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ABSTRACT: In this paper, we mainly consider the existence of meromorphic solutions of nonlinear q-difference equation
of type

f (qz)+ f (z/q) =
P(z, f (z))
Q(z, f (z))

,

where the right-hand side is irreducible, P(z, f (z)) and Q(z, f (z)) are polynomials in f with rational coefficients, and q
is a nonzero complex constant. We obtain that such equation has no transcendental meromorphic solution when |q|= 1
and m= deg f (P)−deg f (Q)> 1. And we investigate the growth of transcendental meromorphic solutions of nonlinear
q-difference equation and find lower bounds for their characteristic functions for transcendental meromorphic solutions
of such equation for the case |q| ≠ 1.

KEYWORDS: nonlinear q-difference equation, difference Painlevé equation, the existence of transcendental meromor-
phic solution
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INTRODUCTION AND MAIN RESULTS

A function f (z) is called meromorphic if it is analytic in
the complex plane C except at isolated poles. In what
follows, we use standard notations in the Nevanlinna’s
value distribution theory of meromorphic functions,
see [1, 2]. Let f (z) be a meromorphic function. We
also use notations σ( f ), µ( f ), λ( f ), λ(1/ f ) for the
order, the lower order, the exponents of convergence
of zeros and poles of f , respectively.

Recently, some papers focus on complex difference
equations, see [3–6]. There are also papers focusing on
the existence and the growth of meromorphic solutions
of q-difference equations, see [7–10].

Zhang and Korhonen [11] studied the existence
of zero order transcendental meromorphic solutions
of the certain q-difference equation, and showed the
following theorem.

Theorem 1 ([11]) Let q1, . . . , qn ∈ C\{0}, and let
a0(z), . . . , ap(z), b0(z), . . . , bd(z) be rational functions.
If the q-difference equation

n
∑

j=1

f (q jz) =
P(z, f (z))
Q(z, f (z))

=
a0(z)+ a1(z) f (z)+ · · ·+ ap(z) f (z)p

b0(z)+ b1(z) f (z)+ · · ·+ bd(z) f (z)d
, (1)

where P(z, f (z)) and Q(z, f (z)) do not have any com-
mon factors in f (z), admits a transcendental meromor-
phic solution of zero order, then max{p, d}⩽ n.

Peng and Huang [12] considered the growth prob-
lem for transcendental meromorphic solutions of q-
difference Painlevé IV equation, and obtained the fol-
lowing result.

Theorem 2 ([12]) Consider q-difference equation

( f (qz)+ f (z))( f (z)+ f (z/q)) =
P(z, f (z))
Q(z, f (z))

, (2)

where P(z, f (z)) = a0(z)+ a1(z) f (z)+ · · ·+ ap(z) f (z)p

and Q(z, f (z)) = b0(z)+b1(z) f (z)+· · ·+bd(z) f (z)d are
relatively prime polynomials in f , and a0(z), . . . , ap(z),
b0(z), . . . , bd(z) are polynomials with ap(z)bd(z) ̸≡ 0,
q ∈ C\{0}. Let m= p− d ⩾ 3.
(i) Suppose that |q|= 1. Then (2) has no transcendental

meromorphic solution.
(ii) Suppose that |q| ≠ 1 and f is a transcendental

meromorphic solution of (2).
1⃝ If f is entire or has finitely many poles, then there

exist constants K > 0 and r0 > 0 such that

log M(r, f )⩾ K
�m

2

�log r/| log |q||

holds for all r ⩾ r0. Thus, the lower order of f
satisfies µ( f )⩾ log(m

2 )/| log |q||.
2⃝ If f has infinitely many poles, then there exist

constants K > 0 and r0 > 0 such that

n(r, f )⩾ K(m−1)log r/| log |q||
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holds for all r ⩾ r0. Thus, the lower order of f
satisfies µ( f )⩾ log(m−1)/| log |q||.

3⃝ Thus, the lower order of f satisfies µ( f ) ⩾
log(m−1)/| log |q|| when |q| ̸= 1.

Qi and Yang [13] considered the properties of
transcendental meromorphic solutions of q-difference
equation, and obtained the following result.

Theorem 3 ([13]) Let |q| ≠ 1 and n ⩾ 2, let f (z) be a
meromorphic solution of

f (qz)+ f (z/q) = a(z) f (z)n+ b(z) f (z)+ c(z)

with meromorphic coefficients satisfying T (r, a) =
S(r, f ), T (r, b) = S(r, f ) and T (r, c) = S(r, f ). Then
f (z) is of positive order of growth.

By Theorem 2 and Theorem 3, if we replace the
left-hand side of (2) by f (qz)+ f (z/q), then we obtain
Theorem 4 as show below.

Theorem 4 Let a0(z), . . . , ap(z), b0(z), . . . , bd(z) be ra-
tional functions with ap(z)bd(z) ̸≡ 0. Consider q-
difference equation

f (qz)+ f (z/q) =
P(z, f (z))
Q(z, f (z))

=
a0(z)+ a1(z) f (z)+ · · ·+ ap(z) f (z)p

b0(z)+ b1(z) f (z)+ · · ·+ bd(z) f (z)d
, (3)

where P(z, f (z)) and Q(z, f (z)) are relatively prime
polynomials in f , q ∈ C\{0}. Let m= p− d ⩾ 2.
(i) Suppose that |q|= 1. Then (3) has no transcendental

meromorphic solution.
(ii) Suppose that |q| ≠ 1 and f is a transcendental

meromorphic solution of (3).
1⃝ If f is entire or has finitely many poles, then there

exist constants K > 0 and r0 > 0 such that for all
r ⩾ r0

log M(r, f )⩾ Kmlog r/| log |q||.

2⃝ If f has infinitely many poles, then there exist
constants K > 0 and r0 > 0 such that for all r ⩾ r0

n(r, f )⩾ Kmlog r/| log |q||.

3⃝ Thus, the lower order of f satisfies µ( f ) ⩾
log m/| log |q|| when |q| ≠ 1.

From Theorem 4, we see that Theorem 3 is ex-
tended into more general type.

By Theorem 1 and Theorem 4, we can get that if
(3) admits a transcendental meromorphic solution of
zero order, then max{p, d}⩽ 2 and p− d ⩽ 1.

In fact, many authors studied special forms of
Eq. (3) when max{p, d}⩽ 2 and p−d ⩽ 1. In particular,
they mainly considered three types of equations as
shown below.

f (qz)+ f (z/q) =
A(z)
f (z)

+ C(z), (4)

f (qz)+ f (z/q) =
A(z)
f (z)

+
C(z)
f 2(z)

, (5)

f (qz)+ f (z/q) =
A(z) f (z)+ C(z)

1− f 2(z)
, (6)

where A(z), C(z) are polynomials. These equations
are now known as the q-difference analogues of dif-
ference Painlevé equations I and II. Some results about
transcendental meromorphic solutions of zero order to
(4)–(6), can be found in [13–15].

From this, we see that (3) is an important class of
q-difference equations. It will play an important role
for research of q-difference Painlevé equations I and II.

By the same arguments as the proof of Theorem 4,
we can obtain Corollary 1.

Corollary 1 Suppose that the q-difference equation (1)
satisfies the hypothesis of Theorem 1. If m = p − d ⩾
2 and 0 < |q j | ⩽ 1 ( j = 1, 2, . . . , n), then (1) has no
transcendental entire solution.

Remark 1 ([10]) We shall also use the observation
that

M(r, f (qz)) = M(|q|r, f ),
N(r, f (qz)) = N(|q|r, f )+O(1),
T (r, f (qz)) = T (|q|r, f )+O(1)

hold for any meromorphic function f and any non-zero
constant q.

PROOFS OF THEOREM 4 AND COROLLARY 1

The proof of Theorem 4

Without loss of generality, suppose that the coefficients
ai(z) (i = 0,1, . . . , p) and bn(z) (n = 0,1, . . . , d) in (3)
are polynomials.

(i): On the contrary, suppose that (3) has a tran-
scendental meromorphic solution f . Our conclusion
holds for the cases.
Case 1: Suppose that f , the solution of (3), is tran-
scendental entire.

Denote ln = deg bn, t = deg ap. Note that
M(r, f (qz)) = M(|q|r, f ) for z satisfying |z| = r. Set
v = 1+max{l0, l1, . . . , ld}. It concludes that

M
�

r,
P(z, f (z))
Q(z, f (z))

�

= M(r, f (qz)+ f (z/q))

⩽ M (|q|r, 2 f (z))⩽ C M(|q|r, f (z)), (7)

when r is large enough and |q| ⩾ 1, where C is a
positive constant. It follows that

�

�

�

�

p
∑

i=0

ai(z) f (z)
i

�

�

�

�

⩾ |ap(z) f (z)
p| − (|ap−1(z) f (z)

p−1|+ · · ·+ |a0(z)|)

⩾
1
2
|ap(z) f (z)

p|=
1
2

r t | f (z)|p(1+ o(1)),
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and

�

�

�

�

d
∑

n=0

bn(z) f (z)
n

�

�

�

�

⩽
d
∑

n=0

|bn(z) f (z)
n|

⩽
d
∑

n=0

r v | f (z)|d = (d +1)r v | f (z)|d ,

when r is sufficiently large. Thus, we have

�

�

�

�

P(z, f (z))
Q(z, f (z))

�

�

�

�

=

�

�

�

�

∑p
i=0 ai(z) f (z)i
∑d

n=0 bn(z) f (z)n

�

�

�

�

⩾
|ap(z) f (z)p| − (|ap−1(z) f (z)p−1|+ · · ·+ |a0(z)|)
|bd(z) f (z)d |+ · · ·+ |b1(z) f (z)|+ |b0(z)|

⩾
1

2(d +1)
r(t−v)| f (z)|(p−d)(1+ o(1)),

when r is large enough. Thus

M
�

r,
P(z, f (z))
Q(z, f (z))

�

⩾
r(t−v)M(r, f (z))m

2(d +1)
, (8)

when r is large enough. We have by (7) and (8) that

log M(|q|r, f (z))⩾ m log M(r, f (z))+ g(r), (9)

where |g(r)| < K log r for some K > 0, when r is
sufficiently large. By (9) and |q|= 1, we have

log M(r, f ) = log M(|q|r, f )⩾ m log M(r, f )+g(r). (10)

And (10) is a contradiction since m⩾ 2.
Case 2: Suppose that f , the solution of (3), is
transcendental meromorphic with finitely many poles.
Then there exists a polynomial P(z) such that F(z) =
P(z) f (z) is transcendental entire. Substituting f (z) =
F(z)/P(z) into (3) and multiplying away the denom-
inators, we will obtain an equation similar to (3).
Applying the same reasoning above to F(z), we obtain
that for sufficiently large r

log M(r, f ) = log M(r, F)+O(1)⩾ m log M(r, F)+g(r).

It is a contradiction since m⩾ 2.
Case 3: Suppose that f , the solution of (3), is a mero-
morphic function with infinitely many poles. Since
ai(z) (i = 0,1, . . . , p), bn(z) (n = 0, 1, . . . , d) are poly-
nomials, there is a constant R > 0 such that all zeros
of ai(z) (i = 0,1, . . . , p) and bn(z) (n = 0,1, . . . , d) are
not in D = {z : |z| > R}. Since f (z) has infinitely
many poles, there exists a pole z0(∈ D) of f (z) having
multiplicity k0 ⩾ 1. Then the right-hand side of (3) has
a pole of multiplicity mk0 at z0. Thus, there exists at
least one index l1 ∈ {q, 1/q} such that l1z0 is a pole of
f (z) of multiplicity k1 = mk0.

Without loss of generality, suppose that l1 = q
since |q| = |1/q| = 1. Then qz0 is a pole of f (z) of

multiplicity k1 and qz0 ∈ D. Substitute qz0 for z in (3)
to obtain

f (q2z0)+ f (z0) =
a0(qz0)+ · · ·+ ap(qz0) f p(qz0)

b0(qz0)+ · · ·+ bd(qz0) f d(qz0)
. (11)

By (11) and m = p − d ⩾ 2, we conclude that q2z0
is a pole of f (z) of multiplicity k2 = mk1 = m2k0.
Obviously q2z0 ∈ D. Replacing z by q2z0 in (3) to
obtain

f (q3z0)+f (qz0)=
a0(q2z0)+ · · ·+ap(q2z0) f p(q2z0)

b0(q2z0)+ · · ·+bd(q2z0) f d(q2z0)
. (12)

By (12) and m = p − d ⩾ 2, we conclude that q3z0
is a pole of f (z) of multiplicity k3 = mk2 = m3k0.
Obviously q3z0 ∈ D.

Similarly, qlz0(∈ D) is a pole of f (z) of multiplicity
kl = ml k0. Thus, there exists a sequence {qlz0, l =
1,2, . . .}which are the poles of f (z). Since kl =ml k0→
∞, as l →∞, and since f (z) does not have essential
singularities in the finite plane, we conclude |qlz0| →
∞, as l→∞. In fact, |qlz0|= |z0|↛∞ since |q|= 1.
It is a contradiction.

Thus, part (i) is proved.

(ii) 1⃝: Suppose that f , the solution of (3), is
transcendental entire. Our conclusion holds for the
cases.
Case 1: |q| > 1. By a similar method as Case 1 in (i),
we have (9). Iterating (9), we have

log M(|q| j r, f (z))⩾ m j log M(r, f (z))+ E j(r), (13)

where

|E j(r)|=
�

�m j−1 g(r)+m j−2 g(|q|r)+ · · ·+ g(|q| j−1r)
�

�

⩽ Km j−1
j−1
∑

k=0

log(|q|k r)
mk

⩽ Km j−1
∞
∑

k=0

log(|q|k r)
mk

.

Since log(|q|k r) = log |q|k + log r ⩽ (log r)(log |q|k) for
sufficiently large r and k, we have

∞
∑

k=0

log(|q|k r)
mk

⩽
∞
∑

k=0

(log r)(log |q|k)
mk

= log r log |q|
∞
∑

k=0

k
mk

.

Obviously, the series
∑∞

k=0
k

mk is convergent. Suppose
that
∑∞

k=0
k

mk converges to I . It follows that |
∑n1

k=0
k

mk−
I | < 1 for sufficiently large n1. So,

∑∞
k=0

k
mk ⩽ |I |+ 1.

Hence

|E j(r)|⩽ Km j−1 log r log |q|(|I |+1) = K
′
m j log r, (14)

where K
′
= K(|I | + 1)log |q|/m. Since f is transcen-

dental entire, we get log M(r, f ) ⩾ 2K ′ log r for large
enough r. By (13) and (14), there exists r0 ⩾ e such
that for r ⩾ r0,

log M(|q| j r, f (z))⩾ K ′m j log r. (15)
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Thus, for each sufficiently large s, there exists a j ∈
N such that s ∈ [|q| j r0, |q| j+1r0), i.e., j > log s−log(|q|r0)

log |q| .
Therefore, (15) implies

log M(s, f (z))⩾ log M(|q| j r0, f (z))

⩾ K ′m j log r0 ⩾ K ′′mlog s/log |q|,

where K ′′ = K ′ log r0m−log(|q|r0)/log |q|.
Suppose now that f , the solution of (3), is

meromorphic with finitely many poles. Then there
exists a polynomial P(z) such that F(z) = P(z) f (z)
is entire. Using the same reasoning as above and
Case 2 in (i), we obtain that for sufficiently large r,
log M(r, f ) = log M(r, F)+O(1)⩾ (K ′′−ϵ)mlog r/log |q| =
K ′′′mlog r/log |q|, where K ′′′(> 0) is some constant.
Case 2: |q|< 1. Set q1 = 1/q. Then |q1|> 1. (3) yields

f (z/q1)+ f (q1z) =
P(z, f (z))
Q(z, f (z))

.

By the same reasoning as Case 1, we obtain

log M(r, f )⩾ Kmlog r/log |q1| = Kmlog r/| log |q||.

From Case 1 and Case 2, we have

log M(r, f )⩾ Kmlog r/| log |q||.

Finally, since Kmlog r/| log |q|| ⩽ log M(r, f ) ⩽ 3T (2r, f )
for all r ⩾ r0, we get µ( f )⩾ log m/| log |q||.

Thus, part 1⃝ is proved.
2⃝: Suppose that f , the solution of (3), is mero-

morphic with infinitely many poles. Since ai(z) (i =
0,1, . . . , p), bn(z) (n = 0, 1, . . . , d) are polynomials,
there are two constants R> 0 and M > 0 such that all
nonzero zeros of ai(z) (i = 0,1, . . . , p) and bn(z) (n =
0,1, . . . , d) are in D1 = {z : M ⩽ |z| ⩽ R}. Set D = {z :
|z|> R}.

Since f (z) has infinitely many poles, there exists a
pole z0(∈ D) of f (z) having multiplicity k0 ⩾ 1. Then
the right-hand side of (3) has a pole of multiplicity mk0
at z0. Thus, there exists at least one index l1 ∈ {q, 1/q}
such that l1z0 is a pole of f (z) of multiplicity k1 =mk0.

Without loss of generality, suppose that |q|> 1. We
need to discuss the following two cases.
Case 1: If l1 = q, then qz0 is a pole of f (z) of
multiplicity k1 and qz0 ∈ D. Substitute qz0 for z in (3)
to obtain (11). By (11) and m= p−d ⩾ 2, we conclude
that q2z0 is a pole of f (z) of multiplicity k2 =m2k0. By
a similar method as Case 3 in (i), we obtain that qlz0(∈
D) is a pole of f (z) of multiplicity kl =ml k0. Thus, we
find a sequence {q jz0 ∈ D, j = 0, 1,2, . . .}which are the
poles of f (z). Since k j = m jk0 →∞, as j→∞, and
since f (z) does not have essential singularities in the
finite plane, we conclude |q jz0| →∞, as j→∞. For
sufficiently large j, say j > j0, we obtain

m jk0 ⩽ k0(1+m+ · · ·+m j)

⩽ n(|q jz0|, f ) = n(|q| j |z0|, f ). (16)

Thus, for each large enough r, there exists a j ∈N such
that r ∈ [|q| j |z0|, |q| j+1|z0|). We obtain by (16) that

n(r, f )⩾ m jk0 ⩾ k0m(log r−log |qz0|)/log |q| = Kmlog r/ log |q|,

where K = k0m−log |qz0|/log |q|.
Case 2: We can affirm that l1 = 1/q is impossible. On
the contrary, suppose that l1 = 1/q. Set q1 = 1/q and
deg ap = A(⩾ 0). Since z0 ∈ D, we know that z0/q =
q1z0 has two possibilities:
(a): If q1z0 ∈ D1, this process will be terminated

and we have to choose another pole z0 of f (z) in the
way we did above.
(b): If q1z0 ̸∈ D1, then q1z0 is a pole of f (z) of

multiplicity k1 = mk0, since the right-hand side of (3)
has a pole of multiplicity mk0 at z0.

If q1z0 ̸∈ D∪ D1, that is 0 < |q1z0| < M , then we
choose pole z0 of f (z) and substitute q1z0 for z in (3).

If q1z0 ∈ D, that is |q1z0| > R, replacing z by q1z0
in (3) to obtain

f (z0)+ f (q2
1z0) =

a0(q1z0)+ · · ·+ ap(q1z0) f p(q1z0)

b0(q1z0)+ · · ·+ bd(q1z0) f d(q1z0)
.

By the above equality, it concludes that q2
1z0 is a pole

of f (z) of multiplicity k2 = mk1 = m2k0.
If q2

1z0 ∈ D1, this process will be terminated and
we have to choose another pole z0 of f (z) in the way
we did above.

If q2
1z0 ∈ D, then the right-hand side of (3) has a

pole of multiplicity mk2 at q2
1z0.

Replacing z by q2
1z0 in (3), it concludes that q3

1z0

is a pole of f (z) of multiplicity k3 = mk2 = m3k0.
We proceed to follow the steps (a) and (b) as

above. Since there are infinitely many poles of f (z)
in D, we will find a pole z0(∈ D) of f (z) such that
qn1

1 z0(∈ D) is a pole of f (z) of multiplicity kn1
=mn1 k0.

And z0 satisfies qn1+1
1 z0 ∈ D1. By (3) and m= p−d ⩾ 2,

we conclude that qn1+1
1 z0 is a pole of f (z) of multiplicity

k(n1+1) = mkn1
= mn1+1k0.

Replacing z by qn1+1
1 z0 in (3) to obtain

f
�

qn1
1 z0

�

+ f
�

qn1+2
1 z0

�

=
a0

�

qn1+1
1 z0

�

+ · · ·+ ap

�

qn1+1
1 z0

�

f p
�

qn1+1
1 z0

�

b0

�

qn1+1
1 z0

�

+ · · ·+ bd

�

qn1+1
1 z0

�

f d
�

qn1+1
1 z0

� . (17)

The right-hand side of (17) has a pole of multi-
plicity at least pk(n1+1) − A− dk(n1+1) = mk(n1+1) − A

at qn1+1
1 z0. Without loss of generality, suppose that

the right-hand side of (17) has a pole of multiplicity
mk(n1+1)−A at qn1+1

1 z0.
In the left-hand side of (17), f (qz) has a pole of

multiplicity kn1
= mn1 k0 at qn1+1

1 z0. By m ⩾ 2, when

n1 > max
¦

log A−log(m2−1)k0
log m , 1
©

, we have mk(n1+1) − A=
mn1+2k0−A> mn1 k0. Thus mk(n1+1)−A> kn1

.
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Hence, by (17), it concludes that qn1+2
1 z0(∈ D1) is

a pole of f (z) of multiplicity k(n1+2) = mk(n1+1) − A=
mn1+2k0−A.

Replacing z by qn1+2
1 z0 in (3) to obtain

f
�

qn1+1
1 z0

�

+ f
�

qn1+3
1 z0

�

=
a0

�

qn1+2
1 z0

�

+ · · ·+ ap

�

qn1+2
1 z0

�

f p
�

qn1+2
1 z0

�

b0

�

qn1+2
1 z0

�

+ · · ·+ bd

�

qn1+2
1 z0

�

f d
�

qn1+2
1 z0

� . (18)

The right-hand side of (18) has a pole of multi-
plicity at least pk(n1+2) − A− dk(n1+2) = mk(n1+2) − A

at qn1+2
1 z0. Without loss of generality, suppose that

the right-hand side of (18) has a pole of multiplicity
mk(n1+2)−A at qn1+2

1 z0.
In the left-hand side of (18), f (qz) has a pole

of multiplicity k(n1+1) = mn1+1k0 at qn1+2
1 z0. By

m⩾ 2, when n1 >max
¦

log A−log(m−1)k0
log m −1,1
©

, we have

mkn1+2 − A = mn1+3k0 − A(m + 1) > mn1+1k0. Thus
mk(n1+2)−A> k(n1+1).

Hence, by (18), it concludes that qn1+3
1 z0 is a

pole of f (z) of multiplicity k(n1+3) = mk(n1+2) − A =
m(mn1+2k0−A)−A= mn1+3k0−A(m+1).

We proceed to follow the step as above. We
conclude that qn1+n2

1 z0 is a pole of f (z) of multiplicity
k(n1+n2) = mn1+n2 k0 − A(mn2−2 + · · ·+m+ 1) such that
0<
�

�qn1+n2
1 z0

�

�< M , that is qn1+n2
1 z0 ̸∈ D∪ D1.

Set k := k(n1+n2) =mn1+n2 k0−A(mn2−2+· · ·+m+1).
Then

k =
mn2−1

m−1
[(m−1)mn1+1k0−A]+

A
m−1

.

When n2 ⩾ 2 and n1 > max
¦

log(A+1)−log(m−1)k0
log m −1,1

©

,

we get (m−1)mn1+1k0 > A+1, that is (m−1)mn1+1k0−
A> 1. Hence k ⩾ 1.

Set z1 := qn1+n2
1 z0(0 < |q

n1+n2
1 z0| < M). Then z1 is

a pole of f (z) of multiplicity k ⩾ 1. In particular, when
n1 = 1 and n2 = 0, then z1 = q1z0 is a pole of f (z) of
multiplicity k = k1 = mk0.

Applying the same reasoning as Case 1, we will
find that ql

1z1(̸∈ D∪D1) is a pole of f (z) of multiplicity
kl = ml k. Thus, there exists a sequence {ql

1z1, l =
1,2, . . .} which are the poles of f (z). We conclude
ql

1z1 → 0 as l →∞ since |q1| < 1. Therefore, f (z)
is not a meromorphic function. It is a contradiction.

From Case 1 and Case 2, when |q| ̸= 1, we obtain

n(r, f )⩾ Kmlog r/| log |q||.

Finally, since Kmlog r/| log |q|| ⩽ n(r, f ) ⩽
1

log 2 N(2r, f ) ⩽ 1
log 2 T (2r, f ) for all r ⩾ r0, we

immediately obtain µ( f )⩾ log m/| log |q||.
Thus, Theorem 4 is proved.

The proof of Corollary 1

Without loss of generality, suppose that the coefficients
ai(z) (i = 0,1, . . . , p) and bn(z) (n = 0,1, . . . , d) in (1)
are polynomials. On the contrary, suppose that (1) has
a transcendental entire solution f .

Denote |q| = max{|q1|, . . . , |qn|}. Obviously 0 <
|q| ⩽ 1 since 0 < |q j | ⩽ 1 ( j = 1, . . . , n). Note that
M(r, f (qz)) = M(|q|r, f ) for z satisfying |z| = r. It
concludes that

M
�

r,
P(z, f (z))
Q(z, f (z))

�

= M

�

r,
n
∑

j=1

f (q jz)

�

⩽ M (|q|r, nf (z))⩽ C M(|q|r, f (z)), (19)

when r is large enough, where C is a positive constant.
Applying the same reasoning as Case 1 in (i) of Theo-
rem 4, we obtain (8). Thus, we have by (8) and (19)
that

log M(r, f (z))⩾ log M(|q|r, f (z))
⩾ m log M(r, f (z))+ g(r),

where |g(r)| < K log r for some K > 0, when r is
sufficiently large. It is a contradiction since m⩾ 2.

Corollary 1 is proved.

THE EXISTENCE OF MEROMORPHIC SOLUTION
OF LINEAR q -DIFFERENCE EQUATION

Bergweiler et al [16] studied the existence and proper-
ties of transcendental meromorphic solution of linear
q-difference equation. They obtained the following
results.

Theorem 5 ([16]) Let a0(z), . . . , an+1(z) be polynomi-
als without common zeros and 0< |q|< 1. Suppose that
the equation

a0(z) f (z)+a1(z) f (qz)+· · ·+an(z) f (q
nz) = an+1(z) (20)

possesses a transcendental entire solution f (z). Then
there is some j, 1 ⩽ j ⩽ n, such that deg a0(z) <
deg a j(z).

Theorem 6 ([16]) Suppose that the coefficients
a0(z), . . . , an+1(z) in (20) are meromorphic and of finite
order ⩽ ρ and 0 < |q| < 1. Then the meromorphic
solution f (z) of (20) is of finite order σ( f ) ⩽ ρ. In
addition, if σ(an+1)> σ(a j) for all j = 0, 1, . . . , n, then
σ( f ) = σ(an+1).

Remark 2 ([10]) If the coefficients in (20) are con-
stants, then (20) has no transcendental meromorphic
solution.

In Theorem 3, we see that n ⩾ 2 is necessary. A
natural question is: what is the result when n = 1 in
Theorem 3? Corresponding to this question, we get
Theorem 7.
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Theorem 7 Consider q-difference equation

f (qz)+ f (z/q) = b(z) f (z)+ a(z), (21)

where q ∈ C\{0}, |q| ≠ 1.
(i) If a(z) and b(z) = M(z)/N(z) are irreducible ratio-

nal functions satisfying deg M(z) ⩽ deg N(z), then
(21) does not possess transcendental meromorphic
solution with finitely many poles.

(ii) Suppose that a(z) and b(z) = M(z)/N(z) are non-
constant irreducible rational functions satisfying
deg M(z) ⩽ deg N(z). If (21) has a transcendental
meromorphic solution f (z), then f (z) has infinitely
many poles and σ( f )⩾ 1.

(iii) Suppose that a(z) and b(z) are meromorphic and
of finite order ⩽ ρ. Then the meromorphic solution
f (z) of (21) is of finite orderσ( f )⩽ρ. In addition,
if σ(a(z))> σ(b(z)), then σ( f ) = σ(a(z)).

Remark 3 In particular, if a(z) and b(z) are complex
constants, then (21) has no transcendental meromor-
phic solution.

Proof : (i): Without loss of generality, suppose that a(z)
is a polynomial.

On the contrary, suppose that (21) possesses
a transcendental meromorphic solution f (z) with
finitely many poles. Our conclusion holds for the cases.
Case 1: 0 < |q| < 1. We only need to discuss the
following two subcases.
Subcase 1: Suppose that f (z) is transcendental entire.
(21) yields

N(z) f (qz)+N(z) f (z/q) = M(z) f (z)+N(z)a(z).

Thus, we obtain

N(qz) f (q2z)−M(qz) f (qz)+N(qz) f (z)=N(qz)a(qz). (22)

Obviously, deg M(qz) ⩽ deg N(qz). Without loss of
generality, suppose that polynomials M(qz), N(qz) and
a(qz) have no common zeros. By Theorem 5 and (22),
we conclude a contradiction.
Subcase 2: Suppose that f (z) is meromorphic with
finitely many poles. Then there is a polynomial P(z)
such that g(z) = P(z) f (z) is entire. Substituting
f (z) = g(z)/P(z) into (22), we will get

a2(z)g(q
2z)+ a1(z)g(qz)+ a0(z)g(z) = a3(z),

where a0(z) = P(q2z)P(qz)N(qz), a1(z) = −P(q2z)
P(z)M(qz), a2(z) = P(qz)P(z)N(qz), a3(z) = P(q2z)
P(qz)P(z)N(qz)a(qz). Obviously, deg a0(z) =
deg a2(z) ⩾ deg a1(z). Using the same reasoning
above to g(z), we conclude a contradiction.
Case 2: |q|> 1. Set q1 = 1/q. Then 0< |q1|< 1. (21)
shows

f (z/q1)+ f (q1z) = b(z) f (z)+ a(z). (23)

Applying the same reasoning as Case 1, the result is
obtained.

(ii): Without loss of generality, suppose that a(z)
is a polynomial.

Suppose that f (z) is a meromorphic solution of
(21). By (i), f (z) has infinitely many poles. Similarly
as (i), we can get (22). Since M(qz), N(qz) and
a(qz) are polynomials, there is a constant R > 0 such
that all zeros of M(qz), N(qz) and a(qz) are not in
D = {z : |z| > R}. Without loss of generality, suppose
that |q|> 1.

Since f (z) has infinitely many poles, there is a pole
z0(∈ D) of f (z) having multiplicity k0 ⩾ 1. Then the
left-hand side of (22) has a pole of multiplicity k0 at z0.
Hence, there exists at least one index l1 ∈ {1,2} such
that ql1 z0 is a pole of f (z) of multiplicity k0. Replacing
z by ẑ := ql1 z0 in (22), we obtain

N(qẑ) f (q2ẑ)−M(qẑ) f (qẑ)+N(qẑ) f (ẑ)=N(qẑ)a(qẑ). (24)

Since |ql1 z0| > |z0|, the all coefficients of (24) cannot
have a zero at ẑ = ql1 z0. Thus, the left-hand side of (24)
has a pole of f (z) of multiplicity k0 at ql1 z0. Hence,
there exists at least one index l2 ∈ {1,2} such that
ql1+l2 z0 is a pole of f (z) of multiplicity k0.

Similarly, ql1+l2+···+ln z0(∈ D) is a pole of f (z)
of multiplicity k0. Thus, there exists a sequence
{ql1+l2+···+l j z0 ∈ D, j = 1, 2, . . .} which are the poles of
f (z). So, σ( f )⩾ λ(1/ f )⩾ 1.

(iii): We only need to discuss the following two
cases.
Case 1: 0 < |q| < 1. Then σ(b(qz)) ⩽ σ(b(z)) and
σ(a(qz))⩽ σ(a(z)). (21) yields

f (q2z)− b(qz) f (qz)+ f (z) = a(qz). (25)

Applying Theorem 6 to (25), the results is proved.
Case 2: |q| > 1. Set q1 = 1/q. Then 0 < |q1| < 1. By
(21), we have (23). Applying the same reasoning as
Case 1, the result is obtained.

Thus, Theorem 7 is proved. 2

THE GROWTH OF MEROMORPHIC SOLUTIONS OF
q -DIFFERENCE PAINLEVÉ EQUATION I

Recently, some authors investigated zero order mero-
morphic solutions of q-difference equations [8, 11, 14,
15]. Qi and Yang [13] considered q-difference Painlevé
equation I, and obtained the following Theorem 8.

Theorem 8 ([13]) Let f (z) be a transcendental mero-
morphic solution with zero order of equation

f (qz)+ f (z/q) =
az+ b
f (z)

+ c,

where a, b, c are three constants such that cannot vanish
simultaneously. Then,
(i) f (z) has infinitely many poles;
(ii) if a ̸= 0, then f (z) has infinitely many finite values;
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(iii) if a= 0 and f (z) takes a finite value A finitely often,
then A is a solution of 2z2− cz− b = 0.

In Theorem 8, if c = 0, what do we get? In the
following, we will answer this question. We investigate
the growth of transcendental meromorphic solutions
of q-difference Painlevé equation f (qz) + f (z/q) =
A(z)/ f (z) and find lower bounds for the order of tran-
scendental meromorphic solutions for such equation.
We obtain the following result.

Theorem 9 Let A(z) = t(z)/s(z)(̸≡ 0) be an irreducible
rational function. Suppose that f (z) is a transcendental
meromorphic solution of q-difference equation

f (qz)+ f (z/q) =
A(z)
f (z)

, (26)

where q ∈ C\{0}, |q| ≠ 1. Then σ( f )⩾ 1.

From Theorem 9, we conclude that the (26) has
no zero order transcendental meromorphic solution.

We need the following lemmas to prove Theo-
rem 9.

Lemma 1 Let f (z) be a transcendental meromorphic
function with σ( f )< 1, and q ∈ C\{0}, |q| ≠ 1. Then

g(z) = f (qz) f (z) (27)

is transcendental.

Proof : On the contrary, we suppose that g(z) is a
rational function. There is a constant R > 0 such that
all zeros and poles of g(z) are not in D = {z : |z|> R}.

Without loss of generality, suppose that |q| > 1.
Sinceσ( f )< 1, f (z) has infinitely many poles or zeros.
Our conclusion holds for the cases.
Case 1: If f (z) has infinitely many poles, there exists
pole z0(∈ D) of f (z) having multiplicity k⩾ 1. By (27),
qz0 is a zero of f (z) and qz0 ∈ D. Substitute qz0 for z
in (27) to obtain

g (qz0) = f (q2z0) f (qz0). (28)

By (28) and f (qz0) = 0, we have f (q2z0) =∞ and
q2z0 ∈ D.

Similarly, q2nz0(∈ D) is a pole of f (z). Thus, there
is a sequence {q2nz0 ∈ D, n= 0, 1,2 . . .} which are the
poles of f (z). Thus, λ (1/ f )⩾ 1. It is a contradiction.
Case 2: If f (z) has infinitely many zeros, there is a
zero z1(∈ D) of f (z). By (27), it concludes that qz1 is
a pole of f (z) and qz1 ∈ D. Replacing z by qz1 in (27)
to obtain

g (qz1) = f (q2z1) f (qz1). (29)

By (29) and f (qz1) =∞, we get f (q2z1) = 0 and
q2z1 ∈ D.

Similarly, {q2mz1 ∈ D, m = 0,1, 2, . . .} is a zero
sequence of f (z). Thus, λ( f )⩾ 1. It is a contradiction.

Thus, g(z) is transcendental. 2

Lemma 2 Let g1(z), g2(z) (̸≡ 0) and h(z) (̸≡ 0) be
rational functions, q1, q2 (|q1| ≠ |q2|) be nonzero com-
plex constants. Suppose that f (z) be a transcenden-
tal meromorphic solution with infinitely many poles of
q-difference equation

g2(z) f (q1z)+ g1(z) f (q2z) = h(z). (30)

Then σ( f )⩾ 1.

Proof : Our conclusion holds for the cases.
Case 1: |q1| > |q2|. Set q = q1/q2. Then |q| > 1. (30)
yields

g2

�

z
q2

�

f (qz)+ g1

�

z
q2

�

f (z) = h
�

z
q2

�

. (31)

Since h(z), gi(z) (i = 1, 2) are rational, there is a
constant R> 0 such that all zeros and poles of h(z/q2),
gi(z/q2) (i = 1, 2) are not in D = {z : |z|> R}.

Since f (z) has infinitely many poles, there exists a
pole z0(∈ D) of f (z) having multiplicity k⩾ 1. By (31),
we conclude that qz0 is a pole of f (z) of multiplicity k
and qz0 ∈ D. Replacing z by qz0 in (31) to obtain

g2

�

qz0

q2

�

f
�

q2z0

�

+g1

�

qz0

q2

�

f (qz0) = h
�

qz0

q2

�

. (32)

By (32) and f (qz0) =∞, we conclude that q2z0 is a
pole of f (z) of multiplicity k and q2z0 ∈ D.

Similarly, qnz0(∈ D) is a pole of f (z) of multiplicity
k. Thus, there is a sequence {q jz0 ∈ D, j = 0,1, 2, . . .}
which are the poles of f (z). So, σ( f )⩾ λ(1/ f )⩾ 1.
Case 2: |q1| < |q2|. Set q = q2/q1. Then |q| > 1. (30)
implies

g2

�

z
q1

�

f (z)+ g1

�

z
q1

�

f (qz) = h
�

z
q1

�

. (33)

Using the same method as Case 1, we get σ( f )⩾ 1.

The proof of Theorem 9

On the contrary, we suppose that f (z) is a transcen-
dental meromorphic solution of (26) and σ( f )< 1.

Without loss of generality, suppose that 0< |q|< 1.
(26) implies

f (qz) f (z)+ f (z) f (z/q) =
t(z)
s(z)

. (34)

Set y(z) = f (qz) f (z). From Remark 1, we get σ(y)⩽
σ( f ) < 1. By Lemma 1, it concludes that y(z) is
transcendental. By (34), we obtain

s(z)y(z)+ s(z)y(z/q) = t(z).

That is

s(qz)y(qz)+ s(qz)y(z) = t(qz). (35)
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Similarly to the proof of Theorem 7, (35) has no tran-
scendental meromorphic solution with finitely many
poles. So, if y(z) is a transcendental meromorphic
solution of (35), then y(z) has infinitely many poles.
By Lemma 2 and (35), we get σ(y) ⩾ 1. This is a
contradiction.

Thus, Theorem 9 is proved. 2

Acknowledgements: This research is supported by the Na-
tional Natural Science Foundation of China (No. 11861023),
and the Foundation of Science and Technology Project
of Guizhou Province of China (No. QIANKEHEJICHU-
ZK[2021]Ordinary313).

REFERENCES

1. Hayman WK (1964) Meromorphic Functions, Clarendon
Press, Oxford.

2. Yang L (1982) Value Distribution Theory and Its New
Research, Science Press, Beijing.

3. Chen ZX, Shon KH (2019) On existence of solutions of
difference Riccati equation. Acta Math Sci 39, 139–147.

4. Peng CW, Chen ZX (2014) Properties of meromorphic
solutions of some certain difference equations. Kodai
Math J 37, 97–119.

5. Xu HY, Liu SY, Li QP (2020) Entire solutions for several
systems of nonlinear difference and partial differential-
difference equations of Fermat-type. J Math Anal Appl
483, 123641.

6. Xu HY, Wang H (2021) Notes on the existence of entire
solutions for several partial differential-difference equa-
tions. Bull Iran Math Soc 47, 1477–1489.

7. Chen MF, Gao ZS, Zhang ZL (2022) Meromorphic so-
lutions of some types of q-difference differential equa-
tion and delay differential equation. ScienceAsia 48,
107–114.

8. Du YF, Gao ZS, Zhang JL, Zhao M (2018) Existence
of zero order meromorphic solutions of certain q-
difference equations. J Inequal Appl 217, 217.

9. Jiang YY, Chen ZX (2013) On solutions of q-difference
Riccati equations with rational coefficients. Appl Anal
Discr Math 7, 314–326.

10. Bergweiler W, Ishizaki K, Yanagihara N (1999) Mero-
morphic solutions of some functional equations. Meth-
ods Appl Anal 6, 248–258.

11. Zhang JL, Korhonen RJ (2010) On the Nevanlinna char-
acteristic of f (qz) and its applications. J Math Anal Appl
369, 537–544.

12. Peng CW, Huang HW (2020) The growth of meromor-
phic solutions for q-difference Painlevé IV equation. J
Math Anal Appl 492, 1–14.

13. Qi XG, Yang LZ (2015) Properties of meromorphic solu-
tions of q-difference equations. Electron J Differ Equ 59,
1–9.

14. Xu HY, San YL, Zheng XM (2017) Some properties
of meromorphic solutions for q-difference equations.
Electron J Differ Equ 175, 1–12.

15. Zhao PJ, Xu HY (2018) Some properties of solutions for
some q-difference equations containing Painlevé equa-
tion. J Funct Space 2018, 8318570.

16. Bergweiler W, Ishizaki K, Yanagihara N (2002) Growth
of meromorphic solutions of some function equations. I
Aequationes Math 63, 140–151.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.1007/s10473-019-0111-z
http://dx.doi.org/10.1007/s10473-019-0111-z
http://dx.doi.org/10.2996/kmj/1396008250
http://dx.doi.org/10.2996/kmj/1396008250
http://dx.doi.org/10.2996/kmj/1396008250
http://dx.doi.org/10.1016/j.jmaa.2019.123641
http://dx.doi.org/10.1016/j.jmaa.2019.123641
http://dx.doi.org/10.1016/j.jmaa.2019.123641
http://dx.doi.org/10.1016/j.jmaa.2019.123641
http://dx.doi.org/10.1007/s41980-020-00453-y
http://dx.doi.org/10.1007/s41980-020-00453-y
http://dx.doi.org/10.1007/s41980-020-00453-y
http://dx.doi.org/10.2306/scienceasia1513-1874.2022.027
http://dx.doi.org/10.2306/scienceasia1513-1874.2022.027
http://dx.doi.org/10.2306/scienceasia1513-1874.2022.027
http://dx.doi.org/10.2306/scienceasia1513-1874.2022.027
http://dx.doi.org/10.1186/s13660-018-1790-z
http://dx.doi.org/10.1186/s13660-018-1790-z
http://dx.doi.org/10.1186/s13660-018-1790-z
http://dx.doi.org/10.2298/AADM130722015J
http://dx.doi.org/10.2298/AADM130722015J
http://dx.doi.org/10.2298/AADM130722015J
http://dx.doi.org/10.4310/MAA.1998.V5.N3.A2
http://dx.doi.org/10.4310/MAA.1998.V5.N3.A2
http://dx.doi.org/10.4310/MAA.1998.V5.N3.A2
http://dx.doi.org/10.1016/j.jmaa.2010.03.038
http://dx.doi.org/10.1016/j.jmaa.2010.03.038
http://dx.doi.org/10.1016/j.jmaa.2010.03.038
http://dx.doi.org/10.1155/2018/8318570
http://dx.doi.org/10.1155/2018/8318570
http://dx.doi.org/10.1155/2018/8318570
http://dx.doi.org/10.1007/s00010-002-8012-x
http://dx.doi.org/10.1007/s00010-002-8012-x
http://dx.doi.org/10.1007/s00010-002-8012-x
www.scienceasia.org

