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ABSTRACT: In this paper, we consider the asymptotic behaviors of moment for normalized extreme of the generalized
gamma distribution. Under optimal norming constants, we establish higher-order expansion of moment for the
maximum. The expansion is used to deduce the rate of convergence of the moment for normalized partial maximum
to the moment of the associating extreme value limit. Numerical simulations are given to sustain the results of our
findings.
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INTRODUCTION

Recent work of Cordeiro [1], Suksaengrakcharoen and
Bodhisuwan [2] and Agarwal and Kalla [3] has re-
vealed that lifetime data can be moderately fitted by
the three-parameter generalized gamma distribution
due to Stacy [4]. We say that a random variable X has a
generalized gamma distribution with scale parameter
λ ∈ R+ and shape parameters β , c ∈ R+ (written as
X ∼ GGD(β , c,λ)) if its probability density function
(pdf) is

f (x) =
cλcβ

Γ (β)
x cβ−1 exp {−(λx)c} , x ∈ R+, (1)

where Γ (·) stands for the gamma function [5].
It is known that GGD(β , 1,λ) is the gamma dis-
tribution, GGD(1, c,λ) is Weibull distribution, and
GGD(1/2,2,λ) is the half-normal distribution. Let
F(x) stand for the cumulative distribution function
(cdf) associating with (1).

The generalized gamma distribution has lots of
applications, ranging from actuarial science, survival
analysis to machine learning. Some recent examples
of its application include: many problems of diffraction
theory and corrosion problems [6], lifetime data anal-
ysis and reliability [7], modeling and analysis of life-
times [8], modeling right censored survival data [9],
representing the full rain drop size distribution spec-
tra [10], medical image retrieval system [11], model-
ing lifetime distribution [12], modeling ultra wideband
indoor channel [13], estimating and comparing the
reliability of two Operating Systems (Windows and
Linux) of DDL MYSQL server [14], generating indepen-
dent component analysis (ICA) algorithm [15].

It is of great significance to study the proper-
ties of given distributions. In this paper, the goal

is to establish asymptotic properties for moment of
normalized extreme for generalized gamma samples.
Let Mn = max1⩽k⩽n Xk stand for the partial maximum
of an independent and identically (iid) random sam-
ples from generalized gamma population GGD(β , c,λ).
Castro [16] has derived the uniform convergence rate
of distribution of extreme from GGD(β , 1,λ) to its ex-
treme value limit. Recently, Du and Chen [17] showed
that with suitable normalizing constants an ∈ R+ and
bn ∈ R, the normalized maximum (Mn − bn)/an tends
to the Gumbel extreme value distribution Λ(x) =
exp(−e−x ), i.e.,

lim
n→∞
P(Mn ⩽ an x + bn) = Λ(x). (2)

They also gave the higher-order expansions for the dis-
tribution and density of maximum from GGD(β , c,λ).
However, distribution and density convergence do not
necessarily lead to moment convergence, see, e.g.,
Resnick [18]. Therefore, the natural problems are how
about the convergence and higher-order expansions
of moments of the normalized extremes, separately.
Pickands [19] studied moments convergence of gen-
eral maxima under some appropriate conditions. Nair
[20] obtained asymptotic expansions for the moments
of extreme of standard normal distribution. For more
related work, see, e.g. Refs. [21–24].

MAIN RESULTS

In order to give the main results, we cite the following
results due to Du and Chen [17]:

lim
n→∞

bc
n

�

bc
n(F

n(an x + bn)−Λ(x))− k1(x)Λ(x)
	

=
�

k2(x)+
1
2

k2
1(x)
�

, (3)
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where the norming constants an and bn are given by

1− F(bn) = n−1, an = c−1λ−c b1−c
n , (4)

k1(x) = λ
−c
¦

(1− c−1)
x2

2
− (β −1)x
©

e−x , (5)

and

k2(x) =λ
−2c
§

− (1− c−1)2
x4

8
+(1− c−1)

× (−2c−1+3β −2)
x3

6

+(β−1)(c−1−β+1)
x2

2
+(β−1)x
ª

e−x . (6)

In this section, the asymptotic expansion of mo-
ment of extreme for GGD(β , c,λ) is established. For
convenience, with norming constants an and bn deter-
mined by (4), let, for r ∈ N+,

mr(n) = E(
Mn− bn

an
)r =

∫ +∞

−∞
x r(F n(an x + bn))

′ dx

and

mr = Eξr =

∫ +∞

−∞
x r(Λ(x))′ dx (7)

separately represent the r-th moments of normalized
extreme and Gumel extreme value distribution, where
ξ follows Gumel extreme value distribution Λ(x). We
present the main results as follows.

Theorem 1 For the norming constant bn defined by (4),
and mr(n) and mr given by (7), we have

lim
n→∞

bc
n

§

bc
n [mr(n)−mr]

+ rλ−c
�

1
2
(1− c−1)mr+1+(1−β)mr

�ª

= rλ−2c
§�

−
1
6
(1− c−1)(−2c−1+β)

+
1
8
(1− c−1)2(r +3)

�

mr+2

+
1
6
(1−β)[3c−1+2(1− c−1)(r +2)]mr+1

+(1−β)
�

1+
1
2
(1−β)(r +1)
�

mr

ª

. (8)

Observing that bc
n ∼ λ

−c log n from (4), by Theorem 1
the convergence rate of moment of normalized ex-
treme can be obtained, which is described as follows.

Corollary 1 For the norming constant bn defined by
(4), we have, for large n,

mr(n)−mr ∼
r
�

(1− c−1)mr+1+2(1−β)mr

�

2 log n
.

The main results in this paper are of practical
value. One evident field is the statistical modeling of
extreme values based on the Gumbel distribution. One
of the common methods used in statistical estimation
is the method of moments [25]. This method includes
moments, so it is central to know the specific expres-
sions for the moments of the maximum distribution.
Moreover, the obtained results can be used to esti-
mate the accuracy of replacing the exact moments of
maximum distribution by the moments of the extreme
limit distribution. When independent observations
are made, this result can be used to determine the
sample size when applying asymptotic theory; for more
details, refer to the literature [26].

AUXILIARY LEMMAS

In order to prove the main results, the following lem-
mas will be used. The following Mills-type inequalities
of the GGD(β , c,λ) is due to Du and Chen [17].

Lemma 1 Let F(x) and f (x) separately represent the
cdf and pdf of GGD(β , c,λ). For c ∈ R+ and λ ∈ R+, we
have
(i) for β ∈ (0, 1] and x ∈

�

λ−1[(β −1)(β −2)]1/2c ,∞
�

,

x1−c

cλc

�

1+
β −1
(λx)c

�

⩽
1− F(x)

f (x)

⩽
x1−c

cλc

�

1−
(β −1)(β −2)
(λx)2c

�−1

; (9)

(ii) for β ∈ (1, 2) and x ∈ (0,∞),

x1−c

cλc

�

1+
β −1
(λx)c

��

1−
(β −1)(β −2)
(λx)2c

�−1

⩽
1− F(x)

f (x)
⩽

x1−c

cλc

�

1+
β −1
(λx)c

�

; (10)

(iii) for β∈[2,∞) and x∈(λ−1[(β−1)(β−2)]1/2c ,∞),

x1−c

cλc

�

1+
β −1
(λx)c

�

⩽
1− F(x)

f (x)

⩽
x1−c

cλc

�

1−
(β −1)(β −2)
(λx)2c

�−1

. (11)

Lemma 2 Suppose that the normalizing constant bn is
defined by (4). For c1 ∈ (0,1) and i, j ∈ (0,∞), we have,
as n→∞,

∫ ∞

c1 bc/3
n

bi
n x jΛ′(x)dx → 0 and

∫ ∞

c1 bc/3
n

bi
n x j(1−Λ(x))dx → 0. (12)
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Proof : By using the inequalities 1 − x < e−x < 1,
x ∈ (0,∞), we get as n→∞,

∫ ∞

c1 bc/3
n

bi
n x jΛ′(x)dx ⩽
∫ ∞

c1 bc/3
n

bi
n x j e−x dx

⩽
∫ ∞

c1 bc/3
n

exp{−(1− p)c1 bc/3
n }b

i
n x j e−px dx → 0

with p ∈ (0,1). By analogous arguments, as n→∞,
∫ ∞

c1 bc/3
n

bi
n x j(1−Λ(x))dx ⩽

∫ ∞

c1 bc/3
n

bi
n x j e−x dx → 0.

The proof is complete. 2

Lemma 3 For d ∈ (0,1) and i, j ∈ [0,∞), we have, as
n→∞,

∫ −d log bn

−∞
bi

n|x |
jΛ′(x)dx → 0,

∫ −d log bn

−∞
bi

n|x |
jΛ(x)dx → 0, (13)

and
∫ −d log bn

−∞
bi

n|x |
j F n(an x + bn)dx → 0. (14)

Proof : It follows from 1−F(bn) = n−1 that bn→∞ as
n→∞. For d, p ∈ (0, 1), we get as n→∞,

∫ −d log bn

−∞
bi

n|x |
jΛ′(x)dx

⩽
∫ −1

−∞
bi

n exp{−(1− p)bd
n}|x |

j exp{−p e−x}e−x dx

=

∫ ∞

1

bi
n exp{−(1− p)bd

n}x
j exp{−p ex}ex dx → 0,

and

∫ −d log bn

−∞
bi

n|x |
jΛ(x)dx

⩽
∫ ∞

1

bi
n exp{−(1− p)bd

n}x
j exp{−p ex}dx → 0

because
∫∞

1 x j exp{−p ex}dx <∞.
By (4), we obtain bn− dan log n→∞ as n→∞.

By utilizing the following inequalities:

−x −
x2

2(1− x)
< log(1− x)< −x for x ∈ (0, 1),

(1−x)c < 1−cx+
c(c−1)

2
x2 for x ∈ (0,

1
2
), c ∈ (1,∞),

(1− x)c < 1− cx for x ∈ (0,1), c ∈ (0,1),

and Lemma 1, we get as n→∞,

bk
n F n(bn − dan log bn)

< bk
n exp{−n(1− F(bn − dan log bn))}

< bk
n exp
§

−
(1− dc−1λ−c b−c

n )
c(β−1)

�

1− (β−1)(β−2)
(λbn)2c

�−1

×
�

1+
β −1

λc(bn − dc−1λ−c b1−c
n log bn)c

�

× exp{−λc bc
n[(1− dan b−1

n log bn)
2 −1]}
ª

< bk
n exp
§

−
(1− dc−1λ−c b−c

n )
c(β−1)

�

1− (β−1)(β−2)
(λbn)2c

�−1

×
�

1+
β −1

λc(bn−dc−1λ−c b1−c
n log bn)c

�

bd
n

ª

→ 0. (15)

Therefore, as n→∞,

∫ −d log bn

−∞
bi

n|x |
j F n(an x + bn)dx

⩽ bi
nF n−1(bn−dan log bn)

∫ −d log bn

−∞
|y−bn| j F(y)dy

⩽ bi
na−j−1

n F n−1(bn−dan log bn)

∫ 0

−∞
|y−bn| j F(y)dy

+ bi+ j−1
n a− j−1

n F n(bn − dan log bn)

∫ 1−dan b−1
n log bn

0

|y −1| j dy

⩽
j
∑

s=0

�

j
s

�

bi+s
n a− j−1

n F n−1(bn − dan log bn)

∫ 0

−∞
y j−s F(−y)dy

+bi+j−1
n a−j−1

n F n(bn−dan log bn)

∫ 1

0

(1− y) j dy → 0,

since
∫∞

0 y r F(−y)dy < ∞ for any r ∈ R+. We
complete the proof. 2

Lemma 4 For c1 ∈ (0,1) and i, j ∈ [0,∞), we have, as
n→∞,

∫ ∞

c1 bc1/3
n

bi
n x j(1− F n(an x + bn))dx → 0, (16)

and, as x →∞,

x i(1− F n(an x + bn))→ 0. (17)

Proof : The proof is similar to that of Lemma 3.5 in
Jia et al [22]. We omit it here, for more details
see [22]. 2
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Lemma 5 Let I(bn; x) = n log F(an x + bn) + e−x with
norming constants an and bn determined by (4). Then,
for large n, we have

|I(bn; x)|< C (18)

uniformly for all x ∈ (−d log bn, c1 bc1/3
n ) with c1 ∈ (0, 1)

and d ∈ (0,min{1, c}), where C is a positive constant.

Proof : By employing Lemma 4.1 of [27], we get

1− F(x) =
λcβ−c

Γ (β)
x cβ−c exp {−(λx)c}− r(x)

=
λcβ−c

Γ (β)
x cβ−c exp {−(λx)c}

×
�

1− (1−β)λ−c x−c
�

+ s(x), (19)

for large x ∈ R+ and for β ∈ (0,1), where

0< r(x)<
(1−β)λcβ−2c

Γ (β)
x cβ−2c exp {−(λx)c} and

s(x)> 0. (20)

Let Φn(x) = 1− F(an x + bn) and n log F(an x + bn) =
−nΦn(x)−Rn(x), where

0< Rn(x)<
nΦ2

n(x)

2(1−Φn(x))

due to −x − x2

2(1−x) < log(1− x) < −x for x ∈ (0, 1).
Thus,

|I(bn; x)|= | − nΦn(x)−Rn(x)+ e−x |
⩽ | − nΦn(x)+ e−x |+Rn(x). (21)

For x ∈ (−d log bn, c1 bc1/3
n ) and large n, we get

Φn(x)< Φn(d log bn)

= 1− F
�

bn

�

1−
d

cλc
b−c

n log bn

��

< C3 < 1

and by (19) and 1+ cx ⩽ (1+ x)c as −1 < x < 1 for
c > 1,

0< Rn(x)<
1

2(1− C3)
(1− F(an x + bn))2

1− F(bn)

<
1

2(1− C3)
λcβ−c

Γ (β)

bcβ−c
n (1+ an b−1

n x)2cβ−2c

1− (c−β)λ−c b−c
n

× exp{−2λc bc
n(1+ an b−1

n x)c +λc bc
n}

<
1

2(1− C3)
λcβ−c

Γ (β)

bcβ−c
n (1+ an b−1

n x)2cβ−2c

1− (c−β)λ−c b−c
n

× exp{−λc bc
n−2x}

<
1

2(1− C3)
λcβ−c

Γ (β)

bcβ−c
n (1+ an b−1

n x)2cβ−2c

1− (c−β)λ−c b−c
n

× exp{−λc bc
n+2d log bn}

< C4. (22)

For the case of x ∈ [0,∞), it follows that

| − nΦn(x)+ e−x |⩽ nΦn(x)+ e−x

⩽ n(1− F(bn))+1= 2. (23)

Combining with (22) and (23), |I(bn; x)|< C4+2 := C5
for x ∈ (0, c1 bc1/3

n ).
In the following, we take into account the case of

x ∈ (−d log bn, 0). By (19) and (20), we get

− nΦn(x)+ e−x

=−(1+an b−1
n x)cβ−c exp{−λc[(an x+bn)

c−bc
n]}

×
1−λc−cβΓ (β)(an x + bn)c−cβ r(an x + bn)

1−λc−cβΓ (β)bc−cβ
n r(bn)exp{λc bc

n}
× exp{λc(an x + bn)

c}+ e−x

= e−x (1+ an b−1
n x)cβ−c Dn(x),

where

Dn(x) = (1+ an b−1
n x)c−cβ −

1−µ(an x + bn)
1−µ(bn)

× exp

¨

−λc bc
n

+∞
∑

k=2

�

c
k

�

(an b−1
n x)k
«

and

µ(x) = λc−cβΓ (β)x c−cβ r(x)exp{λc x c}

with 0< µ(x)< (1−β)λ−c x−2c for large x . Let

Gn(x) =
∞
∑

k=2

�

c
k

�

(an b−1
n x)k and

Hn(x) =
∞
∑

k=1

�

c−cβ
k

�

(an b−1
n x)k

for x ∈ (−d log bn, 0). Observing that 1+cx<(1+x)c<1
as c > 1 and −1 < x < 0, it leads to Gn(x) > 0 and
Hn(x) < 0. By exploiting 1− x < e−x < 1 for x > 0, it
results in

Dn(x)< (1+an b−1
n x)c−cβ−

1−µ(an x+bn)
1−µ(bn)

(1−λc bc
nGn(x))

< 1− (1−λc bc
nGn(x))(1−µ(an x + bn))

< (1−β)λ−c(an x + bn)
−2c +λc bc

nGn(x),

and

Dn(x)> (1+ an b−1
n x)c−cβ −

1−µ(an x + bn)
1−µ(bn)

> 1+Hn(x)−
1

1−µ(bn)

> 2Hn(x)−2(1−β)λ−c b−2c
n .
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Consequently, for large n, we get

|Dn(x)|< λc bc
nGn(x)+2|Hn(x)|

+3(1−β)λ−c(an x + bn)
−2c

for x ∈ (−d log bn, 0). Since for large n

λc bc
nGn(x)⩽

1
2
λ−cd2 b−c

n (log bn)
2,

|Hn(x)|⩽ (1−β)dλ−c b−c
n log bn

holds uniformly for x ∈ (−d log bn, 0), and

(an x + bn)
−2c ⩽ b−2c

n (1− dc−1λ−c b−c
n log bn)

−2c ,

there exists a positive constant C6 such that

|Dn(x)|< C6 b−c
n (log bn)

2.

Thereby, for large n,

| −Φn(x)+ e−x |= e−x (1+ an b−1
n x)cβ−c |Dn(x)|

= C6(1− dc−1λ−c b−c
n log bn)

cβ−c bd−c
n (log bn)

2

< C7 (24)

uniformly for x ∈ (−d log bn, 0). A combination of
(22) and (24) implies that (18) holds uniformly for
x ∈ (−d log bn, 0). The proof is finished. 2

Lemma 6 For large n, r∈R+ and x∈(−dlogbn, c1 bc1/3
n )

with c1 ∈ (0,1) and d ∈ (0,min{1, c}), x r bc
n

{bc
n(F

n(an x + bn)−Λ(x))−k1(x)Λ(x)} is controlled by
integrable functions independent of n, where norming
constants an and bn are determined by (4), and k1(x)
is provided by (5).

Proof : By applying Lemma 5, for large n it brings about

|bc
n

�

bc
n(F

n(an x + bn)−Λ(x))− k1(x)Λ(x)
	

|

<
�

�bc
n[b

c
n I(bn; x)− k1(x)]Λ(x)

�

�

+ b2c
n I2(bn; x)
�

2−1+ exp(|I(bn; x)|)
�

Λ(x)

<
�

�bc
n[b

c
n I(bn; x)−k1(x)]Λ(x)

�

�

+b2c
n I2(bn; x)
�

2−1+eC
�

Λ(x),

with I(bn; x) = n log F(an x + bn)+ e−x .
Observe that for s ∈ R+ and i ∈ Z+,
∫ +∞
−∞ x i e−sx exp{−e−x}dx = (−1)iΓ (i)(s) < ∞.

Next, both bc
n[b

c
n I(bn; x) − k1(x)] and b2c

n I2(bn; x)
are controlled by q(x)e−x will be proved with q(x)
being a polynomial about x . Because of the proof of
b2c

n I2(bn; x) is similar to that of bc
n[b

c
n I(bn; x)−k1(x)],

we just prove that bc
n[b

c
n I(bn; x)− k1(x)] is controlled

by q(x)e−x .

Adapt

bc
n[b

c
n I(bn; x)− k1(x)]

= b2c
n (n log F(an x + bn)+ e−x − b−c

n k1(x))

= b2c
n (−nΦn(x)+ e−x − b−c

n k1(x))− b−c
n Rn(x). (25)

By making use of (22), for large n, we get

b2c
n Rn(x)

<
1

2(1− C3)
λcβ−c

Γ (β)

bcβ−c
n (1− dc−1λ−c b−c

n log bn)2cβ−2c

1− (c−β)λ−c b−c
n

× e−x exp{−λc bc
n + d log bn}

<
1

2(1− C3)
λcβ−c

Γ (β)

bcβ−c+d
n (1− dc−1λ−c b−c

n log bn)2cβ−2c

1− (c−β)λ−c b−c
n

× e−x exp{−λc bc
n}

< e−x (26)

for x ∈ (−d log bn, c1 bc1/3
n ). It is easy to see that an x +

bn > 0 as x ∈ (−d log bn, c1 bc1/3
n ) for large n. Note that

1+ cx < (1+ x)c for c > 1 and −1 < x < 0. By (19)
and (20), it implies that

1− F(an x + bn)
1− F(bn)

<
exp{−λc bc

n[(1+ an b−1
n x)c −1]}

(1+ an b−1
n x)cβ−c[1− (1−β)λ−c b−c

n ]

<
e−x

(1+ an b−1
n x)cβ−c[1− (1−β)λ−c b−c

n ]
< C8 e−x (27)

holds for all x ∈ (−d log bn, c1 bc1/3
n ). It follows from

Lemma 4.2 of [17] that

1− F(an x + bn)
1− F(bn)

e−x = An(x)exp

�∫ x

0

Bn(t)dt

�

,

where

An(x) =
An(x)
An(x)

and

Bn(t) = cλcan(an t + bn)
c−1−

c(β −1)an

an t + bn
−1

with An(x) → 1 as n → ∞ uniformly for x ∈
(−d log bn, c1 bc1/3

n ), where

An(x) = 1+(β−1)λ−c b−c
n +(β−1)(β−2)λ

−2c b−2c
n +O(b−3c

n )

and

An(x) = 1+(β −1)λ−c(an x + bn)
−c

+(β−1)(β−2)λ−2c(an x+bn)
−2c+O((an x+bn)

−3c).
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Thereupon,

b2c
n

�

−nΦn(x)+ e−x − b−c
n k1(x)
�

=
1− F(an x + bn)

1− F(bn)
b2c

n

×
§

−1+
1− F(bn)

1− F(an x + bn)
e−x[1− k1(x)e

x b−c
n ]
ª

=:
1−F(an x+bn)

1−F(bn)
[Pn(x)+Qn(x)−Tn(x)+Sn(x)], (28)

where

Pn(x) = b2c
n (An(x)−1)

Qn(x) = b2c
n An(x)
§

∫ x

0

Bn(t)dt

−λ−c
�

(1− c−1)
x2

2
− (β −1)x
�

b−c
n

ª

Tn(x) = bc
nAn(x)

∫ x

0

Bn(t)dtλ−c
�

(1−c−1)
x2

2
−(β−1)x

�

Sn(x) = b2c
n An(x)

∞
∑

k=2

�∫ x

0 Bn(t)dt
�k

k!

×
§

1−λ−c

�

(1− c−1)
x2

2
− (β −1)x

�

b−c
n

ª

.

For x ∈ (−0, c1 bc1/3
n ), by employing 1−cx < (1+x)−c<1

for c > 1 and −1< x < 0, we get

|Pn(x)|< b2c
n [1−(1−β)(λbn)

−c(1+c−1λ−c b−c
n x)−c]−1

×
�

�(β −1)(λbn)
−c[1− (1+ c−1λ−c b−c

n x)−c]

+ (β −1)(β −2)(λbn)
−2c

× [1− (1+ c−1λ−c b−c
n x)−2c]+O(b−3c

n )
�

�

<
�

1− (1−β)λ−c b−c
n ]
−1[(β −1)λ−2c x

+2(β −1)(β −2)λ−3c b−c
n x +O(b−2c

n )
�

<2λ−2c(x +4λ−c x). (29)

For x ∈ (−d log bn, 0) and large n, it leads to

|Pn(x)|

< b2c
n [1−(1−β)(λbn)

−c(1−dc−1λ−c b−c
n log bn)

−c]−1

×
�

�

�

�

(β −1)(λbn)
−c(1− dc−1λ−c b−c

n log bn)
−c

× [(1+ c−1λ−c b−c
n x)c −1]

+(β−1)(β−2)(λbn)
−2c(1−dc−1λ−c b−c

n log bn)
−2c

× [(1+ c−1λ−c b−c
n x)2c −1]+O(b−3c

n )

�

�

�

�

< 4(1−β)λ−2c[1+2(2−β)λ−c]|x | (30)

which follows from 1+ cx < (1+ x)c < 1 for c > 1 and
−1< x < 0.

For Qn(x), Tn(x) and Sn(x), we get, for large n,

|Qn(x)|< 2
§

1
6
λ−2c |(1− c−1)(1−2c−1)||x |3

+
1
2
(1−β)λ−c |cλc − d|−1 x2

ª

(31)

|Tn(x)|< 2λ−c

�

(1− c−1)
x2

2
+(1−β)|x |
�

×
§

c(1−β)
|cλc − d|

|x |+
1
2
(1− c−1)λ−c x2

+
1
6
λ−2c |(1− c−1)(1−2c−1)||x |3

ª

(32)

|Tn(x)|<
§

1+λ−c(1− c−1)
x2

2
+(1−β)|x |
ª

×
§

c(1−β)
|cλc − d|

|x |+
1
2
(1− c−1)λ−c x2

+ 1
6λ
−2c |(1−c−1)(1−2c−1)||x |3

ª2

exp
§

2(1−β)d
1− d

ª

(33)

for x ∈ (−d log bn, c1 bc1/3
n ).

Combining with (27)–(33) and (26), the wanted
result is obtained. 2

PROOF OF MAIN RESULT

From [18, Proposition 2.1(iii)] and
∫ 0

−∞ |x |
r f (x)dx <

∞ for all r ∈ Z+, it results in, as n→∞,

mr(n) = E
�Mn−bn

an

�r
→ mr =

∫ +∞

−∞
x r dΛ(x) = (−1)rΓ (r)(1)

with Γ (r)(1) indicating the r-th derivative of the
gamma function at x = 1. Accordingly, for large n,
mr(n)<∞ and

mr(n)−mr =

∫ +∞

−∞
x r [F n(an x + bn)−Λ(x)]

′ dx

=

∫ +∞

−∞
x r d [F n(an x + bn)−Λ(x)] .

Since
∫ 0

−∞ |x |
r f (x)dx <∞, we have |x |r F(x)→ 0 as

x →−∞. By using the Cr -inequality, it implies that

0⩽ lim
x→−∞

|x |r F(an x + bn)

⩽ lim
x→−∞

2r−1a−r
n (|y|

r + |bn|r)F(y) = 0.

Thus, as x →−∞,

|x |r F n(an x + bn)→ 0. (34)
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Hence, from (17) and (34), we get

lim
x→∞

x r(F n(an x + bn)−Λ(x)) = lim
x→∞

x r(1−Λ(x))

− lim
x→∞

x r(1− F n(an x + bn)) = 0 (35)

and

lim
x→−∞

x r(F n(an x + bn)−Λ(x)) = lim
x→−∞

x r(1−Λ(x))

− lim
x→−∞

x r(1− F n(an x + bn)) = 0. (36)

Consequently, by taking advantage of integration by
parts, and (35), (36), we get, for large n,

mr(n)−mr =

∫ +∞

−∞
x r d [F n(an x + bn)−Λ(x)]

= −r

∫ +∞

−∞
x r−1 [F n(an x + bn)−Λ(x)] dx (37)

Observing that
∫ +∞

−∞
x ke−2xΛ(x)dx =

∫ +∞

−∞
x ke−xΛ′(x)dx

= −kmk−1+mk,

and by (3), (37), Lemmas 2–6, and the dominated
convergence theorem, we get

lim
n→∞

bc
n

§

bc
n[mr(n)−mr]+rλ−c

�

1
2 (1−c−1)mr+1+(1−β)mr

�

ª

= lim
n→∞
−r

∫ +∞

−∞
bc

n

§

bc
n[F

n(an x+bn)−Λ(x)]−x r−1k1(x)Λ(x)
ª

dx

= lim
n→∞

�

− r

∫ ∞

c1 b
c1/3
n

b2c
n x r−1[(1−Λ(x))− (1− F n(an x + bn))]dx

+ r

∫ ∞

c1 b
c1/3
n

bc
n x r−1k1(x)Λ(x)dx

− r

∫ c1 b
c1/3
n

−d log bn

bc
n x r−1bc

n

§

[F n(an x+bn)−Λ(x)]−x r−1k1(x)Λ(x)
ª

dx

− r

∫ −d log bn

−∞
b2c

n x r−1[F n(an x + bn)−Λ(x)]dx

+ r

∫ −d log bn

−∞
bc

n x r−1k1(x)Λ(x)dx

�

= −r

∫ +∞

−∞
x r−1Λ(x)
�

k2(x)+
1
2 k2

1(x)
�

dx

= rλ−2c
§

�

− 1
6 (1− c−1)(−2c−1+β)+ 1

8 (1− c−1)2(r+3)
�

mr+2

+ 1
6 (1−β)[3c−1 +2(1− c−1)(r +2)]mr+1

+(1−β)
�

1+ 1
2 (1−β)(r +1)
�

mr

ª

.

The proof is complete.

NUMERICAL ANALYSIS

In this section, numerical studies are given to illustrate
the precision of the higher-order expansions of the
moment of the normalized maximum (Mn − bn)/an.
Let E1, E2, and E3 stand for the first-order, second-
order and third-order asymptotics of the moment of
(Mn − bn)/an, separately. Notice that the second and
third order asymptotics are connected with the sample
size n. By Theorem 1, we get

E1 = mr ,

E2 = mr − b−c
n rλ−c
�

1
2 (1− c−1)mr+1 +(1−β)mr

�

,

E3 = mr − b−c
n rλ−c
�

1
2 (1− c−1)mr+1 +(1−β)mr

�

+ b−2c
n rλ−2c
§

�

− 1
6 (1−c−1)(−2c−1+β)+1

8 (1− c−1)2(r+3)
�

mr+2

+ 1
6 (1−β)[3c−1 +2(1− c−1)(r +2)]mr+1

+(1−β)
�

1+ 1
2 (1−β)(r +1)
�

mr

ª

.

To show the accuracy of all asymptotics as the sample
size n varies, for fixed parameters β , λ, c, and r = 2,
images of the true values and their asymptotics are
drawn. Figs. 1 and 2 demonstrate the following facts:
(i) except for some special cases, all approximations
get closer to the true values as the sample size n
increases; (ii) for sufficiently large n, the third-order
approximation is closer to the true value.
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