On existence of meromorphic solutions for nonlinear q-difference equation

Changwen Peng ${ }^{\text {a,* }, ~ H u a w e i ~ H u a n g ~}{ }^{\text {b }}$, Lei Tao ${ }^{\text {b,c }}$
${ }^{\text {a }}$ College of Mathematics and Information Science, Guiyang University, Guiyang 550005 China
${ }^{\text {b }}$ School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001 China
c School of Mathematics and Big Data, Guizhou Education University, Guiyang 550018 China
*Corresponding author, e-mail: pengcw716@126.com

Received 12 Apr 2022, Accepted 2 Sep 2022
Available online 26 Feb 2023
ABSTRACT: In this paper, we mainly consider the existence of meromorphic solutions of nonlinear q-difference equation of type

$$
f(q z)+f(z / q)=\frac{P(z, f(z))}{Q(z, f(z))}
$$

where the right-hand side is irreducible, $P(z, f(z))$ and $Q(z, f(z))$ are polynomials in f with rational coefficients, and q is a nonzero complex constant. We obtain that such equation has no transcendental meromorphic solution when $|q|=1$ and $m=\operatorname{deg}_{f}(P)-\operatorname{deg}_{f}(Q)>1$. And we investigate the growth of transcendental meromorphic solutions of nonlinear q-difference equation and find lower bounds for their characteristic functions for transcendental meromorphic solutions of such equation for the case $|q| \neq 1$.

KEYWORDS: nonlinear q-difference equation, difference Painlevé equation, the existence of transcendental meromorphic solution

MSC2020: 30D35 39B32

INTRODUCTION AND MAIN RESULTS

A function $f(z)$ is called meromorphic if it is analytic in the complex plane \mathbb{C} except at isolated poles. In what follows, we use standard notations in the Nevanlinna's value distribution theory of meromorphic functions, see $[1,2]$. Let $f(z)$ be a meromorphic function. We also use notations $\sigma(f), \mu(f), \lambda(f), \lambda(1 / f)$ for the order, the lower order, the exponents of convergence of zeros and poles of f, respectively.

Recently, some papers focus on complex difference equations, see [3-6]. There are also papers focusing on the existence and the growth of meromorphic solutions of q-difference equations, see [7-10].

Zhang and Korhonen [11] studied the existence of zero order transcendental meromorphic solutions of the certain q-difference equation, and showed the following theorem.
Theorem 1 ([11]) Let $q_{1}, \ldots, q_{n} \in \mathbb{C} \backslash\{0\}$, and let $a_{0}(z), \ldots, a_{p}(z), b_{0}(z), \ldots, b_{d}(z)$ be rational functions. If the q-difference equation

$$
\begin{align*}
\sum_{j=1}^{n} f\left(q_{j} z\right) & =\frac{P(z, f(z))}{Q(z, f(z))} \\
& =\frac{a_{0}(z)+a_{1}(z) f(z)+\cdots+a_{p}(z) f(z)^{p}}{b_{0}(z)+b_{1}(z) f(z)+\cdots+b_{d}(z) f(z)^{d}} \tag{1}
\end{align*}
$$

where $P(z, f(z))$ and $Q(z, f(z))$ do not have any common factors in $f(z)$, admits a transcendental meromorphic solution of zero order, then $\max \{p, d\} \leqslant n$.

Peng and Huang [12] considered the growth problem for transcendental meromorphic solutions of q difference Painlevé IV equation, and obtained the following result.

Theorem 2 ([12]) Consider q-difference equation

$$
\begin{equation*}
(f(q z)+f(z))(f(z)+f(z / q))=\frac{P(z, f(z))}{Q(z, f(z))} \tag{2}
\end{equation*}
$$

where $P(z, f(z))=a_{0}(z)+a_{1}(z) f(z)+\cdots+a_{p}(z) f(z)^{p}$ and $Q(z, f(z))=b_{0}(z)+b_{1}(z) f(z)+\cdots+b_{d}(z) f(z)^{d}$ are relatively prime polynomials in f, and $a_{0}(z), \ldots, a_{p}(z)$, $b_{0}(z), \ldots, b_{d}(z)$ are polynomials with $a_{p}(z) b_{d}(z) \not \equiv 0$, $q \in \mathbb{C} \backslash\{0\}$. Let $m=p-d \geqslant 3$.
(i) Suppose that $|q|=1$. Then (2) has no transcendental meromorphic solution.
(ii) Suppose that $|q| \neq 1$ and f is a transcendental meromorphic solution of (2).
(1) If f is entire or has finitely many poles, then there exist constants $K>0$ and $r_{0}>0$ such that

$$
\log M(r, f) \geqslant K\left(\frac{m}{2}\right)^{\log r / / \log |q| \mid}
$$

holds for all $r \geqslant r_{0}$. Thus, the lower order of f satisfies $\mu(f) \geqslant \log \left(\frac{m}{2}\right) /|\log | q| |$.
(2) If f has infinitely many poles, then there exist constants $K>0$ and $r_{0}>0$ such that

$$
n(r, f) \geqslant K(m-1)^{\log r / / \log |q| \mid}
$$

holds for all $r \geqslant r_{0}$. Thus, the lower order of f satisfies $\mu(f) \geqslant \log (m-1) /|\log | q| |$.
(3) Thus, the lower order of f satisfies $\mu(f) \geqslant$ $\log (m-1) /|\log | q| |$ when $|q| \neq 1$.
Qi and Yang [13] considered the properties of transcendental meromorphic solutions of q-difference equation, and obtained the following result.

Theorem 3 ([13]) Let $|q| \neq 1$ and $n \geqslant 2$, let $f(z)$ be a meromorphic solution of

$$
f(q z)+f(z / q)=a(z) f(z)^{n}+b(z) f(z)+c(z)
$$

with meromorphic coefficients satisfying $T(r, a)=$ $S(r, f), T(r, b)=S(r, f)$ and $T(r, c)=S(r, f)$. Then $f(z)$ is of positive order of growth.

By Theorem 2 and Theorem 3, if we replace the left-hand side of (2) by $f(q z)+f(z / q)$, then we obtain Theorem 4 as show below.

Theorem 4 Let $a_{0}(z), \ldots, a_{p}(z), b_{0}(z), \ldots, b_{d}(z)$ be rational functions with $a_{p}(z) b_{d}(z) \not \equiv 0$. Consider q difference equation

$$
\begin{align*}
f(q z)+ & f(z / q)=\frac{P(z, f(z))}{Q(z, f(z))} \\
& =\frac{a_{0}(z)+a_{1}(z) f(z)+\cdots+a_{p}(z) f(z)^{p}}{b_{0}(z)+b_{1}(z) f(z)+\cdots+b_{d}(z) f(z)^{d}} \tag{3}
\end{align*}
$$

where $P(z, f(z))$ and $Q(z, f(z))$ are relatively prime polynomials in $f, q \in \mathbb{C} \backslash\{0\}$. Let $m=p-d \geqslant 2$.
(i) Suppose that $|q|=1$. Then (3) has no transcendental meromorphic solution.
(ii) Suppose that $|q| \neq 1$ and f is a transcendental meromorphic solution of (3).
(1) If f is entire or has finitely many poles, then there exist constants $K>0$ and $r_{0}>0$ such that for all $r \geqslant r_{0}$

$$
\log M(r, f) \geqslant K m^{\log r /|\log | q| |}
$$

(2) If f has infinitely many poles, then there exist constants $K>0$ and $r_{0}>0$ such that for all $r \geqslant r_{0}$

$$
n(r, f) \geqslant K m^{\log r /|\log | q \|} .
$$

(3) Thus, the lower order of f satisfies $\mu(f) \geqslant$ $\log m /|\log | q \|$ when $|q| \neq 1$.

From Theorem 4, we see that Theorem 3 is extended into more general type.

By Theorem 1 and Theorem 4, we can get that if (3) admits a transcendental meromorphic solution of zero order, then $\max \{p, d\} \leqslant 2$ and $p-d \leqslant 1$.

In fact, many authors studied special forms of Eq. (3) when $\max \{p, d\} \leqslant 2$ and $p-d \leqslant 1$. In particular, they mainly considered three types of equations as shown below.

$$
\begin{equation*}
f(q z)+f(z / q)=\frac{A(z)}{f(z)}+C(z) \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
f(q z)+f(z / q)=\frac{A(z)}{f(z)}+\frac{C(z)}{f^{2}(z)} \tag{5}\\
f(q z)+f(z / q)=\frac{A(z) f(z)+C(z)}{1-f^{2}(z)} \tag{6}
\end{gather*}
$$

where $A(z), C(z)$ are polynomials. These equations are now known as the q-difference analogues of difference Painlevé equations I and II. Some results about transcendental meromorphic solutions of zero order to (4)-(6), can be found in [13-15].

From this, we see that (3) is an important class of q-difference equations. It will play an important role for research of q-difference Painlevé equations I and II.

By the same arguments as the proof of Theorem 4, we can obtain Corollary 1.
Corollary 1 Suppose that the q-difference equation (1) satisfies the hypothesis of Theorem 1. If $m=p-d \geqslant$ 2 and $0<\left|q_{j}\right| \leqslant 1(j=1,2, \ldots, n)$, then (1) has no transcendental entire solution.

Remark 1 ([10]) We shall also use the observation that

$$
\begin{aligned}
M(r, f(q z)) & =M(|q| r, f), \\
N(r, f(q z)) & =N(|q| r, f)+O(1), \\
T(r, f(q z)) & =T(|q| r, f)+O(1)
\end{aligned}
$$

hold for any meromorphic function f and any non-zero constant q.

PROOFS OF THEOREM 4 AND COROLLARY 1

The proof of Theorem 4

Without loss of generality, suppose that the coefficients $a_{i}(z)(i=0,1, \ldots, p)$ and $b_{n}(z)(n=0,1, \ldots, d)$ in (3) are polynomials.
(i): On the contrary, suppose that (3) has a transcendental meromorphic solution f. Our conclusion holds for the cases.
Case 1: Suppose that f, the solution of (3), is transcendental entire.

Denote $l_{n}=\operatorname{deg} b_{n}, t=\operatorname{deg} a_{p}$. Note that $M(r, f(q z))=M(|q| r, f)$ for z satisfying $|z|=r$. Set $v=1+\max \left\{l_{0}, l_{1}, \ldots, l_{d}\right\}$. It concludes that

$$
\begin{align*}
& M\left(r, \frac{P(z, f(z))}{Q(z, f(z))}\right)=M(r, f(q z)+f(z / q)) \\
& \quad \leqslant M(|q| r, 2 f(z)) \leqslant C M(|q| r, f(z)) \tag{7}
\end{align*}
$$

when r is large enough and $|q| \geqslant 1$, where C is a positive constant. It follows that

$$
\begin{aligned}
& \left|\sum_{i=0}^{p} a_{i}(z) f(z)^{i}\right| \\
& \quad \geqslant\left|a_{p}(z) f(z)^{p}\right|-\left(\left|a_{p-1}(z) f(z)^{p-1}\right|+\cdots+\left|a_{0}(z)\right|\right) \\
& \quad \geqslant \frac{1}{2}\left|a_{p}(z) f(z)^{p}\right|=\frac{1}{2} r^{t}|f(z)|^{p}(1+o(1)),
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\sum_{n=0}^{d} b_{n}(z) f(z)^{n}\right| & \leqslant \sum_{n=0}^{d}\left|b_{n}(z) f(z)^{n}\right| \\
& \leqslant \sum_{n=0}^{d} r^{v}|f(z)|^{d}=(d+1) r^{v}|f(z)|^{d}
\end{aligned}
$$

when r is sufficiently large. Thus, we have

$$
\begin{aligned}
& \left|\frac{P(z, f(z))}{Q(z, f(z))}\right|=\left|\frac{\sum_{i=0}^{p} a_{i}(z) f(z)^{i}}{\sum_{n=0}^{d} b_{n}(z) f(z)^{n}}\right| \\
& \quad \geqslant \frac{\left|a_{p}(z) f(z)^{p}\right|-\left(\left|a_{p-1}(z) f(z)^{p-1}\right|+\cdots+\left|a_{0}(z)\right|\right)}{\left|b_{d}(z) f(z)^{d}\right|+\cdots+\left|b_{1}(z) f(z)\right|+\left|b_{0}(z)\right|} \\
& \quad \geqslant \frac{1}{2(d+1)} r^{(t-v)}|f(z)|^{(p-d)}(1+o(1))
\end{aligned}
$$

when r is large enough. Thus

$$
\begin{equation*}
M\left(r, \frac{P(z, f(z))}{Q(z, f(z))}\right) \geqslant \frac{r^{(t-v)} M(r, f(z))^{m}}{2(d+1)} \tag{8}
\end{equation*}
$$

when r is large enough. We have by (7) and (8) that

$$
\begin{equation*}
\log M(|q| r, f(z)) \geqslant m \log M(r, f(z))+g(r) \tag{9}
\end{equation*}
$$

where $|g(r)|<K \log r$ for some $K>0$, when r is sufficiently large. By (9) and $|q|=1$, we have

$$
\begin{equation*}
\log M(r, f)=\log M(|q| r, f) \geqslant m \log M(r, f)+g(r) \tag{10}
\end{equation*}
$$

And (10) is a contradiction since $m \geqslant 2$.
Case 2: Suppose that f, the solution of (3), is transcendental meromorphic with finitely many poles. Then there exists a polynomial $P(z)$ such that $F(z)=$ $P(z) f(z)$ is transcendental entire. Substituting $f(z)=$ $F(z) / P(z)$ into (3) and multiplying away the denominators, we will obtain an equation similar to (3). Applying the same reasoning above to $F(z)$, we obtain that for sufficiently large r
$\log M(r, f)=\log M(r, F)+O(1) \geqslant m \log M(r, F)+g(r)$.
It is a contradiction since $m \geqslant 2$.
Case 3: Suppose that f, the solution of (3), is a meromorphic function with infinitely many poles. Since $a_{i}(z)(i=0,1, \ldots, p), b_{n}(z)(n=0,1, \ldots, d)$ are polynomials, there is a constant $R>0$ such that all zeros of $a_{i}(z)(i=0,1, \ldots, p)$ and $b_{n}(z)(n=0,1, \ldots, d)$ are not in $D=\{z:|z|>R\}$. Since $f(z)$ has infinitely many poles, there exists a pole $z_{0}(\in D)$ of $f(z)$ having multiplicity $k_{0} \geqslant 1$. Then the right-hand side of (3) has a pole of multiplicity $m k_{0}$ at z_{0}. Thus, there exists at least one index $l_{1} \in\{q, 1 / q\}$ such that $l_{1} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{1}=m k_{0}$.

Without loss of generality, suppose that $l_{1}=q$ since $|q|=|1 / q|=1$. Then $q z_{0}$ is a pole of $f(z)$ of
multiplicity k_{1} and $q z_{0} \in D$. Substitute $q z_{0}$ for z in (3) to obtain

$$
\begin{equation*}
f\left(q^{2} z_{0}\right)+f\left(z_{0}\right)=\frac{a_{0}\left(q z_{0}\right)+\cdots+a_{p}\left(q z_{0}\right) f^{p}\left(q z_{0}\right)}{b_{0}\left(q z_{0}\right)+\cdots+b_{d}\left(q z_{0}\right) f^{d}\left(q z_{0}\right)} . \tag{11}
\end{equation*}
$$

By (11) and $m=p-d \geqslant 2$, we conclude that $q^{2} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{2}=m k_{1}=m^{2} k_{0}$. Obviously $q^{2} z_{0} \in D$. Replacing z by $q^{2} z_{0}$ in (3) to obtain

$$
\begin{equation*}
f\left(q^{3} z_{0}\right)+f\left(q z_{0}\right)=\frac{a_{0}\left(q^{2} z_{0}\right)+\cdots+a_{p}\left(q^{2} z_{0}\right) f^{p}\left(q^{2} z_{0}\right)}{b_{0}\left(q^{2} z_{0}\right)+\cdots+b_{d}\left(q^{2} z_{0}\right) f^{d}\left(q^{2} z_{0}\right)} . \tag{12}
\end{equation*}
$$

By (12) and $m=p-d \geqslant 2$, we conclude that $q^{3} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{3}=m k_{2}=m^{3} k_{0}$. Obviously $q^{3} z_{0} \in D$.

Similarly, $q^{l} z_{0}(\in D)$ is a pole of $f(z)$ of multiplicity $k_{l}=m^{l} k_{0}$. Thus, there exists a sequence $\left\{q^{l} z_{0}, l=\right.$ $1,2, \ldots\}$ which are the poles of $f(z)$. Since $k_{l}=m^{l} k_{0} \rightarrow$ ∞, as $l \rightarrow \infty$, and since $f(z)$ does not have essential singularities in the finite plane, we conclude $\left|q^{l} z_{0}\right| \rightarrow$ ∞, as $l \rightarrow \infty$. In fact, $\left|q^{l} z_{0}\right|=\left|z_{0}\right| \rightarrow \infty$ since $|q|=1$. It is a contradiction.

Thus, part (i) is proved.
(ii) (1): Suppose that f, the solution of (3), is transcendental entire. Our conclusion holds for the cases.
Case 1: $|q|>1$. By a similar method as Case 1 in (i), we have (9). Iterating (9), we have

$$
\begin{equation*}
\log M\left(|q|^{j} r, f(z)\right) \geqslant m^{j} \log M(r, f(z))+E_{j}(r) \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
\left|E_{j}(r)\right| & =\left|m^{j-1} g(r)+m^{j-2} g(|q| r)+\cdots+g\left(|q|^{j-1} r\right)\right| \\
& \leqslant K m^{j-1} \sum_{k=0}^{j-1} \frac{\log \left(|q|^{k} r\right)}{m^{k}} \leqslant K m^{j-1} \sum_{k=0}^{\infty} \frac{\log \left(|q|^{k} r\right)}{m^{k}} .
\end{aligned}
$$

Since $\log \left(|q|^{k} r\right)=\log |q|^{k}+\log r \leqslant(\log r)\left(\log |q|^{k}\right)$ for sufficiently large r and k, we have

$$
\sum_{k=0}^{\infty} \frac{\log \left(|q|^{k} r\right)}{m^{k}} \leqslant \sum_{k=0}^{\infty} \frac{(\log r)\left(\log |q|^{k}\right)}{m^{k}}=\log r \log |q| \sum_{k=0}^{\infty} \frac{k}{m^{k}}
$$

Obviously, the series $\sum_{k=0}^{\infty} \frac{k}{m^{k}}$ is convergent. Suppose that $\sum_{k=0}^{\infty} \frac{k}{m^{k}}$ converges to I. It follows that $\left\lvert\, \sum_{k=0}^{n_{1}} \frac{k}{m^{k}}-\right.$ $I \mid<1$ for sufficiently large n_{1}. So, $\sum_{k=0}^{\infty} \frac{k}{m^{k}} \leqslant|I|+1$. Hence

$$
\begin{equation*}
\left|E_{j}(r)\right| \leqslant K m^{j-1} \log r \log |q|(|I|+1)=K^{\prime} m^{j} \log r \tag{14}
\end{equation*}
$$

where $K^{\prime}=K(|I|+1) \log |q| / m$. Since f is transcendental entire, we get $\log M(r, f) \geqslant 2 K^{\prime} \log r$ for large enough r. By (13) and (14), there exists $r_{0} \geqslant$ e such that for $r \geqslant r_{0}$,

$$
\begin{equation*}
\log M\left(|q|^{j} r, f(z)\right) \geqslant K^{\prime} m^{j} \log r \tag{15}
\end{equation*}
$$

Thus, for each sufficiently large s, there exists a $j \in$ \mathbb{N} such that $s \in\left[|q|^{j} r_{0},|q|^{j+1} r_{0}\right)$, i.e., $j>\frac{\log s-\log \left(|q| r_{0}\right)}{\log |q|}$. Therefore, (15) implies

$$
\begin{aligned}
\log M(s, f(z)) & \geqslant \log M\left(|q|^{j} r_{0}, f(z)\right) \\
& \geqslant K^{\prime} m^{j} \log r_{0} \geqslant K^{\prime \prime} m^{\log s / \log |q|}
\end{aligned}
$$

where $K^{\prime \prime}=K^{\prime} \log r_{0} m^{-\log \left(|q| r_{0}\right) / \log |q|}$.
Suppose now that f, the solution of (3), is meromorphic with finitely many poles. Then there exists a polynomial $P(z)$ such that $F(z)=P(z) f(z)$ is entire. Using the same reasoning as above and Case 2 in (i), we obtain that for sufficiently large r, $\log M(r, f)=\log M(r, F)+O(1) \geqslant\left(K^{\prime \prime}-\varepsilon\right) m^{\log r / \log |q|}=$ $K^{\prime \prime \prime} m^{\log r / \log |q|}$, where $K^{\prime \prime \prime}(>0)$ is some constant.
Case 2: $|q|<1$. Set $q_{1}=1 / q$. Then $\left|q_{1}\right|>1$. (3) yields

$$
f\left(z / q_{1}\right)+f\left(q_{1} z\right)=\frac{P(z, f(z))}{Q(z, f(z))}
$$

By the same reasoning as Case 1, we obtain

$$
\log M(r, f) \geqslant K m^{\log r / \log \left|q_{1}\right|}=K m^{\log r /|\log | q \mid}
$$

From Case 1 and Case 2, we have

$$
\log M(r, f) \geqslant K m^{\log r / / \log |q| \mid}
$$

Finally, since $K m^{\log r / / \log |q| \mid} \leqslant \log M(r, f) \leqslant 3 T(2 r, f)$ for all $r \geqslant r_{0}$, we get $\mu(f) \geqslant \log m /|\log | q| |$.

Thus, part (1) is proved.
(2): Suppose that f, the solution of (3), is meromorphic with infinitely many poles. Since $a_{i}(z)(i=$ $0,1, \ldots, p), b_{n}(z)(n=0,1, \ldots, d)$ are polynomials, there are two constants $R>0$ and $M>0$ such that all nonzero zeros of $a_{i}(z)(i=0,1, \ldots, p)$ and $b_{n}(z)(n=$ $0,1, \ldots, d)$ are in $D_{1}=\{z: M \leqslant|z| \leqslant R\}$. Set $D=\{z$: $|z|>R\}$.

Since $f(z)$ has infinitely many poles, there exists a pole $z_{0}(\in D)$ of $f(z)$ having multiplicity $k_{0} \geqslant 1$. Then the right-hand side of (3) has a pole of multiplicity $m k_{0}$ at z_{0}. Thus, there exists at least one index $l_{1} \in\{q, 1 / q\}$ such that $l_{1} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{1}=m k_{0}$.

Without loss of generality, suppose that $|q|>1$. We need to discuss the following two cases.
Case 1: If $l_{1}=q$, then $q z_{0}$ is a pole of $f(z)$ of multiplicity k_{1} and $q z_{0} \in D$. Substitute $q z_{0}$ for z in (3) to obtain (11). By (11) and $m=p-d \geqslant 2$, we conclude that $q^{2} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{2}=m^{2} k_{0}$. By a similar method as Case 3 in (i), we obtain that $q^{l} z_{0}(\in$ $D)$ is a pole of $f(z)$ of multiplicity $k_{l}=m^{l} k_{0}$. Thus, we find a sequence $\left\{q^{j} z_{0} \in D, j=0,1,2, \ldots\right\}$ which are the poles of $f(z)$. Since $k_{j}=m^{j} k_{0} \rightarrow \infty$, as $j \rightarrow \infty$, and since $f(z)$ does not have essential singularities in the finite plane, we conclude $\left|q^{j} z_{0}\right| \rightarrow \infty$, as $j \rightarrow \infty$. For sufficiently large j, say $j>j_{0}$, we obtain

$$
\begin{align*}
m^{j} k_{0} & \leqslant k_{0}\left(1+m+\cdots+m^{j}\right) \\
& \leqslant n\left(\left|q^{j} z_{0}\right|, f\right)=n\left(|q|^{j}\left|z_{0}\right|, f\right) . \tag{16}
\end{align*}
$$

Thus, for each large enough r, there exists a $j \in \mathbb{N}$ such that $r \in\left[|q|^{j}\left|z_{0}\right|,|q|^{j+1}\left|z_{0}\right|\right)$. We obtain by (16) that
$n(r, f) \geqslant m^{j} k_{0} \geqslant k_{0} m^{\left(\log r-\log \left|q z_{0}\right|\right) / \log |q|}=K m^{\log r / \log |q|}$,
where $K=k_{0} m^{-\log \left|q z_{0}\right| / \log |q|}$.
Case 2: We can affirm that $l_{1}=1 / q$ is impossible. On the contrary, suppose that $l_{1}=1 / q$. Set $q_{1}=1 / q$ and $\operatorname{deg} a_{p}=A(\geqslant 0)$. Since $z_{0} \in D$, we know that $z_{0} / q=$ $q_{1} z_{0}$ has two possibilities:
(a): If $q_{1} z_{0} \in D_{1}$, this process will be terminated and we have to choose another pole z_{0} of $f(z)$ in the way we did above.
(b): If $q_{1} z_{0} \notin D_{1}$, then $q_{1} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{1}=m k_{0}$, since the right-hand side of (3) has a pole of multiplicity $m k_{0}$ at z_{0}.

If $q_{1} z_{0} \notin D \cup D_{1}$, that is $0<\left|q_{1} z_{0}\right|<M$, then we choose pole z_{0} of $f(z)$ and substitute $q_{1} z_{0}$ for z in (3).

If $q_{1} z_{0} \in D$, that is $\left|q_{1} z_{0}\right|>R$, replacing z by $q_{1} z_{0}$ in (3) to obtain

$$
f\left(z_{0}\right)+f\left(q_{1}^{2} z_{0}\right)=\frac{a_{0}\left(q_{1} z_{0}\right)+\cdots+a_{p}\left(q_{1} z_{0}\right) f^{p}\left(q_{1} z_{0}\right)}{b_{0}\left(q_{1} z_{0}\right)+\cdots+b_{d}\left(q_{1} z_{0}\right) f^{d}\left(q_{1} z_{0}\right)}
$$

By the above equality, it concludes that $q_{1}^{2} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{2}=m k_{1}=m^{2} k_{0}$.

If $q_{1}^{2} z_{0} \in D_{1}$, this process will be terminated and we have to choose another pole z_{0} of $f(z)$ in the way we did above.

If $q_{1}^{2} z_{0} \in D$, then the right-hand side of (3) has a pole of multiplicity $m k_{2}$ at $q_{1}^{2} z_{0}$.

Replacing z by $q_{1}^{2} z_{0}$ in (3), it concludes that $q_{1}^{3} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{3}=m k_{2}=m^{3} k_{0}$.

We proceed to follow the steps (a) and (b) as above. Since there are infinitely many poles of $f(z)$ in D, we will find a pole $z_{0}(\in D)$ of $f(z)$ such that $q_{1}^{n_{1}} z_{0}(\in D)$ is a pole of $f(z)$ of multiplicity $k_{n_{1}}=m^{n_{1}} k_{0}$. And z_{0} satisfies $q_{1}^{n_{1}+1} z_{0} \in D_{1}$. By (3) and $m=p-d \geqslant 2$, we conclude that $q_{1}^{n_{1}+1} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{\left(n_{1}+1\right)}=m k_{n_{1}}=m^{n_{1}+1} k_{0}$.

Replacing z by $q_{1}^{n_{1}+1} z_{0}$ in (3) to obtain

$$
\begin{align*}
& f\left(q_{1}^{n_{1}} z_{0}\right)+f\left(q_{1}^{n_{1}+2} z_{0}\right) \\
& \quad=\frac{a_{0}\left(q_{1}^{n_{1}+1} z_{0}\right)+\cdots+a_{p}\left(q_{1}^{n_{1}+1} z_{0}\right) f^{p}\left(q_{1}^{n_{1}+1} z_{0}\right)}{b_{0}\left(q_{1}^{n_{1}+1} z_{0}\right)+\cdots+b_{d}\left(q_{1}^{n_{1}+1} z_{0}\right) f^{d}\left(q_{1}^{n_{1}+1} z_{0}\right)} . \tag{17}
\end{align*}
$$

The right-hand side of (17) has a pole of multiplicity at least $p k_{\left(n_{1}+1\right)}-A-d k_{\left(n_{1}+1\right)}=m k_{\left(n_{1}+1\right)}-A$ at $q_{1}^{n_{1}+1} z_{0}$. Without loss of generality, suppose that the right-hand side of (17) has a pole of multiplicity $m k_{\left(n_{1}+1\right)}-A$ at $q_{1}^{n_{1}+1} z_{0}$.

In the left-hand side of (17), $f(q z)$ has a pole of multiplicity $k_{n_{1}}=m^{n_{1}} k_{0}$ at $q_{1}^{n_{1}+1} z_{0}$. By $m \geqslant 2$, when $n_{1}>\max \left\{\frac{\log A-\log \left(m^{2}-1\right) k_{0}}{\log m}, 1\right\}$, we have $m k_{\left(n_{1}+1\right)}-A=$ $m^{n_{1}+2} k_{0}-A>m^{n_{1}} k_{0}$. Thus $m k_{\left(n_{1}+1\right)}-A>k_{n_{1}}$.

Hence, by (17), it concludes that $q_{1}^{n_{1}+2} z_{0}\left(\in D_{1}\right)$ is a pole of $f(z)$ of multiplicity $k_{\left(n_{1}+2\right)}=m k_{\left(n_{1}+1\right)}-A=$ $m^{n_{1}+2} k_{0}-A$.

Replacing z by $q_{1}^{n_{1}+2} z_{0}$ in (3) to obtain

$$
\begin{align*}
& f\left(q_{1}^{n_{1}+1} z_{0}\right)+f\left(q_{1}^{n_{1}+3} z_{0}\right) \\
& \quad=\frac{a_{0}\left(q_{1}^{n_{1}+2} z_{0}\right)+\cdots+a_{p}\left(q_{1}^{n_{1}+2} z_{0}\right) f^{p}\left(q_{1}^{n_{1}+2} z_{0}\right)}{b_{0}\left(q_{1}^{n_{1}+2} z_{0}\right)+\cdots+b_{d}\left(q_{1}^{n_{1}+2} z_{0}\right) f^{d}\left(q_{1}^{n_{1}+2} z_{0}\right)} . \tag{18}
\end{align*}
$$

The right-hand side of (18) has a pole of multiplicity at least $p k_{\left(n_{1}+2\right)}-A-d k_{\left(n_{1}+2\right)}=m k_{\left(n_{1}+2\right)}-A$ at $q_{1}^{n_{1}+2} z_{0}$. Without loss of generality, suppose that the right-hand side of (18) has a pole of multiplicity $m k_{\left(n_{1}+2\right)}-A$ at $q_{1}^{n_{1}+2} z_{0}$.

In the left-hand side of (18), $f(q z)$ has a pole of multiplicity $k_{\left(n_{1}+1\right)}=m^{n_{1}+1} k_{0}$ at $q_{1}^{n_{1}+2} z_{0}$. By $m \geqslant 2$, when $n_{1}>\max \left\{\frac{\log A-\log (m-1) k_{0}}{\log m}-1,1\right\}$, we have $m k_{n_{1}+2}-A=m^{n_{1}+3} k_{0}-A(m+1)>m^{n_{1}+1} k_{0}$. Thus $m k_{\left(n_{1}+2\right)}-A>k_{\left(n_{1}+1\right)}$.

Hence, by (18), it concludes that $q_{1}^{n_{1}+3} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{\left(n_{1}+3\right)}=m k_{\left(n_{1}+2\right)}-A=$ $m\left(m^{n_{1}+2} k_{0}-A\right)-A=m^{n_{1}+3} k_{0}-A(m+1)$.

We proceed to follow the step as above. We conclude that $q_{1}^{n_{1}+n_{2}} z_{0}$ is a pole of $f(z)$ of multiplicity $k_{\left(n_{1}+n_{2}\right)}=m^{n_{1}+n_{2}} k_{0}-A\left(m^{n_{2}-2}+\cdots+m+1\right)$ such that $0<\left|q_{1}^{n_{1}+n_{2}} z_{0}\right|<M$, that is $q_{1}^{n_{1}+n_{2}} z_{0} \notin D \cup D_{1}$.

Set $k:=k_{\left(n_{1}+n_{2}\right)}=m^{n_{1}+n_{2}} k_{0}-A\left(m^{n_{2}-2}+\cdots+m+1\right)$. Then

$$
k=\frac{m^{n_{2}-1}}{m-1}\left[(m-1) m^{n_{1}+1} k_{0}-A\right]+\frac{A}{m-1} .
$$

When $n_{2} \geqslant 2$ and $n_{1}>\max \left\{\frac{\log (A+1)-\log (m-1) k_{0}}{\log m}-1,1\right\}$, we get $(m-1) m^{n_{1}+1} k_{0}>A+1$, that is $(m-1) m^{n_{1}+1} k_{0}-$ $A>1$. Hence $k \geqslant 1$.

Set $z_{1}:=q_{1}^{n_{1}+n_{2}} z_{0}\left(0<\left|q_{1}^{n_{1}+n_{2}} z_{0}\right|<M\right)$. Then z_{1} is a pole of $f(z)$ of multiplicity $k \geqslant 1$. In particular, when $n_{1}=1$ and $n_{2}=0$, then $z_{1}=q_{1} z_{0}$ is a pole of $f(z)$ of multiplicity $k=k_{1}=m k_{0}$.

Applying the same reasoning as Case 1 , we will find that $q_{1}^{l} z_{1}\left(\notin D \cup D_{1}\right)$ is a pole of $f(z)$ of multiplicity $k_{l}=m^{l} k$. Thus, there exists a sequence $\left\{q_{1}^{l} z_{1}, l=\right.$ $1,2, \ldots\}$ which are the poles of $f(z)$. We conclude $q_{1}^{l} z_{1} \rightarrow 0$ as $l \rightarrow \infty$ since $\left|q_{1}\right|<1$. Therefore, $f(z)$ is not a meromorphic function. It is a contradiction.

From Case 1 and Case 2, when $|q| \neq 1$, we obtain

$$
n(r, f) \geqslant K m^{\log r / / \log \mid q \|} .
$$

Finally, since $K m^{\log r /|\log | q| |} \leqslant n(r, f) \leqslant$ $\frac{1}{\log 2} N(2 r, f) \leqslant \frac{1}{\log 2} T(2 r, f)$ for all $r \geqslant r_{0}$, we immediately obtain $\mu(f) \geqslant \log m /|\log | q \|$.

Thus, Theorem 4 is proved.

The proof of Corollary 1

Without loss of generality, suppose that the coefficients $a_{i}(z)(i=0,1, \ldots, p)$ and $b_{n}(z)(n=0,1, \ldots, d)$ in (1) are polynomials. On the contrary, suppose that (1) has a transcendental entire solution f.

Denote $|q|=\max \left\{\left|q_{1}\right|, \ldots,\left|q_{n}\right|\right\}$. Obviously $0<$ $|q| \leqslant 1$ since $0<\left|q_{j}\right| \leqslant 1(j=1, \ldots, n)$. Note that $M(r, f(q z))=M(|q| r, f)$ for z satisfying $|z|=r$. It concludes that

$$
\begin{align*}
& M\left(r, \frac{P(z, f(z))}{Q(z, f(z))}\right)=M\left(r, \sum_{j=1}^{n} f\left(q_{j} z\right)\right) \\
& \leqslant M(|q| r, n f(z)) \leqslant C M(|q| r, f(z)) \tag{19}
\end{align*}
$$

when r is large enough, where C is a positive constant. Applying the same reasoning as Case 1 in (i) of Theorem 4, we obtain (8). Thus, we have by (8) and (19) that

$$
\begin{aligned}
\log M(r, f(z)) & \geqslant \log M(|q| r, f(z)) \\
& \geqslant m \log M(r, f(z))+g(r)
\end{aligned}
$$

where $|g(r)|<K \log r$ for some $K>0$, when r is sufficiently large. It is a contradiction since $m \geqslant 2$.

Corollary 1 is proved.

THE EXISTENCE OF MEROMORPHIC SOLUTION OF LINEAR q-DIFFERENCE EQUATION

Bergweiler et al [16] studied the existence and properties of transcendental meromorphic solution of linear q-difference equation. They obtained the following results.

Theorem 5 ([16]) Let $a_{0}(z), \ldots, a_{n+1}(z)$ be polynomials without common zeros and $0<|q|<1$. Suppose that the equation

$$
a_{0}(z) f(z)+a_{1}(z) f(q z)+\cdots+a_{n}(z) f\left(q^{n} z\right)=a_{n+1}(z)
$$

possesses a transcendental entire solution $f(z)$. Then there is some $j, 1 \leqslant j \leqslant n$, such that $\operatorname{deg} a_{0}(z)<$ $\operatorname{deg} a_{j}(z)$.

Theorem 6 ([16]) Suppose that the coefficients $a_{0}(z), \ldots, a_{n+1}(z)$ in (20) are meromorphic and of finite order $\leqslant \rho$ and $0<|q|<1$. Then the meromorphic solution $f(z)$ of (20) is of finite order $\sigma(f) \leqslant \rho$. In addition, if $\sigma\left(a_{n+1}\right)>\sigma\left(a_{j}\right)$ for all $j=0,1, \ldots, n$, then $\sigma(f)=\sigma\left(a_{n+1}\right)$.

Remark 2 ([10]) If the coefficients in (20) are constants, then (20) has no transcendental meromorphic solution.

In Theorem 3, we see that $n \geqslant 2$ is necessary. A natural question is: what is the result when $n=1$ in Theorem 3? Corresponding to this question, we get Theorem 7.

Theorem 7 Consider q-difference equation

$$
\begin{equation*}
f(q z)+f(z / q)=b(z) f(z)+a(z), \tag{21}
\end{equation*}
$$

where $q \in \mathbb{C} \backslash\{0\},|q| \neq 1$.
(i) If $a(z)$ and $b(z)=M(z) / N(z)$ are irreducible rational functions satisfying $\operatorname{deg} M(z) \leqslant \operatorname{deg} N(z)$, then (21) does not possess transcendental meromorphic solution with finitely many poles.
(ii) Suppose that $a(z)$ and $b(z)=M(z) / N(z)$ are nonconstant irreducible rational functions satisfying $\operatorname{deg} M(z) \leqslant \operatorname{deg} N(z)$. If (21) has a transcendental meromorphic solution $f(z)$, then $f(z)$ has infinitely many poles and $\sigma(f) \geqslant 1$.
(iii) Suppose that $a(z)$ and $b(z)$ are meromorphic and of finite order $\leqslant \rho$. Then the meromorphic solution $f(z)$ of (21) is of finite order $\sigma(f) \leqslant \rho$. In addition, if $\sigma(a(z))>\sigma(b(z))$, then $\sigma(f)=\sigma(a(z))$.

Remark 3 In particular, if $a(z)$ and $b(z)$ are complex constants, then (21) has no transcendental meromorphic solution.

Proof: (i): Without loss of generality, suppose that $a(z)$ is a polynomial.

On the contrary, suppose that (21) possesses a transcendental meromorphic solution $f(z)$ with finitely many poles. Our conclusion holds for the cases. Case 1: $0<|q|<1$. We only need to discuss the following two subcases.
Subcase 1: Suppose that $f(z)$ is transcendental entire. (21) yields

$$
N(z) f(q z)+N(z) f(z / q)=M(z) f(z)+N(z) a(z)
$$

Thus, we obtain

$$
\begin{equation*}
N(q z) f\left(q^{2} z\right)-M(q z) f(q z)+N(q z) f(z)=N(q z) a(q z) \tag{22}
\end{equation*}
$$

Obviously, $\operatorname{deg} M(q z) \leqslant \operatorname{deg} N(q z)$. Without loss of generality, suppose that polynomials $M(q z), N(q z)$ and $a(q z)$ have no common zeros. By Theorem 5 and (22), we conclude a contradiction.
Subcase 2: Suppose that $f(z)$ is meromorphic with finitely many poles. Then there is a polynomial $P(z)$ such that $g(z)=P(z) f(z)$ is entire. Substituting $f(z)=g(z) / P(z)$ into (22), we will get

$$
a_{2}(z) g\left(q^{2} z\right)+a_{1}(z) g(q z)+a_{0}(z) g(z)=a_{3}(z)
$$

where $\quad a_{0}(z)=P\left(q^{2} z\right) P(q z) N(q z), \quad a_{1}(z)=-P\left(q^{2} z\right)$ $P(z) M(q z), \quad a_{2}(z)=P(q z) P(z) N(q z), \quad a_{3}(z)=P\left(q^{2} z\right)$ $P(q z) P(z) N(q z) a(q z)$. Obviously, $\quad \operatorname{deg} a_{0}(z)=$ $\operatorname{deg} a_{2}(z) \geqslant \operatorname{deg} a_{1}(z)$. Using the same reasoning above to $g(z)$, we conclude a contradiction.
Case 2: $|q|>1$. Set $q_{1}=1 / q$. Then $0<\left|q_{1}\right|<1$. (21) shows

$$
\begin{equation*}
f\left(z / q_{1}\right)+f\left(q_{1} z\right)=b(z) f(z)+a(z) \tag{23}
\end{equation*}
$$

Applying the same reasoning as Case 1 , the result is obtained.
(ii): Without loss of generality, suppose that $a(z)$ is a polynomial.

Suppose that $f(z)$ is a meromorphic solution of (21). By (i), $f(z)$ has infinitely many poles. Similarly as (i), we can get (22). Since $M(q z), N(q z)$ and $a(q z)$ are polynomials, there is a constant $R>0$ such that all zeros of $M(q z), N(q z)$ and $a(q z)$ are not in $D=\{z:|z|>R\}$. Without loss of generality, suppose that $|q|>1$.

Since $f(z)$ has infinitely many poles, there is a pole $z_{0}(\in D)$ of $f(z)$ having multiplicity $k_{0} \geqslant 1$. Then the left-hand side of (22) has a pole of multiplicity k_{0} at z_{0}. Hence, there exists at least one index $l_{1} \in\{1,2\}$ such that $q^{l_{1}} z_{0}$ is a pole of $f(z)$ of multiplicity k_{0}. Replacing z by $\hat{z}:=q^{l_{1}} z_{0}$ in (22), we obtain

$$
\begin{equation*}
N(q \hat{z}) f\left(q^{2} \hat{z}\right)-M(q \hat{z}) f(q \hat{z})+N(q \hat{z}) f(\hat{z})=N(q \hat{z}) a(q \hat{z}) \tag{24}
\end{equation*}
$$

Since $\left|q^{l_{1}} z_{0}\right|>\left|z_{0}\right|$, the all coefficients of (24) cannot have a zero at $\hat{z}=q^{l_{1}} z_{0}$. Thus, the left-hand side of (24) has a pole of $f(z)$ of multiplicity k_{0} at $q^{l_{1}} z_{0}$. Hence, there exists at least one index $l_{2} \in\{1,2\}$ such that $q^{l_{1}+l_{2}} z_{0}$ is a pole of $f(z)$ of multiplicity k_{0}.

Similarly, $q^{l_{1}+l_{2}+\cdots+l_{n}} z_{0}(\in D)$ is a pole of $f(z)$ of multiplicity k_{0}. Thus, there exists a sequence $\left\{q^{l_{1}+l_{2}+\cdots+l_{j}} z_{0} \in D, j=1,2, \ldots\right\}$ which are the poles of $f(z)$. So, $\sigma(f) \geqslant \lambda(1 / f) \geqslant 1$.
(iii): We only need to discuss the following two cases.
Case 1: $0<|q|<1$. Then $\sigma(b(q z)) \leqslant \sigma(b(z))$ and $\sigma(a(q z)) \leqslant \sigma(a(z))$. (21) yields

$$
\begin{equation*}
f\left(q^{2} z\right)-b(q z) f(q z)+f(z)=a(q z) . \tag{25}
\end{equation*}
$$

Applying Theorem 6 to (25), the results is proved.
Case 2: $|q|>1$. Set $q_{1}=1 / q$. Then $0<\left|q_{1}\right|<1$. By (21), we have (23). Applying the same reasoning as Case 1, the result is obtained.

Thus, Theorem 7 is proved.

THE GROWTH OF MEROMORPHIC SOLUTIONS OF q-DIFFERENCE PAINLEVÉ EQUATION I

Recently, some authors investigated zero order meromorphic solutions of q-difference equations [$8,11,14$, 15]. Qi and Yang [13] considered q-difference Painlevé equation I, and obtained the following Theorem 8.

Theorem 8 ([13]) Let $f(z)$ be a transcendental meromorphic solution with zero order of equation

$$
f(q z)+f(z / q)=\frac{a z+b}{f(z)}+c,
$$

where a, b, c are three constants such that cannot vanish simultaneously. Then,
(i) $f(z)$ has infinitely many poles;
(ii) if a $\neq 0$, then $f(z)$ has infinitely many finite values;
(iii) if $a=0$ and $f(z)$ takes a finite value A finitely often, then A is a solution of $2 z^{2}-c z-b=0$.

In Theorem 8 , if $c=0$, what do we get? In the following, we will answer this question. We investigate the growth of transcendental meromorphic solutions of q-difference Painlevé equation $f(q z)+f(z / q)=$ $A(z) / f(z)$ and find lower bounds for the order of transcendental meromorphic solutions for such equation. We obtain the following result.

Theorem 9 Let $A(z)=t(z) / s(z)(\equiv \equiv 0)$ be an irreducible rational function. Suppose that $f(z)$ is a transcendental meromorphic solution of q-difference equation

$$
\begin{equation*}
f(q z)+f(z / q)=\frac{A(z)}{f(z)} \tag{26}
\end{equation*}
$$

where $q \in \mathbb{C} \backslash\{0\},|q| \neq 1$. Then $\sigma(f) \geqslant 1$.
From Theorem 9, we conclude that the (26) has no zero order transcendental meromorphic solution.

We need the following lemmas to prove Theorem 9.

Lemma 1 Let $f(z)$ be a transcendental meromorphic function with $\sigma(f)<1$, and $q \in \mathbb{C} \backslash\{0\},|q| \neq 1$. Then

$$
\begin{equation*}
g(z)=f(q z) f(z) \tag{27}
\end{equation*}
$$

is transcendental.
Proof: On the contrary, we suppose that $g(z)$ is a rational function. There is a constant $R>0$ such that all zeros and poles of $g(z)$ are not in $D=\{z:|z|>R\}$.

Without loss of generality, suppose that $|q|>1$. Since $\sigma(f)<1, f(z)$ has infinitely many poles or zeros. Our conclusion holds for the cases.
Case 1: If $f(z)$ has infinitely many poles, there exists pole $z_{0}(\in D)$ of $f(z)$ having multiplicity $k \geqslant 1$. By (27), $q z_{0}$ is a zero of $f(z)$ and $q z_{0} \in D$. Substitute $q z_{0}$ for z in (27) to obtain

$$
\begin{equation*}
g\left(q z_{0}\right)=f\left(q^{2} z_{0}\right) f\left(q z_{0}\right) . \tag{28}
\end{equation*}
$$

By (28) and $f\left(q z_{0}\right)=0$, we have $f\left(q^{2} z_{0}\right)=\infty$ and $q^{2} z_{0} \in D$.

Similarly, $q^{2 n} z_{0}(\in D)$ is a pole of $f(z)$. Thus, there is a sequence $\left\{q^{2 n} z_{0} \in D, n=0,1,2 \ldots\right\}$ which are the poles of $f(z)$. Thus, $\lambda(1 / f) \geqslant 1$. It is a contradiction. Case 2: If $f(z)$ has infinitely many zeros, there is a zero $z_{1}(\in D)$ of $f(z)$. By (27), it concludes that $q z_{1}$ is a pole of $f(z)$ and $q z_{1} \in D$. Replacing z by $q z_{1}$ in (27) to obtain

$$
\begin{equation*}
g\left(q z_{1}\right)=f\left(q^{2} z_{1}\right) f\left(q z_{1}\right) \tag{29}
\end{equation*}
$$

By (29) and $f\left(q z_{1}\right)=\infty$, we get $f\left(q^{2} z_{1}\right)=0$ and $q^{2} z_{1} \in D$.

Similarly, $\left\{q^{2 m} z_{1} \in D, m=0,1,2, \ldots\right\}$ is a zero sequence of $f(z)$. Thus, $\lambda(f) \geqslant 1$. It is a contradiction. Thus, $g(z)$ is transcendental.

Lemma 2 Let $g_{1}(z), g_{2}(z)(\not \equiv 0)$ and $h(z)(\not \equiv 0)$ be rational functions, $q_{1}, q_{2}\left(\left|q_{1}\right| \neq\left|q_{2}\right|\right)$ be nonzero complex constants. Suppose that $f(z)$ be a transcendental meromorphic solution with infinitely many poles of q-difference equation

$$
\begin{equation*}
g_{2}(z) f\left(q_{1} z\right)+g_{1}(z) f\left(q_{2} z\right)=h(z) \tag{30}
\end{equation*}
$$

Then $\sigma(f) \geqslant 1$.
Proof: Our conclusion holds for the cases.
Case 1: $\left|q_{1}\right|>\left|q_{2}\right|$. Set $q=q_{1} / q_{2}$. Then $|q|>1$. (30) yields

$$
\begin{equation*}
g_{2}\left(\frac{z}{q_{2}}\right) f(q z)+g_{1}\left(\frac{z}{q_{2}}\right) f(z)=h\left(\frac{z}{q_{2}}\right) . \tag{31}
\end{equation*}
$$

Since $h(z), g_{i}(z)(i=1,2)$ are rational, there is a constant $R>0$ such that all zeros and poles of $h\left(z / q_{2}\right)$, $g_{i}\left(z / q_{2}\right)(i=1,2)$ are not in $D=\{z:|z|>R\}$.

Since $f(z)$ has infinitely many poles, there exists a pole $z_{0}(\in D)$ of $f(z)$ having multiplicity $k \geqslant 1$. By (31), we conclude that $q z_{0}$ is a pole of $f(z)$ of multiplicity k and $q z_{0} \in D$. Replacing z by $q z_{0}$ in (31) to obtain

$$
\begin{equation*}
g_{2}\left(\frac{q z_{0}}{q_{2}}\right) f\left(q^{2} z_{0}\right)+g_{1}\left(\frac{q z_{0}}{q_{2}}\right) f\left(q z_{0}\right)=h\left(\frac{q z_{0}}{q_{2}}\right) \tag{32}
\end{equation*}
$$

By (32) and $f\left(q z_{0}\right)=\infty$, we conclude that $q^{2} z_{0}$ is a pole of $f(z)$ of multiplicity k and $q^{2} z_{0} \in D$.

Similarly, $q^{n} z_{0}(\in D)$ is a pole of $f(z)$ of multiplicity k. Thus, there is a sequence $\left\{q^{j} z_{0} \in D, j=0,1,2, \ldots\right\}$ which are the poles of $f(z)$. So, $\sigma(f) \geqslant \lambda(1 / f) \geqslant 1$.
Case 2: $\left|q_{1}\right|<\left|q_{2}\right|$. Set $q=q_{2} / q_{1}$. Then $|q|>1$. (30) implies

$$
\begin{equation*}
g_{2}\left(\frac{z}{q_{1}}\right) f(z)+g_{1}\left(\frac{z}{q_{1}}\right) f(q z)=h\left(\frac{z}{q_{1}}\right) \tag{33}
\end{equation*}
$$

Using the same method as Case 1 , we get $\sigma(f) \geqslant 1$.

The proof of Theorem 9

On the contrary, we suppose that $f(z)$ is a transcendental meromorphic solution of (26) and $\sigma(f)<1$.

Without loss of generality, suppose that $0<|q|<1$. (26) implies

$$
\begin{equation*}
f(q z) f(z)+f(z) f(z / q)=\frac{t(z)}{s(z)} \tag{34}
\end{equation*}
$$

Set $y(z)=f(q z) f(z)$. From Remark 1, we get $\sigma(y) \leqslant$ $\sigma(f)<1$. By Lemma 1, it concludes that $y(z)$ is transcendental. By (34), we obtain

$$
s(z) y(z)+s(z) y(z / q)=t(z)
$$

That is

$$
\begin{equation*}
s(q z) y(q z)+s(q z) y(z)=t(q z) . \tag{35}
\end{equation*}
$$

Similarly to the proof of Theorem 7, (35) has no transcendental meromorphic solution with finitely many poles. So, if $y(z)$ is a transcendental meromorphic solution of (35), then $y(z)$ has infinitely many poles. By Lemma 2 and (35), we get $\sigma(y) \geqslant 1$. This is a contradiction.

Thus, Theorem 9 is proved.
Acknowledgements: This research is supported by the National Natural Science Foundation of China (No. 11861023), and the Foundation of Science and Technology Project of Guizhou Province of China (No. QIANKEHEJICHUZK[2021]Ordinary313).

REFERENCES

1. Hayman WK (1964) Meromorphic Functions, Clarendon Press, Oxford.
2. Yang L (1982) Value Distribution Theory and Its New Research, Science Press, Beijing.
3. Chen ZX, Shon KH (2019) On existence of solutions of difference Riccati equation. Acta Math Sci 39, 139-147.
4. Peng CW, Chen ZX (2014) Properties of meromorphic solutions of some certain difference equations. Kodai Math J 37, 97-119.
5. Xu HY, Liu SY, Li QP (2020) Entire solutions for several systems of nonlinear difference and partial differentialdifference equations of Fermat-type. J Math Anal Appl 483, 123641.
6. Xu HY, Wang H (2021) Notes on the existence of entire solutions for several partial differential-difference equations. Bull Iran Math Soc 47, 1477-1489.
7. Chen MF, Gao ZS, Zhang ZL (2022) Meromorphic solutions of some types of q-difference differential equation and delay differential equation. ScienceAsia 48, 107-114.
8. Du YF, Gao ZS, Zhang JL, Zhao M (2018) Existence of zero order meromorphic solutions of certain q difference equations. J Inequal Appl 217, 217.
9. Jiang YY, Chen ZX (2013) On solutions of q-difference Riccati equations with rational coefficients. Appl Anal Discr Math 7, 314-326.
10. Bergweiler W, Ishizaki K, Yanagihara N (1999) Meromorphic solutions of some functional equations. Methods Appl Anal 6, 248-258.
11. Zhang JL, Korhonen RJ (2010) On the Nevanlinna characteristic of $f(q z)$ and its applications. J Math Anal Appl 369, 537-544.
12. Peng CW, Huang HW (2020) The growth of meromorphic solutions for q-difference Painlevé IV equation. J Math Anal Appl 492, 1-14.
13. Qi XG, Yang LZ (2015) Properties of meromorphic solutions of q-difference equations. Electron J Differ Equ 59, $1-9$.
14. Xu HY, San YL, Zheng XM (2017) Some properties of meromorphic solutions for q-difference equations. Electron J Differ Equ 175, 1-12.
15. Zhao PJ, Xu HY (2018) Some properties of solutions for some q-difference equations containing Painlevé equation. J Funct Space 2018, 8318570.
16. Bergweiler W, Ishizaki K, Yanagihara N (2002) Growth of meromorphic solutions of some function equations. I Aequationes Math 63, 140-151.
