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ABSTRACT: In this paper, we introduce a normal spacelike developable surface that is normal to a surface 2 along a
spacelike curve a in Minkowski 3-space R3. We study the existence and singularities of normal spacelike developable
surface through two invariants of the spacelike curves on a surface. Furthermore, we will be interested in the case
when the spacelike curve is a geodesic curve and when it lies on a surface of revolution.
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INTRODUCTION

The continuous moving of a straight line in the space
along space curve (directrix) generates a surface which
are called a ruled surface. A developable surface is a
ruled surface which any generatrix is stationary, i.e.,
such that the tangent plane of the surface is the same
at any point of the generatrix. Recently, developable
surfaces have been by some authors [1-6].

This paper introduces a normal spacelike devel-
opable surface normal to a surface 2 along a space-
like curve a in Minkowski 3-space ]Rf. We give the
basic conception of Minkowski 3-space ]Ri’ and the
Lorentziant Darboux frame, and classify the singulari-
ties of the normal spacelike developable surface along
a curve on a surface. Then, we consider the existence
and the uniqueness of the normal spacelike devel-
opable surface as well as a special curve on surfaces
(geodesic curve) and the case when the curve lies on a
surface of revolution. Additionally, we give an example
when the curve a is a geodesic.

BASIC CONCEPTS

Let Rf be 3-dimensional Minkowski space rectangular
coordinate system (¢, ¢5,¢3) and with the Lorentzian
inner product

L=—d¢’+d¢3+dc2,
where ¢1,¢5,63 €R.

Definition 1 Letu be any arbitrary vector in ]R‘;’. Then,
u is said to be:

1. spacelike if L(u,u) > 0 or u is a zero vector;
2. timelike if L(u,u) < 0;
3. null (lightlike) if L(u,u) = 0 and u is a nonzero

vector.
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A curve a parametrizedbya=a(s): [ CR — R? is said
to be timelike, spacelike curve or null (lightlike) if for
each s €I, the curve a/(s) is timelike, spacelike or null
(lightlike), respectively [7, 8].

Assume «a is a regular spacelike curve with timelike
principal normal vector in R?, then the moving Frenet
frame {T,N,B} of a satisfies:

T'(s) 0 «k(s) 0 Y\/T(s)
(B’(s)) = (K(s) 0 r(s)) (N(s)), )
N'(s) 0 () © B(s)

where L(T,T) = L(B,B) = —L(N,N) = 1 and
L(T,N)=L(N,B) = 0.

Let a: ] CR—V and ¢: V C R* - R}, Let
@(V) = M be a regular curve and a spacelike em-
bedding, respectively. Define a curve a: I — M by
a(s) = ¢(a(s)), then the vector field [9]:

Px X Py

nN=——-° 2
llox x @yl

is a unit timelike vector field normal to (V)= M and
the vector { = T x 7 is a spacelike vector.

Note that the frame {T,n,{} is a pseudo-
orthonormal frame which is called the Lorentzian Dar-
boux frame along a and the corresponding Frenet
formulae of a:

d T 0 Kn K T
? nl1=\| Kn 0 Tg nl, (3
S\ L —Kk, T, 0J\C

where «,(s) = L(T’(s), 4 (s)) is the asymptotic cur-
vature of a, k,(s) = —L(T’(s),n(s)) is the geodesic
curvature of a, T,(s) = —L(Zj "(s), n(s)) is the principal
curvature of a , and s is arc-length parameter of a.
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Recall that:
Txn=¢ nx{=-T, {xT=n. (4
Also, it is well known that:
a is an asymptotic curve if and only if k,, = 0;

a is a geodesic curve if and only if x, = 0;

a is a principal curve if and only if 7, = 0.

Now, consider the vector field D,(s) along a which is
defined by

D, (s) = T,4(s) T(s)—x4(s)n(s).

Recall that D,(s) rectifies spacelike Darboux vector
along a. So, if Tz,(s) > KE(S), we define the pesudo-
spherical rectifying spacelike Darboux image by

b (s)= T, () T(s) =K, (s)n(s)
P NEIORIIO) '

Let a: I — R? and ¢: I — R}\{0} be two smooth
curves such that [[y(t)|| = 1. Then, we use these two
smooth curves to define a ruled surface §4y): I xR —
R? by

5)

Syt v) = alt) +vy(t). (6)

We called a(t) the base curve of § and (t) the
director curve of §. Now, take the partial derivative
with respect to t and v:

9T (ay)
at

I8 ()= (o),

(t,v) =a(t)+vy(t), F

d
where ( =— ) So that the unit pseudo-normal vector

at a regular point (t,v) is

() = ([0 +0O1xY(©), )

()
(t,v) x ===

thogonal to a(t) for any (¢, v), then we say that § )
is a developable surface. Note that F(,, is a devel-

opable surface if and only if det(d(t), Y(t), ¢(t)) =0.
Note that §, ) is defined to be a spacelike developable
surface if n(t,v) is timelike.

Let 2 C R? be a spacelike surface. If N # ¢ and
T,§ and T, are orthogonal at any point p € NS then
the spacelike developable surface § is called a normal
spacelike developable surface of Q (see [1]) and the
intersection §NL is a regular spacelike curve. However
if § is a spacelike cylinder, then § is called a spacelike
normal cylinder of Q and the intersection FNQ is a
spacelike normal cylindrical slice. Also, § is called a
spacelike normal cone of Q if § is a spacelike cone and
the intersection FNQ is a spacelike normal conical slice.

9 a)

where £ = ” =t (t,v)”. If n(t,v) is or-
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NORMAL SPACELIKE DEVELOPABLE SURFACES IN
3

R}

Let Q C R? be a spacelike surface and a: I — Q C R?

be a regular spacelike curve on Q with T;(S) > K;(S).

Define a map ND,: I xR — R3 by
ND,(s,v)=a(s)+v Dp(s)

To(s) T(S)_Kg(s)n(s))

1/72(3)—)(2(3)

which is a spacelike ruled surface. Note that

/ /
K,T —K' 7T —
D/—(K AT S 8)( KeT+7Tom
p\"n 2 g2 5.2 |
Te P T K

4 8

=a(s)+v(

Thus,

Ty T—Kem )
[72—2 )
TR
( KgT:g—K/ng K, T+7Tg1 0
Knt 2 _ 2 =Y
g N R
which implies that ND, is a spacelike developable
surface. Here we recall ND, a normal spacelike de-

velopable surface of Q2 along a. Also, note that the
invariants 0,(s) and o ,(s) of Q along a are given by:

det (o, D, l_);) = det {T, (

Kg(s)rfg(s) - ng(s)fg(s)

B =)

74(5) Ko (5) '
+ 3
NEOE0) (@@J@m—@m)

when 6,(s) # 0. As conclusion of the above computa-
tion, &,(s) = 0 if and only if D;) (s) = 0. Also, we have

o,(s)=

OND, OND, _

Js v

(’U 5p(5)+ %) Z.
‘/’L'g(s)—Kg(S)

Therefore, 5, (so) # 0 if and only if (sy, v() is a singular
point of ND, and

U = _Kg(SO)
D 6,(50)y/T2050)— K2Go)

Ifx, (sp) # O this implies that (s, 0) is a regular point,
then the timelike normal vector of ND, at ND,(sy) =
a(sy) is orthogonal to the timelike normal vector of
Q at a(sy). So we recall ND, the normal spacelike
developable surface of Q2 along a.

Theorem 1 Ifa: I - Q C ]R? is a unit speed spacelike
curve on Q with T?(s) > K;(S). Then, we have:
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(1) the following statements are equivalent:

(i) ND, is a spacelike cylinder;
(i) 6,(s)=0,
(iii) o is the slice of Q with a spacelike pseudo-
normal cylinder;

(2) if 6,(s) # O, then the following statements are
equivalent
(i) ND, is a spacelike cone,
(i) o,(s)=0,
(iii) o is the slice of 2 with a spacelike pseudo-

normal conical.

Proof: (1) From the _deﬁnition, ND, is a spacelike
cylinder if and only if D,,(s) is a constant. Then,

5 )= (S)(—Kg(s)T(sHrg(s)n(s))
el —Yp

1/17%(5)—;%(3)

S0, Dp(s) is a constant if and only if 6,(s) = O this
implies that (i) is equivalent to (ii). Now, suppose
that a is the slice of © with a spacelike pseudo-
normal cylinder, then there is a vector v € Sf such that
L(( (s), v) = 0 where v is the director of the spacelike
normal cylinder. So, we can write v =AT(s) +  n(s)
for some a, 8 € R. Thus —A x,(s)+f 7,(s) =0 because
L({'(s),v) =0. So v = D{’J(s) which implies that
condition (i) holds. It clear that condition (i) implies
condition (iii).

(2) Note that, ND, is a spacelike cone, which
means that the singular value of ND, is a constant
vector. Let us consider the function g(s) defined as

Ko (s) _
5p(s),/rg(s)—xg(s)) Do)

So, condition (i) is equivalent to the condition g’(s) =
0. But

8(s) = als) +(

K

/7
K
/ g > g r/
RN (S P
Sy /72—2) " \5, [r2—x2) "

/
K _ K —K,T+7T
:H( g )D”+( g )( g gn)
8y T2—K2 VK2 I\ 72—«

/
T K _ _
TE—K 6p TE K

8 4

It follows that (i) is equivalent to (ii). From the
definition of the spacelike conical slice, condition (iii)
implies that there exists 6 € Rf such that L(a(s) —

G,C(s)) = 0. If (i) holds, then the vector valued
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function g(s) is constant. Now, for the constant point
0 = g(s) € R3, we have

L(a(s)—06,¢(s)) = L(als)—g(s), £(s))
—s(5) )Dp(s), C(s)) —0.

((59(5) 26)-x20)
This means that (iii) holds. Conversely, by condition
(iii), there exist a point 6 € Rf such that L(a(s) —
0,¢ (s)) = 0. Differentiating both sides, we have

L(a(s)=0,¢()
=L(a(s)—0,—K,(s) T(s)+ T4(s)n(s)) = 0.

Then there exists € € R such that a(s)— 0 = st (s).
Taking the derivative, we have

0= L(T(s), —Kg(s)T(s)+ Tg(s))
+ L(a(s) — 0, (=K (s)T(s)+ Tg(s))’)

Z—Kg(s)+£5p(s),/'v§—1<§.

It follows that

_ K
0 =a(s)—eD,(s)= a(s)+(5PT—2_K§

)DP(S) =g(s).

which implies that g(s) is constant, so condition (i)
holds. a

Let a: I — Q2 C R? be a unit speed spacelike curve
on Q. Define a function F: I x R} —» R by F(s,y) =
.5,”( y—a(s),C (s)). Recall that F is a support function
on a with respect to {. We will write f, (s)=FC(s,¥y0)
foranys el and y, € RS

Proposition 1 Let a: I — Q C R? be a unit speed
spacelike curve on  with T;(S) > K’;(S). Assume that
6, (50) # O, then we have the following statements:
(1) f£,,(s0) = 0 if and only if there are u,v € R such
that
Yo—alsg) =uT(sg) +vn(so)-

(2) f,,(s0)= f)ﬁo (so) =0if and only if there exists u € R
such that

Yo—alsy) = u (Tg(so) T(so)— Kg(SO) n(so) )

4/ Tﬁ(so) - Ké(so)

3 f,,(50) =, (50) = £/(50) = 0 if and only if ome of
the following is satisfied:

i

Yo— (o) :( _Kg(SO) )

8(50)/ T3 (s0) =K% (s0)
y (Tg(so) T(s9) —K¢(s0) T)(So)) ®

v/ Tﬁ(so)—Kﬁ(so)
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ii. K4(s0) =0, K;(so) = —K,(S0)T4(s0) and
there exists u € R such that y, — a(sy) =
uT(sgp)-

(@) fy,(50) = £ (50) = £,/ (s0) = f{P(so) = 0 if and
only

i ifo, (so) =0 and (8) holds;
ii. if one of the following conditions satisfies
(a) 6;(50) #0, k,(s9) =0, i.e,

Kg(so) =0, K;(so) = _Kn(SO)Tg(SO);
2Kn(50)7/g(50) + K;(So)fg(so)_Kg(So) #0,
3K/g(50)
ZKn(So)Té(So)+K/n(so)Tg(So)—K/g/@o)‘
(b) 5;(50) =0, K4(s0) = ng(so) =0, ie.,
K(50) = K, (50) = K(50) = O, K”(50) =

K1 (s0)T4(so), and there is u € R such
that yo—a(sg) = uT(sq).

(5) fyO(SO) = fylo(so) =f}f;(so) =fy(f)(So) =f}f:)(so) =0
if and only if 0 ,(so) = 0;) (sp) =0 and (8) holds.

Yo—a(so) =

Proof: Since

fyo(s0) = L(}’o_a(So), C(So))- C)]

Then, we have

f;o(so)zL(yO—a,—KgT+Tg n), (10)
frlso) =x, +L(y0—a, [ — K+ KT |T
+[rg—rgran+[2—=x2)),  ap

fy(og)(so) = ZK; - KnTg

+L(y0—a,[2Kang +K;Tg—Kg—Kg(Ki—K§ +’L’§)]T
#7002 T
+3[7 T — Kl ¢), (12)
fy(:)(so) = 3K/gl_3’<nf;g — 2K Ty + Ky (K2 —K§ + Tﬁ)
+L(_y0—a, [K;/Tg+K/n(2Tg+T;)+Kn(2Kn K/g—SK‘; Kg+2’r;+%'g)
+(Kn7,'g—K/g)(K'i—K§+T;)—SKg(TgT/g—KgK/g)_Kg/]T

"

/ / 1 / /
+ [Tg — 3K K, — K K, + 57g(7g7g —K'gKg)

+ (T/g—KgKn)(Ki—K‘z +T§)+Kn(31<;frg+2anr’g—31<’g’)]n

7
KgKg

2 2\(2 .2 2 "
+ [(Tg Kg)(Kn Kt Tg) +4(rg e
+3(22—k2) 4K, (26,7, + KT ) =Ty (K k! + 20,60 ).

(13)

571

By (9) and by the definition, condition (1) holds. Also,
by (10), we have f,, (so) = fy’0 (sp) =0ifand only if y,—
a(so) = uT(sp) +vn(sy) = O this yields to ux,(sy) =
v T4(s0). So, if k,(s9) # 0, T4(so) # 0, then we have

(rg(so)) (Kg(so))
u=v , v=u .
Kg(S0) T4(s0)
Then, there exists € € R such that

74 (50) T(so)—xg(so)n(so))
V7260 —x20s0) )

Suppose that x,(sy) = 0, then 7,(sy) # 0 and
v T4(s0) = 0. Therefore, we obtain

Yo—also) = 8(

rg(so)T(so)—Kg(so)n(so))
S —K2G0)

If 7,(sp) = 0, then we have y, — a(so) = v n(so) which
implies that condition (2) holds.

By (11), we have f, (so) =f;0(so) = f}f;(so) =0 if
and only if

Yo—a(so) =uT(sy) = :I:u(

Tg(80) T(50) = K4 (50) 77(80))

4/ Tﬁ(so) - Kﬁ(so)

Yo—a(so) = 8(

and

Tg(So)(K;(So) - Kn(SO)Kg(SO))

/72650) —K2(so)

_ Kg(SO)(Kg(SO)Kn(SO) - T;(So)))

v/ Tﬁ(so)—Kﬁ(so)

Kg(50)+€(

It follows that

Kg(so)
,/Té(so)—Kg(so)
. ( ( )+T;(so)Kg(so)—K;(So)fg(so))
el k(s =
’ NEHEYRIHEY

Then, we have

Té(so)Kg(So) - K/g(SO)Tg(SO)

v/ T;(So)— Kﬁ(so)

_Kg(s())
8(50)/72(50) = k2(s0)

Also, if k4(so) = 8, (so) = O then, condition (3) hold.

6,(s0) =xp(s0) +

and &=

www.scienceasia.org
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Now, suppose that §,(sp) # 0. By (12), we have
fy,(s0) = f}fo(so) = f}f;(so) = f;ﬂg’)(so) =0 if and only if

K

g )
T2 — 12

/
2Kg—KnTg—(5
A T
/ / 7" 2 2 2
><{(ZK‘nTg+KnTg—Kg—K‘g(K‘n—Kg+Tg))(
+( Mg w42 - (2_ 2y 2)) K
Ty K K g 2K K+ T o[ K=K+ T

=y

For s =54, we get

/ K(50)
2K (s9) — K n(s0) T4 (s0) — ( 6i(s(;))

o T/g(so)Kg(so)_K:g(so)fg(so))
{Kn(50)+2Kn(50)( 72(50)_’(%(50)
3 Tg(so)K/g/(so) - Kg(so)’flg/(so) }

Tﬁ(so) - K;(So)

Since
/ / / / 1" 1"
[y (Kng Kng)(Tng-l-KgKg) TKy —KgTy
=k'+ -
P n 2 12)2 2_g2
(Tg Kg) Te T
we have

2 (56) — Kn(56)7 g (50) — K o )(5;(5(’))
K (50) — Kn(50)T4(50) — K¢ (50 5, Go)

( T/g(so)Kg(So) - K/g(SO)Tg(sO))
+ Kg(so

Té(so) - K;(so)

Moreover, we use the relation

/ / /
K, T —K'7T
Kg _ Tg gty Ngle
[72 — 12 [72 — 12 T2 — K2
g g g g 8 g

then we have

Tg(sO)

8,(50)4/ T2(s0) —K2( ){—
PRIV TN TG maGe)
(i)
6, (s0)4/73(s0) —K2(s0)
=5p(50)o-p(so)’\/T?(SO)_Ké(SO =0.

So, we have o ,(sy) = 0 which implies that the proof of
condition (4i) is complete.

www.scienceasia.org
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Suppose that 6,(so) =0, then from (13), £, (so) =
£y (s0) = £, (s0) = fy(j>(so) =0ifand only if x,(sy) = 0
and K'g(so) = —x,(50)T4(s0). Then there is u € R such
that
Yo—also) =uT(sp),
and

ZK;(SO)_Kn(SO)Tg(SO)

—u[ 2K, (50) 7} (50) + K, (50) T g (50) =K (50) ] = 0.
Since &,(so) = 0 and k,(so) = 0, we have Ké(SO) =
Kn(so)Tg(so) SO
3K;,(50)_11[2’(;1(50)7;,(50)+K;(50)7g(50)_’<g(50)] =0.

It follows that ZKH(SO)T/g(SO)+K:1(SO)Tg(SO)—Kg(SO) #0
and

3K/g(50)

T 2, (50) 7 (50) + 11 (50) 7 (o) — K (s0)”

or 21(',1(50)7;(80) + K (50)T4(S0) — K’g’(so) = 0 and
K’g(so) = 0. Therefore, condition (4ii) holds. Addition-

ally, we can obtain the proof of condition (5) by similar
arguments of those above. O

EXISTENCES OF NORMAL SPACELIKE
DEVELOPABLE SURFACES

Let Q C ]Rii’ be a spacelike surface and a: I — Q C
R? be a spacelike curve on Q with T;(S) > Kﬁ(s).
In this section, we will investigate the existence and

uniqueness of spacelike developable surface that is
normal to Q along a.

Theorem 2 Let Q be a spacelike surfaceand a: I — Q C
R? be a unit speed spacelike curve with T;(S) > Kﬁ(s).
Then there is a unique spacelike developable surface that
is normal to Q along a.

Proof: Consider a normal spacelike developable sur-
face ND, along a. Now, let N, be a spacelike devel-
opable surface that is normal to 2 along a. Since N, is
a spacelike ruled surface, we assume that

Ny(s,u) = als) +u(s),
and we can write
T(s) = A(s) T(s)+ uls)ns) +y(s) {(s).
Then
T = (MHuk, K ) THUHAK Ay T INHy Ak Hut ).

Since N, is a spacelike developable surface, thus
det(a’,Y,’) = 0 or equivalently

YWU' + Ak, +yT) —u(y + Ak +ut,)=0.  (14)
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Furthermore, N, is a spacelike developable surface that
is normal to Q along a. We have

ON,
Js

ON,
du

(s,u) % (s, w)="10(s,wl(s).  (15)
Now, suppose that N, is non-singular at (s,0), then

¥(s,0) # 0. Using straightforward computation, we get

% =(1+u +px,—71K,)) T
+u(u + Ak, +y7g)n+uly’ + Ak, +ut,) L,
aa]\llla =AT+un+v{.
So
aali (s,u) aai“ (s,u)

=u[p(y’ +An g +uTy) =y (W + Ak +yT) ] T(6)
+ [u?t(y'+l;<g +pwg)—,u(1 +u(A +ux, —}ng))]n(s)
+ [,u(l +u(l’+,u1<n—}/1<g))—u7u(u’+li<n +yfg)]§(s).

If we substitute u = 0, we have

N, N

~1(5,0)x S4(5,0) = =y (s) + u(6).

From (15), we have (s, 0) = u(s), y(s) = 0. By (14),
we have

uE) (A6 (s) + 57, (s)) = 0.

Suppose that N, is non-singular along a, then 9(s, 0) #
0, thus wu(s) # 0. This implies that A(s)x,(s) +
u(s)T4(s) =0. If k4(s) # 0, then

()
A(s) =— (@) u(s).

Therefore

7y(s)

Kg(s)

_ —,u(s)(‘/ Tﬁ(5)—K§(S))(Tg(s)T(s)—Kg(s)n(s))
Kg(s) 1/’ré(s)—;cg(s)

,/72(5)—K§(S))

Kg(s)

T(s) = —( )u(s) T(s) + u(s) n(s)

=—u(s)D, (S)(

This implies that T(s) is in the opposite direction of
D,(s). If T4(s) # 0, then Y(s) and D, (s) have the same
direction.

Now suppose that N, has a singular point at (s, 0).
Then (sy,0) = 0, which implies that u(s,) = y(sy) = 0.
Thus, we have Y(sy) = A(sg) T(sp). If the singular
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point a(sy) is on the closure of A where A is the set
of all points where the normal spacelike developable
surface is regular on a, then there is a point s in
any neighbourhood of s, such that at this point s the
uniqueness of normal spacelike developable surface
holds. Taking the limit as s approaches to s;, then at
so the uniqueness of the normal spacelike developable
surface holds. Suppose that there is an open interval
J c I such that for any s € J, N, is singular at a(s) .
Then for any J C I

N,(s) = a(s) +uA(s) T(s).
So, we have

(s )% 2 5,) = a6, GInGs) e, ().

This vector is directed to {, so for any J C I, k,(s) =0
and in this case f)p (s) = £T(s), which implies that the
uniqueness holds. a

Proposition 2 Let a: I — Q be a regular spacelike curve
on Q with k,(s) = 7,(s) = 0. Then a is a normal slice of
Q if and only if N,(s) is a normal spacelike developable
surface along a.

Proof: If a is a normal slice of Q, then there is a plane
2 such that a(I) = QN and foranys €I, T(s),n(s) €
. Therefore, for any s € I, & is orthogonal to {(s).
Then £ is a normal spacelike developable surface of 2
along a.

Conversely, suppose that N,(s) is a normal space-
like developable surface along a. Note that the torsion
of a is given by

/ /
K Ky — KKy
2 2
KZ — K,

If k,(s) = 74(s) =0, then T =0, so a is a plane curve.

Furthermore, we have {’ = —«, T+ 7,17 ==0. So N,
is a plane normal to Q. As a is the intersection of Q
and N,, a is a normal slice of . |

Corollary 1 Let Q be a spacelike surface and a: [ —
Qc R? be a unit speed spacelike curve. If there are
more than one normal spacelike developable surfaces of
Q along a, then a is a straight line.

Proof: Suppose that T;(S) > K; (s), then by Theorem 2
there is a unique spacelike developable surface that is
normal to 2 along a. If k,(s) = 7,(s) =0, a is a space-
like normal slice and then a normal plane & of Q at
a(sy) is a normal spacelike developable surface along
a. Let N, be another spacelike developable surface that
isnormal to 2 along a, then N, is tangential to & along
a and therefore & is a tangent plane of N,. So & is a
tangent to N, along a ruling of N, which is a and thus
a is a straight line. O
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CURVES ON A NORMAL SPACELIKE DEVELOPABLE
SURFACES

Geodesics

Let Q C ]R? be a spacelike surface and a: I — Q be a
unit speed spacelike curves. Then a is a geodesic on Q2
if and only if k, = 0. Thus, if 7, # 0, then

ND,(s,u) = a(s)+uT(s),
which is the tangent surface of a. Then

Sp(s)=xy(s),  op(s) =1,

0';)(5) =0.

Example 1 Consider a spacelike ruled surface Q
with spacelike base curve a(t) = (%(sinh (2Int) —

2cosh(2Int)), 15(2sinh(21nt)—cosh(21Int)), t) by

M(t,u) = (%(sinh(ﬂn t)—2cosh(21n t)),

t .
E(Z sinh(2Int)—cosh(21In t)), t)

u(—Bsinh(Zlnt) 3cos(2Int) 10 )
v109 ° Y109 V1097

Thus «a is a regular spacelike curve on the surface Q =
ImM. So, we have

a(t) = 0smh(zlnt) 0c:osh(zlnt) 1)

a(t) = g 3 cosh (2In t), = sinh(2Int), 0)
T(t)—( 351nh(21nt)’ 3c0f}11(T21nt) /%)’

! n= ||MZ ” M i = (—cosh(2Int),sinh(21nt),0),
{=Txn= %9 (10sinh(2Int),10cosh(21Int),3),
ey (1) = det(d(t;, (':(ts),n(t)) —o,

Ty(6) = det(dgt),n(t),fz(t)) _ =2

(ol o
So a is a geodesic of M.

Curves on a surface of revolution

Consider curves of a spacelike surface of revolution:
U Cc R? - Q C R® defined as

U(u,v) = (f (u) coshv, f (u) sinh v, g(u)).

Assume that f (u) # 0. The unit timelike normal vector
field along Q = M(U) is

n(uv) = (g’(u) coshv g'(u)sinhv  f'(u) )

Vo) - Vo) Vo)
where w(t) = g(u(t)) — f"*(u(t)).
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Fig. 1 M and a.

Fig. 2 ND, and a.

The Darboux frame of the spacelike curve a(t) =

(f(u(t)) coshv(t), f (u(t))sinhv(t), g(u(t))) on Q is
given by

1
f’usinhv(t) + fv coshv(t), g’zl),
7)(t)z(g’coshv(t) g’sinhv(t)  f’ )

()= (wusinhv(t)—ff’f/ coshv(t)’
wticoshv(t)—f f'vsinhv(t)
Vo /202 + wou?

Where f/ = du’ g = du; u(t) -

T(t) = (f tcoshv(t) + f v sinhv(t),

—fg'v
e

du(t)
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(f(u) cosh vy, f (1) sinh v, g(u)). Then, we have
K (u) =0, T,(u)=0,
uz(f/g//_g/f//) + il(f’g _fg/)
(g/Z_fl2)5

and thus the normal spacelike developable surface
along a is a normal spacelike slice of Q.

Ky(u) =
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