
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2023.010
ScienceAsia 49 (2023): 553–559

On value distribution of certain delay-differential polynomials

Nan Lia,∗, Lianzhong Yangb

a School of Mathematics, Qilu Normal University, Jinan, Shandong 250200 China
b School of Mathematics, Shandong University, Jinan, Shandong 250100 China

∗Corresponding author, e-mail: nanli32787310@163.com
Received 15 Mar 2021, Accepted 27 Nov 2021

Available online 11 Jun 2023

ABSTRACT: Given an entire function f of finite orderρ, let L(z, f ) =
∑m

j=0 b j(z) f (k j )(z+c j) be a linear delay-differential

polynomial of f with small coefficients in the sense of O(rλ+ε) + S(r, f ), λ < ρ. Provided α and β are similar small
functions, we consider the zero distribution of L(z, f )− α f n − β for n ¾ 3 and n = 2, respectively. Our results are
improvements and complements of Chen [Abstract Appl Anal 2011 (2011):ID 239853), and Laine [J Math Anal Appl
469 (2019):808–826].
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INTRODUCTION

Let f (z) be a transcendental meromorphic function in
the complex plane C. We assume that the reader is
familiar with the standard notations and main results
in Nevanlinna theory (see [1–3]). A meromorphic
function α is said to be a λ-small function of a mero-
morphic function f of finite order ρ, if there exists
λ < ρ, such that for any ε ∈ (0,ρ−λ),

T (r,α) = O
�

rλ+ε
�

+ S(r, f ), (1)

outside a possible exceptional set F of finite logarith-
mic measure (see [4]). Here, S(r, f ) is any quantity
that satisfies S(r, f ) = o(T (r, f )) as r →∞ outside a
set F . For the sake of simplicity, the right-hand side
in (1) will be denoted by Sλ(r, f ).

Hayman [5] proved the following theorem.

Theorem 1 If f (z) is a transcendental entire function,
n¾ 3 is an integer and a(6= 0) is a constant, then f ′(z)−
a f (z)n assumes all finite values infinitely often.

Recently, several articles (see [4, 6–18]) have fo-
cused on complex differences, giving many difference
analogues in value distribution theory of meromorphic
functions.

In 2011, Chen [8] obtained the following Theo-
rem 2, an almost direct difference analogue of Theo-
rem 1, and gave an estimate of numbers of b-points,
namely, λ(Ψn(z)− b) = σ( f ) for every b ∈ C.

Theorem 2 Let f (z) be a transcendental entire function
of finite order ρ, and let α, c ∈ C\{0} be constants, with
c such that f (z+c) 6≡ f (z). Set Ψn(z) =∆ f (z)−α f (z)n,
where ∆ f (z) = f (z + c)− f (z) and n ¾ 3 is an integer.
Then Ψn(z) assumes all finite values infinitely often, and
for every β ∈ C, we have λ(Ψn(z)−β) = ρ.

In 2013, Liu and Yi [15] replaced ∆ f (z) in The-
orem 2 by a more general linear difference operator

g( f ) =
∑k

j=1 a j f (z + c j), where a j , c j( j = 1, 2, . . . , k)
are complex constants, and obtained the following
result.

Theorem 3 Let f (z) be a transcendental entire function
of finite order ρ, let α,β be complex constants. Set Ψn =
g( f )−α f n(z), where n¾ 3 is an integer. Then Ψn have
infinitely many zeros and λ(Ψn −β) = ρ provided that
g( f ) 6≡ β .

In 2019, Laine [12] generalized the coefficients
from complex constants to λ-small functions, released
the assumption on β that g( f ) 6≡ β , and obtained the
following theorem.

Theorem 4 Let f be an entire function of finite order
ρ, α, β , b0, . . . , bk be λ-small functions of f , g( f ) :=
Σk

j=1 b j(z) f (z + c j) (6≡ 0) and n ¾ 3. Then for Ψn :=
g( f )−α f n, Ψn−β has sufficiently many zeros to satisfy
λ(Ψn−β) = ρ.

But a bit regret, the proof of dealing with G(z, f )≡
0 in [12, Theorem 5.1] is not complete.

We now introduce the generalized linear delay-
differential operator of f (z),

L(z, f ) =
m
∑

j=0

b j(z) f
(k j)(z+ c j), (2)

where b j are λ-small functions of f , c j are distinct
complex numbers and k j are non-negative integers.
In view of the above theorems, it is quite natural to
study the value distribution of Ψn −β when the linear
difference operator g( f ) is changed to the linear delay-
differential operator L(z, f ) with the restriction on β
be omitted.

In this paper, we study the above problem and
obtain the following result.
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Theorem 5 Let f (z) be an entire function of finite order
ρ, α(6≡ 0), β be λ-small functions of f , L(z, f ) (6≡ 0)
be linear delay-differential polynomial defined as in (2)
and n ¾ 3. Then for Φn = L(z, f )− α f n, Φn − β has
sufficiently many zeros to satisfy λ(Φn−β) = ρ.

Remark 1 Omitting the restriction on β is meaningful.
In fact, we do not need to worry about that if L(z, f )≡
β and f has a Borel exceptional value 0, then λ(Φn −
β) = λ(−α f n) may be less than ρ. It is because from
the proof of Theorem 5, we can get that if 0 is a Borel
exceptional value of f , then L(z, f ) 6≡ β . So L(z, f ) ≡
β and f has a Borel exceptional value 0 can not hold
simultaneously.

Chen [8] also considered the value distribution of
Ψ2 when n= 2 and obtained the following Theorem 6
and Theorem 7.

Theorem 6 Let f (z) be a transcendental entire function
of finite order ρ with a Borel exceptional value 0, and
let α, c ∈ C\{0} be constants, with c such that f (z +
c) 6≡ f (z). Then Ψ2(z) assumes all finite values infinitely
often, and for every β ∈ C we have λ(Ψ2−β) = ρ.

Theorem 7 Let f (z) be a transcendental entire function
of finite order ρ with a finite nonzero Borel exceptional
value d, and let α, c ∈ C\{0} be constants, with c such
that f (z + c) 6≡ f (z). Then for every β ∈ C with β 6=
−αd2, Ψ2(z) assumes the value β infinitely often, and
λ(Ψ2−β) = ρ.

Liu and Yi [15] replaced ∆ f (z) in Theorem 6 and
Theorem 6 to a more general linear difference operator
∑k

j=1 a j(z) f (z+ c j) and obtained the following result.

Theorem 8 Suppose that f (z) be a finite order tran-
scendental entire function with a Borel exceptional value
d. Let β(z),α(z)(6≡ 0), a j(z)( j = 1, 2, . . . , k) be polyno-
mials, and let c j( j = 1, 2, . . . , k) be complex constants. If

either d = 0 and
∑k

j=1 a j(z) f (z+ c j) 6≡ 0, or d 6= 0 and
∑k

j=1 da j(z)− d2α(z)−β(z) 6≡ 0, then Ψ2(z)−β(z) =
∑k

j=1 a j(z) f (z + c j) − α(z) f (z)2 − β(z) has infinitely
many zeros and λ(Ψ2−β) = ρ( f ).

The following Example 1 shows that if the
difference operator ∆ f (z) = f (z + c) − f (z) or
∑k

j=1 a j(z) f (z+ c j) in Ψ2 is changed to a linear delay-
differential operator L(z, f ), the conclusions in Theo-
rem 7 and Theorem 8 may not hold.

Example 1 Let L(z, f ) = f (z + 1) − f ′(z), and Φ2 =
L(z, f )− e−1

2 f (z)2. For f1(z) = ez+1, we have Φ2( f1) =
1−e

2 e2z + 3−e
2 . Here, d = 1, α = e−1

2 , a1 = 1, a2 = −1,

and β = 3−e
2 6=

∑k
j=1 da j −αd2 = − e−1

2 , but Φ2 6= β .

So it is natural to ask: what can we say about
Φ2 = L(z, f )−α f 2? The second aim of this paper is to

consider the above problem, and obtain the following
results.

Before stating Theorem 9, we recall that the Borel
exceptional value for small function β of f (z) satisfies

λ( f (z)−β)< ρ( f ),

where λ( f −β) is the exponent of convergence of zeros
of f −β (see [14]).

Theorem 9 Let f (z) be a transcendental entire func-
tion of finite order ρ with a finite non-zero Borel ex-
ceptional value d. Let α ∈ C\{0} be constant, and
β , b j ( j = 0, 1, . . . , m) be λ-small entire functions of f .
Let L(z, f ) (6≡ 0) be linear delay-differential polynomial
defined as in (2). Defining Φ2 = L(z, f )−α f 2, and I1 =
{0¶ j ¶ m : k j = 0}, we have the following statements:

(i) If

β 6≡
�

∑

j∈I1

b j

�

d −αd2,

then Φ2(z)−β has sufficiently many zeros to satisfy
λ(Φ2−β) = ρ.

(ii) If

β ≡
�

∑

j∈I1

b j

�

d −αd2, (3)

then one of the following holds:

(a) β is a Borel exceptional small function of Φ2,
which satisfies

β −Φ2

( f − d)2
= α=

L(z, f )−αd2−β
2d( f − d)

. (4)

(b) Φ2−β has sufficiently many zeros to satisfy

N
�

r,
1

Φ2−β

�

= T (r, f )+ Sλ(r, f ).

Remark 2 In Example 1,
∑

j∈I1
b j = 1, d = 1, α= e−1

2 ,

and β = 3−e
2 =

�

∑

j∈I1
b j

�

d−αd2 is a Borel exceptional
value of Φ2, which also satisfies (4). Thus Example 1
above illustrates Theorem 9.

Remark 3 Let L1(z, f ) = f (z + c) − f (z), then
∑

j∈I1
b j = 0. Let L2(z, f ) =

∑k
j=1 a j(z) f (z + c j), then

∑k
j=1 a j =

∑

j∈I1
a j . Thus by Theorem 9(i), we can

obtain the results in Theorem 7 and Theorem 8 when
d 6= 0. Therefore Theorem 9 improves Theorem 7 and
Theorem 8.

The following theorem deals with the case when
d = 0.
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Theorem 10 Let f (z) be a transcendental entire func-
tion of finite order ρ with a Borel exceptional value 0.
Let α ∈ C\{0} be constant, and β , b j ( j = 0, 1, . . . , m)
be λ-small entire functions of f . Let L(z, f ) (6≡ 0) be
linear delay-differential polynomial defined as in (2).
DefiningΦ2 = L(z, f )−α f 2, then we haveλ(Φ2−β) =ρ.
Particularly, if β ≡ 0, then

N
�

r, 1/Φ2

�

= T (r, f )+ Sλ(r, f ). (5)

Remark 4 The following example shows that when
β ≡ 0, (5) in Theorem 10 occurs.

Example 2 Let L(z, f ) = e−2 f (z + 1) − 1
2 f ′(z), and

Φ2 = L(z, f )− f (z)2. For f2(z) = ez+1, we haveΦ2( f2) =
(1− e/2)ez−e2 e2z . Here, 0 is a Borel exceptional value
of f2, and N (r, 1/Φ2) = N

�

r, 1/
�

1− e/2− e2 ez
��

=
T (r, f2)+ S(r, f2).

PRELIMINARY LEMMAS

In this section, we collect the results that are needed
for proving the main results.

The following lemma plays an important role in
uniqueness problems of meromorphic functions.

Lemma 1 ([3]) Let f j(z) ( j = 1, . . . , n) (n ¾ 2) be
meromorphic functions, and let g j(z) ( j = 1, . . . , n) be
entire functions satisfying

(i)
∑n

j=1 f j(z)eg j(z) ≡ 0;

(ii) when 1 ¶ j < k ¶ n, then g j(z) − gk(z) is not a
constant;

(iii) when 1¶ j ¶ n, 1¶ h< k ¶ n, then

T (r, f j) = o{T (r, egh−gk )} (r →∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or
logarithmic measure.

Then, f j(z)≡ 0 ( j = 1, . . . , n).

Using the same reasoning as in the proof of
[2, Lemma 2.4.2], we easily get the following lemma.

Lemma 2 ([4]) Let f be a transcendental meromorphic
solution of finite order ρ of a differential-difference
equation:

f nP(z, f ) =Q(z, f ),

where P(z, f ) and Q(z, f ) are delay-differential polyno-
mials in f with λ-small coefficients of f . If the total
degree of Q(z, f ) is ¶ n, then for each ε > 0,

m(r, P(z, f )) = O(rρ−1+ε)+ Sλ(r, f ).

The following lemma, which is a special case of
[11, Theorem 3.1], gives a relationship for the Nevan-
linna characteristic of a meromorphic function with its
shift.

Lemma 3 ([11]) Let f (z) be a meromorphic function
with the hyper-order less than one, and c ∈C\{0}. Then
we have

T (r, f (z+ c)) = T (r, f (z))+ S(r, f ).

Observe that

m
�

r,
f (k)(z+c)

f (z)

�

¶ m
�

r,
f (k)(z+c)
f (z+ c)

�

+m
�

r,
f (z+c)

f (z)

�

,

by using Logarithmic Derivative Lemma and its differ-
ence analogues (see [2, 9–11]), Lemma 3, we obtain
the following lemma, see also [14].

Lemma 4 Let f be a transcendental meromorphic func-
tion of finite order. Then

m
�

r,
f (k)(z+ c)

f (z)

�

= S(r, f ), (6)

outside a possible exceptional set of finite logarithmic
measure.

Applying Lemma 4, we obtain the following
lemma.

Lemma 5 Let f be an entire function of finite order ρ,
α(6≡ 0), β be λ-small functions of f , L(z, f ) be non-
vanishing linear delay-differential polynomial defined as
in (2) and n ¾ 2. Then Φn − β is transcendental and
satisfies ρ(Φn−β) = ρ.

Proof : We first assume that Φn − β is transcendental.
Indeed, if not, then Φn−β = R(z) is rational, and f n =
α−1(L(z, f )− β − R(z)). Therefore, by Lemma 4, we
obtain

nT (r, f ) = T (r, f n)¶ T (r, L(z, f ))+ Sλ(r, f )
= m(r, L(z, f ))+ Sλ(r, f )

¶ m
�

r,
L(z, f )

f

�

+m(r, f )+ Sλ(r, f )

¶
m
∑

j=0

m
�

r,
f (k j)(z+ c j)

f (z)

�

+m(r, f )+ Sλ(r, f )

¶ T (r, f )+ Sλ(r, f ),

a contradiction follows since n¾ 2.
Next, we prove that ρ(Φn − β) = ρ( f ). By

Lemma 4, we have

T (r,Φn−β) = T (r, (L(z, f )−α f n−β))
¶ T (r, f n)+ T (r, L(z, f ))+ Sλ(r, f )
= nT (r, f )+m(r, L(z, f ))+ Sλ(r, f )

¶ nT (r, f )+m
�

r,
L(z, f )

f

�

+m(r, f )+ Sλ(r, f )

= (n+1)T (r, f )+ Sλ(r, f ), (7)
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and

T (r,Φn−β) = T (r, (L(z, f )−α f n−β))
¾ T (r, f n)− T (r, L(z, f ))+ Sλ(r, f )
= nT (r, f )−m(r, L(z, f ))+ Sλ(r, f )
¾ nT (r, f )−m(r, f )+ Sλ(r, f )
= (n−1)T (r, f )+ Sλ(r, f ). (8)

Therefore, combining with λ< ρ, from (7) and (8) we
have ρ(Φn−β) = ρ. 2

PROOF OF Theorem 5

Firstly, we prove the caseρ > 0. Suppose now, contrary
to the assertion, that λ(Φn − β) = λ < ρ. From
Lemma 5, we obtain that Φn − β is transcendental
and (8) holds. By the standard Hadamard represen-
tation, we may write

Φn−β = L(z, f )−α f n−β = πeg , (9)

where π (6≡ 0) is a λ-small function of f , and g is
a polynomial with deg g ¶ ρ. Actually, deg g = ρ.
Otherwise, if deg g ¶ µ < ρ, then from (8) and (9),
we obtain

(n−1)T (r, f )− Sλ(r, f )¶ T (r,Φn−β)
= O(rµ+ε)+ Sλ(r, f ),

leading to ρ ¶ max{µ,λ} < ρ by n ¾ 3, a contradic-
tion.

Differentiating (9) and eliminating eg , we obtain

f (z)n−1G(z, f ) = H(z, f ), (10)

where

G(z, f ) :=
�

�π′

π
+ g ′

�

α−α′
�

f − nα f ′

and

H(z, f ) :=
�π′

π
+ g ′

�

L− L′−
�π′

π
+ g ′

�

β +β ′.

Case 1. G(z, f ) ≡ 0. Then we have α f n = ecπeg

for some non-zero constant ec. By (9), we get

L−β =
�1
ec
+1
�

α f n. (11)

Subcase 1.1. ec = −1. Then we have f =
(−π/α)1/n eg/n and L ≡ β . This gives that

L(z, f ) =
m
∑

j=0

b j(z)
��

−
π(z+ c j)

α(z+ c j)

�1/n

e
g(z+c j )

n

�(k j)

=
m
∑

j=0

b j(z)γ(z+ c j)e
g(z+c j )

n

=
� m
∑

j=0

b j(z)γ(z+ c j)e
g(z+c j )−g(z)

n

�

e
g(z)

n = β , (12)

where γ is a differential polynomial of (−π/α)1/n,
g and their shifts. Obviously, by Lemma 3,
T (r,γ(z+ c j)) = T (r,γ(z))+ S(r,γ(z)) = Sλ(r, f ).

If
∑m

j=0 b j(z)γ(z + c j)e
g(z+c j )−g(z)

n ≡ 0, then we have
L(z, f ) ≡ β ≡ 0, a contradiction with the assumption
that L(z, f ) 6≡ 0.

If
∑m

j=0 b j(z)γ(z+ c j)e
g(z+c j )−g(z)

n 6≡ 0, then we prove

T

�

r,
β

∑m
j=0 b j(z)γ(z+ c j)e

g(z+c j )−g(z)
n

�

= S(r, eg). (13)

By applying the exponential polynomial theory (see
[19, Lemma 2.6] or [20]), we have

T (r, eg) =
|ω0|
π

rρ + o(rρ), (14)

where ω0(6= 0) is the leading coefficient of g.
From (7), (8) and (9), we have

(n−1+ o(1))T (r, f )+O(rλ+ε)¶ T (r, eg)

= T
�

r,
1
π
(Φn−β)

�

¶ (n+1+ o(1))T (r, f )+O(rλ+ε).

This gives that

T (r, f ) = O(T (r, eg)) and T (r, eg) = O(T (r, f )).

Combining these with (14) , we obtain

T (r, b j)

T (r, eg)
=

Sλ(r, f )
T (r, eg)

=
O(rλ+ε)

�

|ω0|
π + o(1)

�

rρ
+

S(r, f )
T (r, f )

·
T (r, f )
T (r, eg)

→ 0,

as r→∞, outside a possible exceptional set with finite
logarithmic measure. Thus we have

T (r, b j) = S(r, eg).

Following the same reason, we also have

T (r,β) = S(r, eg), and T (r,γ(z+ c j)) = S(r, eg).

Therefore, (13) holds. Thus by (12), we have

T
�

r, eg(z)
�

= T

�

r,
βn

�

∑m
j=0 b j(z)γ(z+ c j)e

g(z+c j )−g(z)
n

�n

�

= S(r, eg),

which yields a contradiction.
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Subcase 1.2. ec 6= −1. Then from Lemma 4 and
(11), we get

nT (r, f ) = T (r, f n) = T

�

r,
L−β

�

1
ec +1

�

α

�

¶ T (r, L)+ Sλ(r, f )

¶ m
�

r,
L
f

�

+m(r, f )+ Sλ(r, f )

¶ T (r, f )+ Sλ(r, f ),

which yields a contradiction since n¾ 3.
Case 2. G(z, f ) 6≡ 0. Since n ¾ 3, by applying

Lemma 2 to (10), we obtain

T (r, G(z, f )) = m(r, G(z, f ))+N(r, G(z, f ))

= O(rρ−1+ε)+ Sλ(r, f ),

and

T (r, f G(z, f )) = m(r, f G(z, f ))+N(r, f G(z, f ))

= O(rρ−1+ε)+ Sλ(r, f ).

Therefore,

T (r, f ) = T
�

r,
f G(z, f )
G(z, f )

�

¶ T (r, f G(z, f ))+ T (r, G(z, f ))

= O(rρ−1+ε)+ Sλ(r, f ),

which is a contradiction. Hence λ(Φn−β) = ρ.
Finally, we prove the case ρ = 0. By Lemma 5, we

have 0¶ λ(Φn−β)¶ ρ(Φn−β) = ρ = 0. Thus, λ(Φn−
β) = ρ = 0. Next we prove that Φn − β has infinitely
many zeros. Suppose, contrary to the assertion, that
Φn − β has finitely many zeros, then by the standard
Hadamard representation and ρ = 0, we may write

Φn−β = L(z, f )−α f n−β = eπ, (15)

where eπ (6≡ 0) is a small function of f . Thus, by
Lemma 4 we have

nT (r, f ) = T (r, f n) = T
�

r,
L(z, f )− eπ−β

α

�

¶ T (r, L(z, f ))+ S(r, f )
= m(r, L(z, f ))+ S(r, f )

¶
m
∑

j=0

m
�

r,
f (k j)(z+ c j)

f (z)

�

+m(r, f )+ S(r, f )

¶ T (r, f )+ S(r, f ),

leading to a contradiction by n ¾ 3. Thus Φn − β has
infinitely many zeros.

PROOF OF Theorem 9

(i) Suppose that d is a Borel exceptional value of f (z),
and

�

∑

j∈I1

b j

�

d −αd2−β 6≡ 0.

Then f (z) can be written in the form

f (z) = d +h(z)eazρ , (16)

where a 6= 0 is a constant, ρ (¾ 1) is an integer, and
h (6≡ 0) is an entire function such that ρ(h)< ρ. Thus

f (z+ c j) = d +h(z+ c j)e
a(z+c j)ρ

= d +
�

h(z+ c j)e
a(z+c j)ρ−azρ

�

eazρ

= d +h(z+ c j)ehc j
eazρ , (17)

where ehc j
= ea(z+c j)ρ−azρ . Combining with Lemma 3,

ρ(h(z + c j)ehc j
) < ρ. For k j > 0, differentiating itera-

tively, we obtain by elementary computation that

f (k j)(z+ c j) = (d +h(z+ c j)e
a(z+c j)ρ )(k j)

= d(k j)+
�

h(z+ c j)e
a(z+c j)ρ

�(k j)

= hc j ,k j
ea(z+c j)ρ = hc j ,k j

ehc j
eazρ , (18)

where hc j ,k j
are differential polynomials in h(z+c j) and

a(z + c j)ρ . Obviously, ρ(hc j ,k j
ehc j
) < ρ. On the other

hand, we may write L(z, f ) as

L(z, f ) =
∑

j∈I1

b j(z) f (z+c j)+
∑

j∈I2

b j(z) f
(k j)(z+c j) (19)

where I1 = {0 ¶ j ¶ m : k j = 0} and I2 = {0 ¶ j ¶ m :
k j > 0}. Thus, by substituting (17) and (18) into (19),
we obtain

L(z, f )

=
∑

j∈I1

b j(z)
�

d +h(z+ c j)ehc j
eazρ

�

+
∑

j∈I2

b j(z)hc j ,k j
ehc j

eazρ

=

�

∑

j∈I1

b j

�

d+

�

∑

j∈I1

b jh(z+c j)ehc j
+
∑

j∈I2

b jhc j ,k j
ehc j

�

eazρ . (20)

By combining with (16) we get

Φ2 = L(z, f )−α f 2

=

�

∑

j∈I1

b j

�

d+

�

∑

j∈I1

b jh(z+c j)ehc j
+
∑

j∈I2

b jhc j ,k j
ehc j

�

eazρ

−α(d +h eazρ )2

= eγ(z)eazρ −αh2 e2azρ +

�

∑

j∈I1

b j

�

d −αd2, (21)
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where

eγ(z) =
∑

j∈I1

b jh(z+ c j)ehc j
+
∑

j∈I2

b jhc j ,k j
ehc j
−2αdh.

By Lemma 5, ρ(Φ2 −β) = ρ. If λ(Φ2 −β) < ρ =
ρ(Φ2−β), then β is a Borel exceptional small function
of Φ2, and we can rewrite Φ2 as follow:

Φ2 = β +h∗(z)ebzρ , (22)

where b(6= 0) is a constant, and h∗(6≡ 0) is an entire
function with ρ(h∗)< ρ. By (21) and (22) we have

h∗(z)ebzρ = eγ(z)eazρ−αh2 e2azρ+

�

∑

j∈I1

b j

�

d−αd2−β .

(23)
In (23), there are three cases for b: Case 1. b 6= a

and b 6= 2a; Case 2. b = a; Case 3. b = 2a.
Applying Lemma 1 to (23) for all these three cases,

we obtain
�

∑

j∈I1

b j

�

d −αd2−β ≡ 0,

which contradicts our assumption that

β 6≡
�

∑

j∈I1

b j

�

d −αd2.

Hence, λ(Φ2(z)−β) = ρ.

(ii) Suppose that d is a Borel exceptional value of
f , and

�

∑

j∈I1

b j

�

d −αd2−β ≡ 0. (24)

Using the same method as before, we can obtain (16),
(20) and (21). By combining (21) with (24), we have

Φ2−β = eγ(z)eazρ −αh2 e2azρ . (25)

Next, we discuss the following two cases:
Case 1. eγ(z)≡ 0. Then
∑

j∈I1

b jh(z+ c j)ehc j
+
∑

j∈I2

b jhc j ,k j
ehc j
≡ 2αdh, (26)

and (25) can be reduced to

Φ2−β = −αh2 e2azρ . (27)

By Lemma 5, ρ(Φ2−β) =ρ. Combining withρ(h)<ρ,
we obtain λ(Φ2−β) = λ(h2)¶ ρ(h)< ρ. Thus, β is a
Borel exceptional small function of Φ2.

From (16) and (27), we have

Φ2 = β −α
�

h eazρ
�2
= β −α( f − d)2. (28)

Hence
β −Φ2

( f − d)2
= α.

Combining with (16), (20), (24) and (26), we obtain

L(z, f )

=

�

∑

j∈I1

b j

�

d +

�

∑

j∈I1

b jh(z+ c j)ehc j
+
∑

j∈I2

b jhc j ,k j
ehc j

�

eazρ

= αd2+β +2αdh eazρ = αd2+β +2αd( f − d).

Therefore,
L(z, f )−αd2−β

2d( f − d)
= α.

Case 2. eγ(z) 6≡ 0. We rewrite (25) as follow:

Φ2−β = eγeazρ−αh2 e2azρ=αh2 eazρ
�

eγ

αh2
−eazρ

�

. (29)

Next, we prove that T (r,eγ/(αh2)) = S(r, eazρ ). By
ρ(h) < ρ, we have T (r, h) = S(r, eazρ ). Combining
with Lemma 3, we have T (r, h(z + c j)) = S(r, eazρ )
and T (r, hc j ,k j

) = S(r, eazρ ). We assert that T (r, b j) =
S(r, eazρ ). From (16), we have

T (r, f ) = T (r, eazρ )+ S(r, eazρ ). (30)

Thus,

T (r, b j)

T (r, eazρ )
=

O(rλ+ε)
T (r, eazρ )

+
S(r, f )

T (r, eazρ )

=
O(rλ+ε)

�

|a|
π + o(1)

�

rρ
+

S(r, f )
T (r, f )

→ 0,

as r→∞, outside a possible exceptional set with finite
logarithmic measure. So we have T (r, b j) = S(r, eazρ ).
Thus, T (r,eγ/(αh2)) = S(r, eazρ ).

By the first and second main theorems of Nevan-
linna theory, we have

T
�

r, eazρ
�

¶ N
�

r,
1

eazρ

�

+N
�

r,
1

eazρ − eγ
αh2

�

+N(r, eazρ )+ S(r, eazρ )

= N
�

r,
1

eazρ − eγ
αh2

�

+ S(r, eazρ )

¶ T
�

r, eazρ
�

+ S(r, eazρ ).

So

N
�

r,
1

Φ2−β

�

= N
�

r,
1

eazρ − eγ
αh2

�

+ S(r, eazρ )

= T
�

r, eazρ
�

+ S(r, eazρ ). (31)

Thus, combining with (30) and (31), we obtain

N
�

r,
1

Φ2−β

�

= T (r, f )+ Sλ(r, f ).
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PROOF OF Theorem 10

Suppose that d = 0 is the Borel exceptional value
of f . Using the same method as before (the proof of
Theorem 9), we can obtain (20) and (21) with d = 0,
i.e.,

L(z, f ) = eγ(z)eazρ . (32)

and
Φ2 = eγ(z)e

azρ −αh2 e2azρ , (33)

where

eγ(z) =
∑

j∈I1

b jh(z+ c j)ehc j
+
∑

j∈I2

b jhc j ,k j
ehc j

.

Next, we discuss the following two cases:
Case 1. β 6≡ 0. By Lemma 5, ρ(Φ2 − β) = ρ. If

λ(Φ2(z)−β)< ρ, then we can rewrite Φ2 as follow:

Φ2 = β +h∗ ebzρ , (34)

where b(6= 0) is a constant, and h∗(6≡ 0) is an entire
function with ρ(h∗)< ρ. By (33) and (34) we have

β +h∗ ebzρ = eγ(z)eazρ −αh2 e2azρ . (35)

In (35), there are three subcases for b: Subcase 1. b 6=
a and b 6= 2a; Subcase 2. b = a; Subcase 3. b = 2a.
Applying Lemma 1 to (35) for these three cases, we
obtain β ≡ 0, which contradicts our assumption that
β 6≡ 0. Hence λ(Φ2(z)−β) = ρ.

Case 2. β ≡ 0. Obviously, eγ(z) 6≡ 0. Otherwise, by
(32) we obtain L(z, f )≡ 0, a contradiction. We rewrite
(33) as follow:

Φ2 = αh2 eazρ
�

eγ

αh2
− eazρ

�

,

following the same method as in the proof of case 2 in
Theorem 9(ii), we obtain

N
�

r,
1
Φ2

�

= N
�

r,
1

eazρ − eγ
αh2

�

+ S(r, eazρ )

= T
�

r, eazρ
�

+ S(r, eazρ )

= T (r, f )+ Sλ(r, f ).

Hence, we have λ(Φ2) = ρ.
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