminating β from (30) and (31) yields

150p′q2−30pqq′+
12q′A

35
−

2qA′

7
≡ 0, (33)

where A= 150pq+25a2q2+5qq′′−4(q′)2.
Similarly, from (30) and (32), it follows that

25p′′q3+25a2pq3−
3pqA

7
+

2A2

352
≡ 0. (34)

Let deg p = m and deg q = n, where m, n are non-
negative integers. Set

p(z) := µmzm+µm−1zm−1+ · · ·+µ0 (35)
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and
q(z) := νnzn+νn−1zn−1+ · · ·+ν0, (36)

where µm,νn ∈ C\{0} and µi (i = 0,1, . . . , m − 1),
ν j ( j = 0, 1, . . . , n−1) ∈ C.

Note that deg A= max{m+ n, 2n}, deg(a2pq3) =
m+3n, deg(pqA) =m+n+deg A and deg(A2) = 2deg A.

Case 1. If m < n, then deg A=max{m+ n, 2n} =
2n. Thus, we have

deg(p′′q3)< deg(a2pq3) = deg(pqA)

= m+3n< deg(A2) = 4n.

From (34), we observe that the coefficient of A2 is a
nonzero constant. This gives a contradiction.

Case 2. If m> n, then by (35) and (36), we have

A= 150pq+25(a)2q2+5qq′′−4(q′)2

= 150µmνnzm+n+ tm+n−1zm+n−1+ · · ·+ t0, (37)

where t0, . . . , tm+n−1 ∈ C.
Substituting (35), (36) and (37) into (33), we get

that

150p′q2−30pqq′+
12q′A

35
−

2qA′

7

=

�

750mµmν
2
n

7
−

150nµmν
2
n

7

�

zm+2n−1

+ km+2n−2zm+2n−2+ · · ·+ k0 ≡ 0,

where km+2n−2, . . . , k0 ∈ C. Thus, we have

750mµmν
2
n

7
−

150nµmν
2
n

7
= 0.

Then, we have 5m = n. Since m > n and m, n are
non-negative integers, this is impossible. We get a
contradiction.

Case 3. If m = n, then deg A=max{m+ n, 2n} =
2m.

Substituting (35) and (36) into A = 150pq +
25a2q2+5qq′′−4(q′)2, we get that

A= (150µmνn+25a2ν2
n)z

2m+ l2m−1z2m−1+ · · ·+ l0,

where l2m−1, . . . , l0 ∈ C. Substituting this expression
into (33) and (34), we get that

150p′q2−30pqq′+
12q′A

35
−

2qA′

7
=
�450mµmν

2
n

7

+
150nµmν

2
n

7
+

60na2ν3
n

7
−

100ma2ν3
n

7

�

z3m−1+ · · · ≡ 0

and

25p′′q3+25a2pq3−
3pqA

7
+

2A2

352

=
�

25a2µmν
3
n−

3
7
µmνn(150µmνn+25a2ν2

n)

+
2

352
(150µmνn+25a2ν2

n)
2
�

z4m+ · · · ≡ 0,

respectively. Then, we have

450mµmν
2
n

7
+

150nµmν
2
n

7
+

60na2ν3
n

7
−

100ma2ν3
n

7
= 0,

25a2µmν
3
n−

3
7
µmνn(150µmνn+25a2ν2

n)

+
2

352
(150µmνn+25a2ν2

n)
2 = 0

Thus,

(45m+15n)µm+(6n−10m)a2νn = 0,

(a2νn+27µm)(a
2νn−µm) = 0.

From the above equation, we have 15m − 7n = 0 or
5m+3n= 0. Since m, n are non-negative integers and
m = n, then we have m = n = 0. Hence, p(z) ≡ p,
q(z)≡ q are nonzero constants.

Then, (34) becomes

25a2pq3−
3pqA

7
+

2A2

352
≡ 0, (38)

and A = 150pq + 25a2q2 + 5qq′′ − 4(q′)2 = 150pq +
25a2q2 is a constant. Substituting this expression into
(38), we have

a4q2+26a2pq−27p2 = [a2q+27p][a2q− p]≡ 0,

which means that a2q + 27p = 0 or a2q − p = 0.

Therefore, we have a = ±3
Ç

−3p
q or a = ±

q

p
q . Thus,

a ∈
n

3
Ç

−3p
q ,−3

Ç

−3p
q ,
q

p
q ,−

q

p
q

o

.

Next, we will show the precise expression of f .
Recall that p, q are nonzero constants. (30), (31) and
(32) reduces to

150pq+25a2q2−35qβ ≡ 0, (39)

−10qβ ′ ≡ 0, (40)

25a2pq−15pβ +2β2 ≡ 0. (41)

It follows from (39) and (41) that

20pβ −150p2+2β2 = (2β −10p)(β +15p)≡ 0.

This gives that β = 5p or β = −15p. Since q is a
nonzero constant, then (24) reduces to

5q f ′′+β f = 0. (42)

Case 3.1. If β = 5p, by substituting β = 5p into
(42), we have

q f ′′+ p f = 0.

Solving the above equation, we obtain

f (z) = C1 eλ1z + C2 eλ2z , (43)
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where C1, C2, λ1 = i
q

p
q 6= 0, λ2 = −i

q

p
q 6= 0 are

constants. Clearly, λ1+λ2 = 0.
Substitutingα(z) = az+b and (43) into (20) yields

(pC3
1 + qC3

1λ
2
1)e

3λ1z +(pC3
2 + qC3

2λ
2
2)e

3λ2z

+(3pC2
1 C2+2qC2

1 C2λ1λ2+ qC2
1 C2λ

2
1)e

λ1z

+(3pC1C2
2 +2qC1C2

2λ1λ2+ qC1C2
2λ

2
2)e

λ2z

=
eiaz ei b

2
+

e−iaz e−i b

2
. (44)

Note that a = ±3
Ç

−3p
q or a = ±

q

p
q .

If a = ±3
Ç

−3p
q , then a = 3

p
3λ1 or a = 3

p
3λ2.

Substituting a = 3
p

3λ1 into (44), we have

(pC3
1 + qC3

1λ
2
1)e

3λ1z +(pC3
2 + qC3

2λ
2
2)e

3λ2z

+(3pC2
1 C2+2qC2

1 C2λ1λ2+ qC2
1 C2λ

2
1)e

λ1z

+(3pC1C2
2 +2qC1C2

2λ1λ2+ qC1C2
2λ

2
2)e

λ2z

=
e3
p

3iλ1z ei b

2
+

e−3
p

3iλ1z e−i b

2
.

We can observe that 3λ1, 3λ2, λ1, λ2, 3
p

3iλ1,
−3
p

3iλ1 are distinct from each other. By Lemma 3, we
have ei b/2 ≡ 0. This gives a contradiction. Similarly,
by substituting a = 3

p
3iλ2 into (44), we also get a

contradiction.
If a = ±

q

p
q , then a = −iλ1 or a = −iλ2. Substi-

tuting a = −iλ1 into (44), we have

(pC3
1 + qC3

1λ
2
1)e

3λ1z +(pC3
2 + qC3

2λ
2
2)e

3λ2z

+
�

3pC2
1 C2+2qC2

1 C2λ1λ2+ qC2
1 C2λ

2
1−

ei b

2

�

eλ1z

+
�

3pC1C2
2 +2qC1C2

2λ1λ2+ qC1C2
2λ

2
2−

e−i b

2

�

eλ2z = 0.

Applying Lemma 3 to the above equation, we have

pC3
1 + qC3

1λ
2
1 = 0,

pC3
2 + qC3

2λ
2
2 = 0,

3pC2
1 C2+2qC2

1 C2λ1λ2+ qC2
1 C2λ

2
1−

ei b

2 = 0,

3pC1C2
2 +2qC1C2

2λ1λ2+ qC1C2
2λ

2
2−

e−i b

2 = 0.

Solving the above system, we have 8pC2
1 C2 = ei b and

8pC1C2
2 = e−i b. Then, we obtain C1C2 = 1/4p

2
3 .

Substituting a = −iλ2 into (44), we get that

(pC3
1 + qC3

1λ
2
1)e

3λ1z +(pC3
2 + qC3

2λ
2
2)e

3λ2z

+(3pC2
1 C2+2qC2

1 C2λ1λ2+ qC2
1 C2λ

2
1−

e−i b

2 )e
λ1z

+(3pC1C2
2 +2qC1C2

2λ1λ2+ qC1C2
2λ

2
2−

ei b

2 )e
λ2z = 0.

By the same argument as above, we also obtain
8pC2

1 C2 = e−i b and 8pC1C2
2 = ei b. Moreover, C1C2 =

1/4p
2
3 , which implies that C1, C2 are nonzero con-

stants.
Case 3.2. If β = −15p, by substituting β = −15p

into (42), we have

q f ′′−3p f = 0.

Solving the above equation, we obtain

f (z) = C3 eλ3z + C4 eλ4z , (45)

where C3, C4, λ3 =
Ç

3p
q 6= 0, λ4 = −

Ç

3p
q 6= 0 are

constants. Clearly, λ3+λ4 = 0.
Substitutingα(z) = az+b and (45) into (20) yields

(3pC2
3 C4+ qC2

3 C4λ
2
3+2qC2

3 C4λ3λ4)e
λ3z

+(3pC3C2
4 + qC3C2

4λ
2
4+2qC3C2

4λ3λ4)e
λ4z

+(pC3
3 + qC3

3λ
2
3)e

3λ3z +(pC3
4 + qC3

4λ
2
4)e

3λ4z

=
eiaz ei b

2
+

e−iaz e−i b

2
. (46)

If a = ±
q

p
q , then a =

p
3

3 λ3 or a =
p

3
3 λ4. Substi-

tuting a =
p

3
3 λ3 into (46), we have

(3pC2
3 C4+ qC2

3 C4λ
2
3+2qC2

3 C4λ3λ4)e
λ3z

+(3pC3C2
4 + qC3C2

4λ
2
4+2qC3C2

4λ3λ4)e
λ4z

+(pC3
3 + qC3

3λ
2
3)e

3λ3z +(pC3
4 + qC3

4λ
2
4)e

3λ4z

=
ei b

2
ei
p

3
3 λ3z +

e−i b

2
ei
p

3
3 λ4z .

We may observe that λ3, λ4, 3λ3, 3λ4, i
p

3
3 λ3, i

p
3

3 λ4
are distinct from each other. By Lemma 3, we get
ei b/2 = 0. This gives a contradiction. Similarly, if
a =

p
3

3 λ4, by the same method as above, we get a
contradiction.

If a = ±3
Ç

−3p
q , then a = 3iλ3 or a = 3iλ4. Sub-

stituting a = 3iλ3 into (46), we have

(3pC2
3 C4+ qC2

3 C4λ
2
3+2qC2

3 C4λ3λ4)e
λ3z

+(3pC3C2
4 + qC3C2

4λ
2
4+2qC3C2

4λ3λ4)e
λ4z

+(pC3
3+qC3

3λ
2
3−

e−i b

2 )e
3λ3z+(pC3

4+qC3
4λ

2
4−

ei b

2 )e
3λ4z = 0.

By Lemma 3, we have

3pC2
3 C4+ qC2

3 C4λ
2
3+2qC2

3 C4λ3λ4 = 0,

3pC3C2
4 + qC3C2

4λ
2
4+2qC3C2

4λ3λ4 = 0,

pC3
3 + qC3

3λ
2
3−

e−i b

2 = 0,

pC3
4 + qC3

4λ
2
4−

ei b

2 = 0.

Solving the above system, we have 8pC3
3 = e−i b and

8pC3
4 = ei b. Hence, we obtain C3C4 = 1/4p

2
3 .

Similarly, if a = 3iλ4, by the same arguments, we
have 8pC3

3 = ei b and 8pC3
4 = e−i b. Then, we also

obtain C3C4 = 1/4p
2
3 .

The proof of Theorem 3 is complete.
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PROOF OF Theorem 4

Let f be an entire solution with finite order of
differential-difference equation (7). By Nevanlinna’s
fundamental estimate, it is well know that T (r, f (k))¶
T (r, f )+ S(r, f ).

From (7), it follows that

T (r, H) = T (r, f n0( f ′c )
n1( f ′′c )

n2 · · · ( f (k)c )
nk )

¶ n0T (r, f )+ (n1+ · · ·+ nk)T (r, fc)+ S(r, fc).

Using Lemma 2 to the above equation, we have

T (r, H)¶ qT (r, f )+ S(r, f ), (47)

where q = n0+ n1+ · · ·+ nk.
Next, we prove an estimate in the other direction.

Rewrite (7) as

f q =
f q−n0

( f ′c )
n1( f ′′c )n2 · · · ( f (k)c )nk

H(z). (48)

Taking the Nevanlinna characteristic function of both
sides of (48), by using Nevanlinna’s first fundamental
theorem and Lemma 1, we have

qT (r, f ) = qm(r, f ) = m(r, f q)

¶ m
�

r,
f q−n0

( f ′c )n1( f ′′c )n2 · · · ( f (k)c )nk

�

+m(r, H)

¶ m
�

r,
f q−n0
c

( f ′c )n1( f ′′c )n2 · · · ( f (k)c )nk

�

+(q− n0)m
�

r,
f
fc

�

+m(r, H)

¶ T
�

r,
( f ′c )

n1( f ′′c )
n2 · · · ( f (k)c )

nk

f q−n0
c

�

−N
�

r,
f q−n0
c

( f ′c )n1( f ′′c )n2 · · · ( f (k)c )nk

�

+ T (r, H)+ S(r, f )

¶ N
�

r,
( f ′c )

n1( f ′′c )
n2 · · · ( f (k)c )

nk

f q−n0
c

�

−N
�

r,
f q−n0
c

( f ′c )n1( f ′′c )n2 · · · ( f (k)c )nk

�

+ T (r, H)+ S(r, fc)+ S(r, f )

¶ N
�

r,
1

f q−n0

�

−N
�

r,
1

( f ′c )n1( f ′′c )n2 · · · ( f (k)c )nk

�

+ T (r, H)+ S(r, f )

¶ (q− n0)N
�

r, 1
f

�

+ T (r, H)+ S(r, f )

¶ (q− n0)T (r, f )+ T (r, H)+ S(r, f ).

Hence, we get that

n0T (r, f )¶ T (r, H)+ S(r, f ). (49)

It follows from (47) and (49) that ρ( f ) = ρ(H).
The proof of Theorem 4 is complete.
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