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ABSTRACT: In this paper, we study gradient estimates for eigenfunctions associated to the operator L on self-shrinkers.
As applications, we obtain a Harnack type inequality concerning those eigenfunctions. Besides, we obtain a gradient
estimate of the higher eigenfunctions of the operator L on self-shrinkers.
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INTRODUCTION

Mean curvature flow is an evolution equation where
a one-parameter family of Mt ⊂ Rn+1 hypersurfaces
flows by mean curvature, that is, it satisfies

(∂t X )
⊥ = −HN , (1)

where X is the position vector, H is the mean curvature
and N is the outward unit normal. (·)⊥ denotes the
projection on the normal bundle of M .

We call a hypersurface M n ⊂ Rn+1 a self-shrinker,
if it satisfies

H =
〈X , N〉

2
. (2)

The self-shrinker plays an important role in the study of
mean curvature flow. It appears as the rescaling limit
of the Type I singularity of the mean curvature flow. For
more information on self-shrinkers and singularities of
mean curvature flow, we refer the readers to [1–4] and
references therein.

In [1], Colding and Minicozzi introduced the fol-
lowing differential operator L and used it to study self-
shrinkers:

L(·) =∆(·)− 1
2 〈X ,∇(·)〉, (3)

where ∆, ∇ denote the Laplacian, the gradient opera-
tor on the self-shrinker, respectively, 〈·, ·〉 stands for the
standard inner product in Rn+1.

In [5], Cheng and Peng investigated the closed
eigenvalue problem of the differential operator L on
an n-dimensional compact self-shrinker, and obtained
some universal inequalities for the eigenvalues of the
drifting Laplacian. We refer the readers to [6–11]
and references therein for more information about the
eigenvalues of L on self-shrinkers.

In this paper, we will deal with eigenfunctions of
the operator L on self-shrinkers. Our first result is
the next theorem that presents a gradient estimate for
eigenfunctions of L on a compact self-shrinker with

boundary, under Neumann boundary conditions, as
well as on a closed self-shrinker.

Theorem 1 Let X : M n → Rn+1 (n ¾ 2) be an n-
dimensional compact self-shrinker with convex bound-
ary. Suppose |A| ¶ K1 and |X>| ¶ K2, where A and X>

denote the second fundamental form and the tangential
projection of X , respectively, and both K1 ¾

p
2/2 and

K2 are arbitrary nonnegative constants. Let u be a so-
lution of Lu = −λu, bounded from below, satisfying the
Neumann boundary condition uν = 0 on ∂M, whenever
∂M 6=∅. Then, for any α > 0 and β > 0,

|∇u|¶ C
�

u− inf
M

u
�

, (4)

where

C=

��s

� K2
2

4α(n−1)+K2
1−

1
2

�2
(1+α)2(1+β)2(n−1)2β2+4β(1+β)λ2

+
� K2

2

4α(n−1)
+ K2

1 −
1
2

�

(1+α)(1+β)(n−1)β

�

·
1

2β

�

1
2

.

Moreover, if K2
1 +

K2
2

4α(n−1) =
1
2 and taking the limit as β

approaches to infinity, we can assume C =
p

|λ|.

Furthermore, we obtain a gradient estimate for
eigenfunctions of Lu = −λu on balls in complete self-
shrinkers with |A|¶ K3 (¾

p
2/2) and |X>|¶ K4.

Theorem 2 Let X : M n → Rn+1 (n ¾ 2) be an n-
dimensional complete self-shrinker. Fix a point x ∈ M n,
let B(x , r) be a geodesic ball of radius r and centered at x.
And for any K3 ¾

p
2/2 and K4 ¾ 0, we assume |A|¶ K3

and |X>| ¶ K4 on B(x , r), where A and X> denote the
second fundamental form and the tangential projection
of X , respectively. If u is a positive solution of Lu= −λu
on M, then, for any α > 0 and β > 0,

sup
B(x ,r/2)

|∇u|
u
¶ C , (5)
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where C = C(α,β , n, K3, K4, r,λ) is a positive constant
depending on α, β , n, K3, K4, r and λ, and the
supremum is taking over balls B(x , r/2) in M centered
at a point x with radius r/2.

As an application, we have the following Harnack
type inequalities:

Corollary 1 Let X : M n → Rn+1 (n ¾ 2) be an n-
dimensional complete self-shrinker. Fix a point x ∈ M n,
let B(x , r) be a geodesic ball of radius r and centered at x.
And for any K3 ¾

p
2/2 and K4 ¾ 0, we assume |A|¶ K3

and |X>| ¶ K4 on B(x , r), where A and X> denote the
second fundamental form and the tangential projection
of X , respectively.
(i) If u is a solution of Lu = −λu on a geodesic ball

B(x , r), then

sup
B(x ,r/2)

|∇u|¶ 2C sup
B(x ,r)

|u|.

(ii) If u is a positive solution of Lu= −λu on a geodesic
ball B(x , r), then

sup
B(x ,r/2)

u¶ e2C r inf
B(x ,r/2)

u.

In both cases C = C(α,β , n, K3, K4, r,λ) is a positive
constant depending on α, β , n, K3, K4, r and λ.

We point out that the above theorems generalize
some results due to Zhu and Chen [12] obtained for
Lu= 0. In the next sections we will present the proofs
of them.

In [13], Wang and Zhou showed the lower bound
for the higher eigenvalues of the Hodge Laplacian on
a Riemannian manifold with Ricci curvature bounded
from below. Following the ideas in the paper of Wang
and Zhou [13], Dung, Le Hai and Thanh [14] showed
a gradient estimate of the higher eigenfunctions of the
weighted Laplacian on gradient steady Ricci soliton.
Motivated by the above results, we will prove the
following theorem.

Theorem 3 Let X : M n → Rn+1 be an n-dimensional
compact self-shrinker. Suppose |A| ¶

p
2/2 and |X>| ¶

2a for some constant a > 0, where A and X> denote the
second fundamental form and the tangential projection
of X , respectively. Then
(i) |∇φl |¶ cλ(n+2)/4

l , |φl |¶ cλn/4
l ;

(ii) λl ¾ c−1ln/2.
Here φl be an eigenfunction of the L with respect to the
eigenvalue λl and ||φl ||2ϕ :=

∫

M φ
2
l e−ϕ dv = 1.

GRADIENT ESTIMATE ON COMPACT
SELF-SHRINKERS WITH BOUNDARY

Let X : M n → Rn+1 be an n-dimensional compact hy-
persurface with boundary ∂M in the Euclidean space
Rn+1. We choose a local orthonormal frame field

{eα}n+1
α=1 in Rn+1 with dual coframe field {ωα}n+1

α=1, such
that, at any x ∈ M n, e1, . . . , en are the unit tangent
vectors and en+1 = N is the unit normal vector to M n,
and en = ν is the unit normal vector to ∂M . Let 〈·, ·〉
and ∇ denote the standard inner product and Levi-
Civita connection of Rn+1. The coefficients of second
fundamental form A of M n are defined to be Ai j =
−〈∇ei

e j , N〉. The mean curvature of M n is expressed
by H =

∑n
i=1 Aii .

Let ϕ = |X |2/4, and denote by dV the correspond-
ing weighted volume measure of M n,

dV = e−ϕdv,

where dv is the volume form on M n. Let g and
∇ be the Riemannian metric on M n induced by 〈·, ·〉
and the Levi-Civita connection induced∇, respectively.
Then M n = (M n, g, dV ) is a smooth weighted metric
measure space, and the drifting Laplacian operator

L(·) =∆(·)− g(∇ϕ,∇(·)) =∆(·)− 1
2 〈X ,∇(·)〉

is a self-adjoint operator with respect to the weighted
measure dV , where ∇ and ∆ be the gradient and the
Laplacian on M n, respectively. The ∞-Bakry-Émery
Ricci tensor Ricϕ of M n is defined by

Ricϕ = Ric+Hess(ϕ).

From [15] (see also [12]), we get the following lower
bound for the∞-Bakry-Émery Ricci tensor Ricϕ of self-
shrinkers,

Ricϕ ¾
1
2 − |A|

2. (6)

The next algebraic estimate will be useful: for any
a, b real numbers and α strictly positive, we have

(a+ b)2 ¾
a2

1+α
−

b2

α
, (7)

and equality holds if and only if b = − α
1+αa. Applying

(6) and (7) we first deduce the following proposition.

Proposition 1 Let X : M n → Rn+1 (n ¾ 2) be an n-
dimensional compact self-shrinker with |A| ¶ K1 and
|X>|¶ K2, where A and X> denote the second fundamen-
tal form and the tangential projection of X , respectively,
and both K1 and K2 are arbitrary nonnegative constants.
Let u be a solution of Lu = −λu with λ constant. Then,
for any α > 0 and β > 0,

|∇u|L|∇u|¾
|∇(|∇u|)|2

(1+α)(1+β)(n−1)
−

(λu)2

(1+α)β(n−1)

−
� K2

2

4α(n−1)
+ K2

1 −
1
2
+λ

�

|∇u|2. (8)

Proof : We start using that L|∇u|2 = 2|∇u|L|∇u| +
2|∇(|∇u|)|2 and the Bochner formula

1
2L|∇u|2 = |∇2u|2+Ricϕ(∇u,∇u)+ 〈∇u,∇Lu〉, (9)
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to arrive at the following identity

|∇u|L|∇u|= 1
2L|∇u|2− |∇(|∇u|)|2

= |∇2u|2+Ricϕ(∇u,∇u)+ 〈∇u,∇Lu〉− |∇(|∇u|)|2

= |∇2u|2− |∇(|∇u|)|2+Ricϕ(∇u,∇u)−λ|∇u|2,

= |∇2u|2−|∇(|∇u|)|2+Ricϕ(∇u,∇u)−λ|∇u|2. (10)

Note that Ricϕ ¾
1
2 − |A|

2 ¾ 1
2 − K2

1 , we have

|∇u|L|∇u|¾ |∇2u|2−|∇(|∇u|)|2+
�

1
2−K2

1−λ
�

|∇u|2. (11)

Proceeding, given p ∈ M we choose an orthonor-
mal frame {e1, · · · , en} around p so that u1(p) =
|∇u|(p) and ui(p) = 0, for 2¶ i ¶ n, where ui := ei(u).
Thus,

|∇(|∇u|)|2 = |∇u1|2 =
∑

1¶ j¶n

u2
1 j (12)

and

−
∑

2¶i¶n

uii = −∆u+u11 = −Lu+u11−〈∇ϕ, u1e1〉

= λu+u11−ϕ1u1. (13)

Therefore,

|∇2u|2− |∇(|∇u|)|2 =
∑

1¶i, j¶n

u2
i j −

∑

1¶ j¶n

u2
1 j

=
∑

i 6=1,1¶ j¶n

u2
i j

¾
∑

2¶i¶n

u2
i1+

∑

2¶i¶n

u2
ii

¾
∑

2¶i¶n

u2
i1+

1
n−1

�

∑

2¶i¶n

uii

�2

=
∑

2¶i¶n

u2
i1+

1
n−1

(λu+u11−ϕ1u1)
2.

Using twice inequality (7) we obtain, for any α, β , both
strictly positive, the following inequality

(λu+u11−ϕ1u1)
2 ¾
(λu+u11)2

1+α
−
(ϕ1u1)2

α

¾
1

1+α

� u2
11

1+β
−
(λu)2

β

�

−
(ϕ1u1)2

α

=
u2

11

(1+α)(1+β)
−
(λu)2

(1+α)β
−
(ϕ1u1)2

α
.

Hence, for any α > 0 and β > 0, we have

|∇2u|2 − |∇(|∇u|)|2

¾
∑

2¶i¶n

u2
i1+

1
n−1

� u2
11

(1+α)(1+β)
−
(λu)2

(1+α)β
−
(ϕ1u1)2

α

�

=
�

∑

2¶i¶n

u2
i1+

u2
11

(1+α)(1+β)(n−1)

�

−
(λu)2

(1+α)β(n−1)
−
(ϕ1u1)2

α(n−1)

¾
1

(1+α)(1+β)(n−1)

∑

1¶i¶n

u2
i1−

(λu)2

(1+α)β(n−1)
−
(ϕ1u1)2

α(n−1)

=
|∇(|∇u|)|2

(1+α)(1+β)(n−1)
−

(λu)2

(1+α)β(n−1)
−
〈∇ϕ,∇u〉2

α(n−1)

¾
|∇(|∇u|)|2

(1+α)(1+β)(n−1)
−

(λu)2

(1+α)β(n−1)
−
|∇ϕ|2|∇u|2

α(n−1)
.

Since |∇ϕ|= |X>/2|¶ K2/2, we have

|∇2u|2− |∇(|∇u|)|2 ¾
|∇(|∇u|)|2

(1+α)(1+β)(n−1)

−
(λu)2

(1+α)β(n−1)
−

K2
2

4α(n−1)
|∇u|2. (14)

From inequalities (11) and (14) we arrive at

|∇u|L|∇u|¾ |∇2u|2−|∇(|∇u|)|2+
�

1
2
− K2

1 −λ
�

|∇u|2

¾
|∇(|∇u|)|2

(1+α)(1+β)(n−1)
−

(λu)2

(1+α)β(n−1)

−
K2

2

4α(n−1)
|∇u|2+

�

1
2
− K2

1 −λ
�

|∇u|2

=
|∇(|∇u|)|2

(1+α)(1+β)(n−1)
−

(λu)2

(1+α)β(n−1)

−
� K2

2

4α(n−1)
+ K2

1 −
1
2
+λ

�

|∇u|2.

We complete the proof of Proposition 1. 2

PROOF OF THEOREMS 1 AND 2

We will start with the proof of Theorem 1.
Proof : We can suppose u positive, otherwise, we
replace u by u− infM u. With this choice we can define
φ := |∇u|/u= |∇ ln u|. Then, we infer

∇φ =
∇|∇u|

u
−
|∇u|∇u

u2
. (15)

At any point where |∇u| 6= 0, we have

L|∇u|= uLφ+φLu+2〈∇φ,∇u〉
= uLφ−λ|∇u|+2〈∇φ,∇u〉.
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Using Proposition 1, we deduce for any α > 0 and
β > 0,

Lφ =
L|∇u|

u
+
λ|∇u|

u
−

2〈∇φ,∇u〉
u

¾
1

u|∇u|

§

|∇(|∇u|)|2

(1+α)(1+β)(n−1)
−

(λu)2

(1+α)β(n−1)

−
� K2

2

4α(n−1)
+ K2

1 −
1
2
+λ

�

|∇u|2
ª

+
λ|∇u|

u

−
2〈∇φ,∇u〉

u

=
1

u|∇u|

§

|∇(|∇u|)|2

(1+α)(1+β)(n−1)
−

(λu)2

(1+α)β(n−1)

−
� K2

2

4α(n−1)
+ K2

1 −
1
2

�

|∇u|2
ª

−
2〈∇φ,∇u〉

u

=
1

(1+α)(1+β)(n−1)
|∇(|∇u|)|2

u|∇u|

−
� K2

2

4α(n−1)
+ K2

1 −
1
2

�

φ−
1

(1+α)β(n−1)
λ2

φ

−
2〈∇φ,∇u〉

u
.

We have for any ε > 0,

2〈∇φ,∇u〉
u

= (2− ε)
〈∇φ,∇u〉

u
+ ε
〈∇(|∇u|),∇u〉

u2
− ε
|∇u|3

u3

¶ (2− ε)
〈∇φ,∇u〉

u
+ ε
|∇(|∇u|)||∇u|

u2
− εφ3

and

ε
|∇(|∇u|)||∇u|

u2
¶
ε

2

�

|∇(|∇u|)|2

|∇u|u
+
|∇u|3

u3

�

.

Therefore

Lφ ¾
1

(1+α)(1+β)(n−1)
|∇(|∇u|)|2

u|∇u|

−
� K2

2

4α(n−1)
+ K2

1 −
1
2

�

φ−
1

(1+α)β(n−1)
λ2

φ

−
2〈∇φ,∇u〉

u

¾
2

(1+α)(1+β)(n−1)
|∇(|∇u|)||∇u|

u2

−
1

(1+α)(1+β)(n−1)
φ3−

� K2
2

4α(n−1)
+K2

1−
1
2

�

φ

−
1

(1+α)β(n−1)
λ2

φ
− (2− ε)

〈∇φ,∇u〉
u

− ε
|∇(|∇u|)||∇u|

u2
+ εφ3.

Taking ε = 2/(1+α)(1+β)(n−1), we conclude that

Lφ ¾−
� K2

2

4α(n−1)
+ K2

1 −
1
2

�

φ−
1

(1+α)β(n−1)
λ2

φ

−
�

2−
2

(1+α)(1+β)(n−1)

� 〈∇φ,∇u〉
u

+
1

(1+α)(1+β)(n−1)
φ3. (16)

Suppose that φ attains its maximum at a point x0 ∈ M .
We claim that x0 is an interior point of M . Otherwise,
by the strong maximum principle, φν(x0)> 0. Indeed,
suppose that x0 ∈ ∂M . Proceeding, we choose an
orthonormal frame {e1, . . . , en = ν} on T M . Then, at
x0,

u2|∇u|φν = u

� n−1
∑

j=1

u ju jν+uνuνν

�

− |∇u|2uν.

Let us denote by a jk the components of the second
fundamental form of ∂M to deduce, from Neumann
condition, the following identity

u2|∇u|φν = u
n−1
∑

j=1

u ju jν = −u
n−1
∑

j,k=1

a jku juk.

From the convexity boundary condition, we obtain
φν(x0) ¶ 0, which is a contradiction. Thus, x0 lies
in the interior of M . Moreover, ∇φ(x0) = 0 and
Lφ(x0) ¶ 0. Whence, using inequality (16), we de-
duce

0¾ −
� K2

2

4α(n−1)
+ K2

1 −
1
2

�

φ(x0)

−
1

(1+α)β(n−1)
λ2

φ(x0)
+

1
(1+α)(1+β)(n−1)

φ3(x0).

That is,

βφ4(x0)−
� K2

2

4α(n−1)
+K2

1−
1
2

�

(1+α)(1+β)(n−1)βφ2(x0)

− (1+β)λ2 ¶ 0. (17)

Therefore, there is a constant C = C(n, K1, K2,λ) > 0
such that, φ(x0) ¶ C and hence, |∇u| ¶ Cu on M . It

is easy to verify that C =
p

|λ|, when K2
1 +

K2
2

4α(n−1) =
1
2

and taking the limit as β approaches to infinity. On

the other hand, if K2
1 +

K2
2

4α(n−1) 6=
1
2 , we obtain, solving

inequality (17),

C =

��

√

√

√

�

K2
2

4α(n−1)+K2
1−

1
2

�2

(1+α)2(1+β)2(n−1)2β2+4β(1+β)λ2

+
� K2

2

4α(n−1)
+ K2

1 −
1
2

�

(1+α)(1+β)(n−1)β

�

·
1

2β

�

1
2

> 0,

which completes the proof of Theorem 1. 2
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Remark 1 If we assume λ = 0 in Theorem 1, we can
take the limit on C when β → 0 to obtain the same
estimate of Theorem 1.1 due to Zhu and Chen [12].

In order to present the proof of Theorem 2 we
will need a generalized Laplacian comparison theorem
obtained by Zhu and Chen [12] for Ld, where d is a
distance function on self-shrinkers.

Proposition 2 (Zhu and Chen) Let X : M n → Rn+1

(n ¾ 2) be an n-dimensional complete self-shrinker. Fix
a point x ∈ M n, let B(x , r) be a geodesic ball of radius
r and centered at x. And for any K3 ¾ 0 and K4 ¾ 0,
we assume |A| ¶ K3 and |X>| ¶ K4 on B(x , r), where
A and X> denote the second fundamental form and the
tangential projection of X , respectively. Let d(y) =
d(y, x) be the distance function with respect to the fixed
point x, then

Ld ¶ n
G
′
(d)

G(d)
on B(x , r), (18)

where G : [0, r)→ R+ is the solution of the equation










G
′′
(t)− K2

3+
K2

4
4 −

1
2

n G(t) = 0,

G(0) = 0, G(d) = 1.

(19)

Now we begin the proof of Theorem 2.
Proof : We start using inequality (16) to deduce

Lφ ¾−
� K2

4

4α(n−1)
+ K2

3 −
1
2

�

(n−1)φ

−
1

(1+α)β(n−1)
λ2

φ

−
�

2−
2

(1+α)(1+β)(n−1)

� 〈∇φ,∇u〉
u

+
1

(1+α)(1+β)(n−1)
φ3. (20)

Given r > 0, let us define a function F as follows

F(y) = (r2− d2(x , y))φ(y), y ∈ B(x , r).

First we notice that

∇F = −φ∇(d2)+ (r2− d2)∇φ,

LF = (r2− d2)Lφ−φL(d2)−2〈∇(d2),∇φ〉.

Suppose |∇u| 6= 0. Since F = 0 on ∂ B(x , r) and F > 0
in B(x , r), F achieves its maximum at some point x0 ∈
B(x , r). By Calabi’s argument used in [16, p 21], we
can suppose that x0 is not a cut point of x . Therefore,
F is smooth near x0 and ∇F = 0 and ∆F ¶ 0 at x0.

Thus, at x0, we have

LF =∆F −〈∇ϕ,∇F〉¶ 0,

∇φ
φ
=
∇(d2)
r2− d2

;

hence

Lφ

φ
¾

L(d2)
r2− d2

+
2〈∇(d2),∇φ〉
(r2− d2)φ

=
L(d2)
r2− d2

+
2|∇(d2)|2

(r2− d2)2
.

Note that K3 ¾
p

2/2, K4 ¾ 0 and |∇d| = 1, by (18)
and (19), we can get

Ld ¶ n

√

√

√K2
3 +

K2
4

4 −
1
2

n
coth

�

√

√

√K2
3 +

K2
4

4 −
1
2

n
d

�

¶
n
d

�

1+

√

√

√K2
3 +

K2
4

4 −
1
2

n
d

�

(21)

and

L(d2) = 2dLd +2|∇d|2

¶ 2n

�

1+

√

√

√K2
3 +

K2
4

4 −
1
2

n
d

�

+2. (22)

Since |∇(d2)|2 = 4d2, by inequalities (20) and (22),
we obtain, at x0,

0¾
LF

(r2− d2)φ
=

Lφ

φ
−

L(d2)
r2− d2

−
8d2

(r2− d2)2

¾−
� K2

4

4α(n−1)
+K2

3−
1
2

�

(n−1)

−
1

(1+α)β(n−1)
λ2

φ2

−
�

2−
2

(1+α)(1+β)(n−1)

� 〈∇φ,∇u〉
φu

+
1

(1+α)(1+β)(n−1)
φ2−

8d2

(r2− d2)2

−
1

r2− d2

�

2n

�

1+

√

√

√K2
3 +

K2
4

4 −
1
2

n
d

�

+2

�

.

On the other hand, by the Cauchy-Schwarz inequality,
we deduce

〈∇φ,∇u〉
φu

=
〈∇(d2),∇u〉
u(r2− d2)

=
2d〈∇d,∇u〉
u(r2− d2)

¶
2dφ

r2− d2
.
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Then,

0¾−
�

K2
4

4α(n−1)
+ K2

3 −
1
2

�

(n−1)(r2− d2)2

−
1

(1+α)β(n−1)
λ2

F2
(r2− d2)4

−4
�

(1+α)(1+β)(n−1)−1
(1+α)(1+β)(n−1)

�

dF

+
1

(1+α)(1+β)(n−1)
F2−8d2

−
�

2n

�

1+

√

√

√K2
3 +

K2
4

4 −
1
2

n
d

�

+2

�

(r2− d2).

Note that r2− d2 ¶ r2 and d2 ¶ r2, we have

0¾ βF4−4β[(1+α)(1+β)(n−1)−1]dF3

− (1+β)λ2r8− (1+α)(1+β)(n−1)β

×
§�

K2
1 +

K2
2

4α(n−1)
−

1
2

�

(n−1)r4

+(10+2n)r2+2n

√

√1
n
(K2

3 +
1
4

K2
4 −

1
2
)r3
ª

F2.

Proceeding, we define

ρ(y) = β y4−4β[(1+α)(1+β)(n−1)−1]d y3

− (1+β)λ2r8− (1+α)(1+β)(n−1)β

×
§�

K2
1 +

K2
2

4α(n−1)
−

1
2

�

(n−1)r4

+(10+2n)r2+2n

√

√1
n
(K2

3 +
1
4

K2
4 −

1
2
)r3
ª

y2. (23)

Note that ρ(0) = −(1 + β)λ2r8 < 0 and hence the
polynomial ρ just has two roots, with different signs.
Thus, there is a positive constant C , depending on α,
β , n, K3, K4, r and λ, such that ρ ¶ C , when ρ(y)¶ 0.
Then, we have F ¶ C on B(x , r), and the following
estimate holds

3
4

r2 sup
B(x ,r/2)

|∇u|
u
¶ sup

B(x ,r/2)
F ¶ C ,

that is,

sup
B(x ,r/2)

|∇u|
u
¶

4
3

C r−2. (24)

Therefore, we obtain the desired estimate and this
finishes the proof of Theorem 2. 2

PROOF OF COROLLARY 1

This section is devoted to the proof of Corollary 1.
Proof : To prove the first assertion we consider U =
supB(x ,r) |u|. For any ε > 0, we set v := u+U + ε > 0

on B(x , r). Using Theorem 2 we infer

sup
B(x ,r/2)

|∇u|= sup
B(x ,r/2)

|∇v|¶ C sup
B(x ,r/2)

(u+U + ε)

¶ C

�

2 sup
B(x ,r)

|u|+ ε
�

.

Now making ε→ 0 we conclude the claim of the first
assertion.

Finally, we choose x1, x2 in B(x , r/2) satisfying
u(x1) = supB(x ,r/2) u and u(x2) = infB(x ,r/2) u. Let γ ⊂
B(x , r) be a minimal geodesic connecting x1 to x2.
Since γ is contained in B(x , r), we obtain from The-
orem 2 and triangle inequality,

log
u(x1)
u(x2)

=

�

�

�

�

∫

γ

d log u
ds

�

�

�

�

¶
∫

γ

|∇u|
u

ds ¶
∫

γ

Cds ¶ 2C r.

Therefore, u(x1) ¶ e2C ru(x2), which ends the proof of
Corollary 1. 2

PROOF OF THEOREM 3

In this section, we will give a gradient estimate of
the higher eigenfunctions of the L on compact self-
shrinkers. Let X : M n → Rn+1 be an n-dimensional
compact self-shrinkers. Suppose |A| ¶

p
2/2 and

|X>|¶ a for some constant a > 0, where A and X> de-
note the second fundamental form and the tangential
projection of X , respectively.

First, we consider the eigenfunctions φi (i =
0,1, 2, . . . ) of the L. Since the differential operator L
is self-adjoint with respect to volume measure dV =
e−ϕdv, then the closed eigenvalue problem:

Lφi = −λiφi ,

∫

M

φiφ j dV = δi j

for the differential operator L on compact self-
shrinkers M has a real and discrete spectrum:

0= λ0 < λ1 ¶ λ2 ¶ · · ·¶ λl ¶ · · · →∞,

where each eigenvalue is repeated according to its
multiplicity. For a given constant c, consider the
function

P(x) = |∇φ|2+ cφ2,

whereφ =
∑l

i=1 biφi with bi ∈R and
∑l

i=1 b2
i = 1. Let

ψ(b1, . . . , bl) :=max
x∈M

P(x).

Assume that ψ(b1, . . . , bl) achieves its maximum at
some point a1, . . . , al .

Lemma 1 Let u=
∑l

i=1 aiφi , then

|∇u|2+ Lu2 ¶ L max
M

u2,

where L =
�

2λl + a2+ a
p

4λl + a2
�

/2.
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Proof : We follow the arguments in [14]. Define

F(b1, . . . , bl , x ,θ ) = P(x)−θ
� l
∑

i=1

b2
i −1

�

.

Then, subject to the constrain
∑l

i=1 b2
i = 1, F achieves

its maximum value at some point (a1, . . . , ak, x0,α).
We now show

|∇u|2(x0)+ cu2(x0)¶ c max
M

u2,

for c >
�

2λl + a2+ a
p

4λl + a2
�

/2.
At the point (a1, . . . , ak, x0,α), F satisfies















∇F(a1, . . . , ak, x0,α) = 0
∆F(a1, . . . , ak, x0,α)¶ 0
∂ F
∂ bi
= 0

∑l
i=1 a2

i = 1.

(25)

From the third equation of (25), we have

l
∑

j=1

(2a j〈∇φi ,∇φ j〉+2ca jφiφ j)−2αai = 0.

After multiplying by ai and summing over i, one sees
that

α= P(u, x0) = |∇u|2(x0)+ cu2(x0).

Suppose now that

|∇u|2(x0)+ cu2(x0)> c max
M

u2.

Then ∇u(x0) 6= 0 and one can choose an orthonormal
frame {e1, . . . , en} at x0 so that

∇u(x0) = u1(x0)e1.

Now the first equation of (25) becomes

2u1u1i +2cuui = 0

for i = 1, . . . , n. This in particular implies

|∇2u|2 ¾ u2
11 = c2u2. (26)

On the other hand, at the maximum point
(a1, . . . , ak, x0,α),

∆F(a1, . . . , ak, x0,α)¶ 0

or equivalently,

∆|∇u|2+ c∆u2 ¶ 0. (27)

Note thatL(·) =∆(·)−g(∇ϕ,∇(·)) =∆(·)−1
2 〈X ,∇(·)〉.

By the Bochner formula, we have

1
2L|∇u|2 = |∇2u|2+Ricϕ(∇u,∇u)+ 〈∇u,∇Lu〉. (28)

From (27) and (28), we obtain

|∇2u|2+Ricϕ(∇u,∇u)+ 〈∇u,∇Lu〉+ 1
2 〈∇ϕ,∇|∇u|2〉

+ cuLu+ c|∇u|2+ c
2 〈∇ϕ,∇u2〉¶ 0. (29)

Since the Cauchy-Schwarz inequality, the Kato inequal-
ity (|∇|∇u||¶ |∇2u|) and |∇ϕ|= |X>/2|¶ a, we have

|〈∇ϕ,∇|∇u|2〉|¶ 2|∇u||∇ϕ||∇|∇u||¶ 2a|∇u||∇2u|

and

|〈∇ϕ,∇u2〉|¶ 2|u||∇u||∇ϕ|¶ 2a|u||∇u|.

Since Ricϕ ¾
1
2 −|A|

2 ¾ 0, from (26) and (29) we have

|∇2u|2+ 〈∇u,∇Lu〉+ cuLu+ c|∇u|2

− a|∇u||∇2u| − ca|u||∇u|¶ 0.

Using the inequality x y ¶ x2

4ε + ε y2 for any ε > 0, the
above inequality implies

(1− aβ)|∇2u|2+ 〈∇u,∇Lu〉+ cuLu+ c|∇u|2

−
a

4β
|∇u|2− caγu2−

ca
4γ
¶ 0

for any β ,γ > 0. Since Lu = −
∑l

i=1λiaiφi , we can
compute

〈∇u,∇Lu〉+ cuLu

= −
l
∑

i, j=1

λiaia j〈∇φi ,∇φ j〉− c
l
∑

i, j=1

λiaia jφiφ j

= −
l
∑

i=1

λiai

l
∑

j=1

�

a j〈∇φi ,∇φ j〉+ ca jφiφ j

�

= −α
l
∑

i=1

λia
2
i .

Hence, in the view of the inequality (26), if β is small,
we have

(1− aβ)c2u2−α
l
∑

i=1

λia
2
i − caγu2

+
�

c−
a

4β
−

ca
4γ

�

|∇u|2 ¶ 0.

By Dung, Le Hai and Thanh’s arguments used to prove
Lemma 2.1 in [14], the inequality reduces to

�

c−λl −
a2c

c−λl

�

|∇u|2(x0)¶ 0.

This is impossible if c >
�

2λl + a2+ a
p

4λl + a2
�

/2.
The proof is complete by letting c approach

�

2λl + a2+ a
p

4λl + a2
�

/2. 2
To prove Theorem 3, we need the following vol-

ume comparison theorem for compact self-shrinkers
already proved in [17].
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Lemma 2 Let X : M n → B
n+1
k (0) ⊂ Rn+1 be an n-

dimensional compact self-shrinkers with |A|¶
p

3/3, and
B

n+1
k (0) denotes the Euclidean closed ball with center 0

and radius k. Then for any p ∈ M n, 0 < R1 ¶ R2, we
have

Vol(B(p, R2))
Vol(B(p, R2))

¶ e3k2/4 V (R2)
V (R1)

,

where B(p, R) is a geodesic ball of M n with radius R
centered at p, and V (r) is the volume of the ball with
radius r in Euclidean space Rn.

Proof of Theorem 3: The proof is similar to the
proof of Theorem 2.2 in [14] with note that the Bishop
volume comparison theorem in [14] is now replaced by
the volume comparison in Lemma 2. Since the proof
is essentially the same as in Theorem 2.2 in [14], we
omit it here.
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