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ABSTRACT: We study the application of WG inverse to a constrained matrix approximation problem to deduce the
unique solution of the problem, and get characterizations of WG inverse by applying matrix decompositions. Moreover,
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INTRODUCTION

In this paper, Cn,n denotes the set of n×n matrices with
complex entries; M∗, R (M), and Ind (M) represent
the conjugate transpose, range space, and index of
M ∈ Cn,n, respectively. In particular,

CCM
n =
�

M | M ∈ Cn,n, rank(M2) = rank(M)
	

.

The symbols M#, M d and M† denote the group,
Drazin and Moore-Penrose inverses of M , respectively
(see [1, 2]). The symbol M †⃝ denotes the core-EP
inverse of M , which is the unique matrix satisfying
X MX = X , X M k+1 = M k, (MX )∗ = MX , and R(X ) ⊆
R
�

M k
�

, where k = Ind(M) (see [3]). When k = 1,
X is called the core inverse of M , and is denoted by
X = M #⃝ (see [4]). Obviously, the core-EP inverse
is a generalization of the core inverse for matrix of
arbitrary index.

Let M ∈ Cn,n, rank
�

M k
�

= r and Ind(M) = k. The
core-EP decomposition of M is

M = M1+M2, (1)

where M1 ∈ CCM
n , M k

2 = 0, and M∗1 M2 = M2M1 = 0.
Here one or both of M1 and M2 can be null (see [5]).
It is easy to check that there exists an n-square unitary
matrix U such that

M1 = U
�

T S
0 0

�

U∗ and M2 = U
�

0 0
0 N

�

U∗, (2)

where S ∈ Cr,n−r , T ∈ Cr,r is a nonsingular matrix,
N ∈ Cn−r,n−r , and N k = 0. The well-known C-N
decomposition of M is

M =ÓM1+ÓM2,

where ÓM1 ∈ CCM
n , ÓM2

k
= 0, and ÓM1ÓM2 =ÓM2ÓM1 = 0.

Here one or both ofÓM1 andÓM2 can be null (see [2]).

It is easy to check that there exists a nonsingular matrix
P such that

ÓM1 = P
�

bT 0
0 0

�

P−1 and ÒM2 = P
�

0 0
0 ÒN

�

P−1,

where bT ∈ Cr,r is invertible, ÒN ∈ Cn−r,n−r is nilpotent,
and ÒN k = 0.

In [6, Theorem 2.3], we see that

M †⃝ = M d M k
�

M k
�†

. (3)

Furthermore, by applying (3), we get

M †⃝ = M #⃝
1 = ÒM

#⃝
1 .

It is worth noting that when the group inverse is
applied to M1 and ÒM1, respectively, the two results
are different. The well-known Drazin inverse M d is
the group inverse of ÒM1. The weak group inverse (for
short, WG inverse) of M is the group of M1. The WG
inverse is introduced by Wang and Chen in [7], which
is the unique matrix satisfying
�

2l
�

MX 2 = X , (3c) MX = M †⃝M . (4)

The WG inverse is a new type of generalized group
inverse and is different from other generalized group
inverses. In [7], by applying the core-EP decomposi-
tion, the authors proved that (4) is consistent and the
WG inverse M W⃝ is the unique solution of (4),

M W⃝ = U
�

T−1 T−2S
0 0

�

U∗. (5)

In addition, the authors gave the following characteri-
zations of WG inverse:

M W⃝ = M k
�

M k+2
� #⃝

M =
�

M2PM k

�†
M

= (M M †⃝M)# = (M †⃝)2 M

=
�

M2
� †⃝

M . (6)
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Furthermore, when M ∈ CCM
n , it is obvious that

M †⃝ = M ♯. (7)

In recent years, a number of mathematicians are
interested in the WG inverse. Ferreyra et al [8] ex-
tended the notion of WG inverse to rectangular matrix
M ∈ Cm,n, introduced the W -weighted WG inverse
of M and denoted it by M W⃝,W. It is easy to see
that when m = n and W = In, the W -weighted WG
inverse is simplified to the WG inverse. Mosić and
Stanimirović [9] gave limit representation, integral
representation and perturbation formulae for the WG
inverse. Yan et al [10] derived some new characteris-
tics and properties of the WG inverse. Xu et al [11]
introduced a generalizated WG inverse. Mosić and
Zhang [12] studied a Weighted WG inverse for Hilbert
space operators. Zhou et al [13, 14] considered WG
inverse in proper ∗-rings and characterized the in-
verse by equations. Furthermore, by applying WG
inverse, Wang and Liu [15] introduced the WG matrix,
denoted the set of all WG matrices by CWG

n : CWG
n =

�

M | M ∈ Cn,n, M W⃝M = M M W⃝
	

, and proved

CCM
n ⊆ C

WG
n .

Ferreyra et al [16] introduced the weak core inverse
of M ∈ Cn,n, denoted it by M W⃝,†, and M W⃝,† = M W⃝PM ,
where PM = M M†; and defined the concept of weak
core matrix. Denote the set of all weak core matrices
by CWC

n : CWC
n =
�

M | M ∈ Cn,n, M W⃝,† = M d,†
	

, in which
M d,† is the DMP inverse of M , and M d,† = M d M M†. It
is noteworthy that CWG

n is a proper subset of CWC
n :

CWG
n ⊆ C

WC
n , (see [16]).

With in-depth research, we see more and more proper-
ties, characterizations and applications of WG inverse.

It is widely known that generalized inverse is one
of the most often used and the most effective tools
in many classes of inconsistent (or consistent) matrix
equations. For example, Penrose [17] proved that the
minimum-norm least-squares solution of

M x = b

is unique and x = M† b. Campbell and Meyer [18]
showed that x = M d b is the unique solution of the
consistent constrained matrix equation

M x = b subject to x ∈ R
�

M k
�

,

where k = Ind(M) and b ∈ R
�

M k
�

. By applying core
inverse, Wang and Zhang [19] studied the constrained
matrix approximation problem: ∥M x − b∥F = min
with respect to x ∈ R(M), and gave the unique solu-
tion x = M #⃝b, where M ∈CCMn . Ji, Mosić et al [20, 21]

studied the constrained matrix approximation prob-
lem:

min∥M x − b∥2F subject to x ∈ R
�

M k
�

, (8)

and gave the unique solution

x = M †⃝b, (9)

where k is the index of M . In this paper, we consider
the application of WG inverse to a constrained best
approximation problem, give the unique solution by
applying WG inverse, and get several characterizations
of the WG inverse.

APPLICATION OF WG INVERSE TO A
CONSTRAINED MATRIX EQUATION

Let M ∈ Cn,n with rank
�

M k
�

= r and Ind(M) = k.
And let the core-EP decomposition of M have the form
described in (1), and M1 and M2 be as given in (2),
then

M k = U
�

T k
bT

0 0

�

U∗ (10)

and

M k+2 = U
�

T k+2
eT

0 0

�

U∗, (11)

where bT = T k−1S+T k−2SN+· · ·+TSN k−2+SN k−1 and
eT = T 2
bT .

Consider the constrained matrix equation

M2X = M D with respect to R (X ) ⊆R
�

M k
�

, (12)

in which X and D are both n-by-m matrices, and
Ind(M) = k. Since the rank of M2 is less than or equal
to the rank of M , we know that the constrained matrix
equation (12) is not always consistent. Therefore, we
study the least-squares solution of it in the Frobenius
norm.

Theorem 1 Let M ∈ Cn,n, Ind(M) = k and
rank
�

M k
�

= r. Then the least-squares solution of
(12) exists uniquely, and

X = M W⃝D. (13)

Proof : SinceR (X )⊆R
�

M k
�

, there is an n×m matrix
Y satisfying X = M kY . Then X is the least-squares
solution of (12) if and only if Y is the solution of

∥M k+2Y −M D∥2F =min . (14)

Denote

U∗Y =
�

Y1
Y2

�

and U∗D =
�

D1
D2

�

, (15)

where Y1 ∈ Cr,m and D1 ∈ Cr,m.
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By applying the core-EP decomposition of M , (2)
and (11), we have



M k+2Y −M D




2
F

=









U
�

T k+2
eT

0 0

��

Y1
Y2

�

−U
�

T S
0 N

��

D1
D2

�









2

F

=









�

T k+2Y1+ eT Y2− T D1− SD2
−N D2

�









2

F

=


T k+2Y1+eT Y2−T D1−SD2





2

F+∥N D2∥
2
F . (16)

Since T is invertible, it follows that

min
Y
∥M k+2Y −M D∥2F = ∥N D2∥2F (17)

and
Y1 = −T−(k+2)
�

eT Y2− T D1− SD2

�

, (18)

where Y2 ∈ Cn−r,m is arbitrary. Therefore, we see that
the least-squares solution of (12) exists. By applying
(5), (15), (19) and X = M kY , we get

X = M kY = U

�

T k
bT

0 0

��

−T−(k+2)
�

T 2
bT Y2−T D1−SD2

�

Y2

�

= U

�

−T k T−(k+2)
�

T 2
bT Y2 − T D1 − SD2

�

+ bT Y2

0

�

= U
�

T−1D1 + T−2SD2

0

�

= U
�

T−1 T−2S
0 0

�

U∗U
�

D1

D2

�

= M W⃝D, (19)

that is, (13) is the unique solution of (12). 2

Remark 1 When m = 1, from (8) and (9), we con-
clude that the unique solution to (12) is

X =
�

�

M2
� †⃝
�

(M D) =
�

�

M2
� †⃝

M
�

D.

By substituting (6) into the above equation, we get
X = M W⃝D.

Remark 2 When k = 1, we get that (12) is consistent:

M2X = M D with respect to R (X ) ⊆R (M) .

It is easy to give the unique solution: X =
�

M2
�#

M D.
Since the index of M is 1, we know that M2 is also
group invertible and

�

M2
�#
=
�

M#
�2

. It follows that
X = M#D. On the other hand, since the index of M
is 1, by using Theorem 1, we get X = M W⃝D = M#D.

In Theorem 1, we see that X = M W⃝D is the unique
least-squares solution of M2X = M D with respect to
R (X )⊆R
�

M k
�

. Then, it is obvious that, when D= In,
the WG inverse M W⃝ of M is the unique least-squares
solution of M2X = M with respect toR (X )⊆R

�

M k
�

.

Corollary 1 Let M ∈ Cn,n, Ind(M) = k and
rank
�

M k
�

= r. Then the WG inverse M W⃝ is the
unique least-squares solution of

M2X = M with respect to R (X ) ⊆R
�

M k
�

. (20)

Next, for R (X ) ∈ R
�

M k
�

, we obtain that X is
the least-squares solution of M2X = M with respect
to R (X ) ⊆ R

�

M k
�

if and only if Y is the least-
squares solution of M k+2Y = M . It is easy to check

that Y=
�

M k+2
�†

M+
�

In−
�

M k+2
�†

M k+2
�

Z , where Z ∈
Cn,n is arbitrary. Therefore, we get Theorem 2, by

M k
�

In−
�

M k+2
�†

M k+2
�

= 0 and X = M kY .

Theorem 2 Let M ∈ Cn,n with Ind(M) = k. Then

M W⃝ = M k
�

M k+2
�†

M . (21)

In particular, when the index of M is 1, by applying
Theorem 2, we get the well-known result: M# =
M
�

M3
�†

M . The corresponding one is

M# = M
�

M3
�(1)

M , (22)

where M (1) is any element in the set S={X |MX M=M}.
It is obvious that the Moore-Penrose of M is in the set S.
Therefore, when the index of M is 1, (21) is a special
case of (22).

In Theorem 2, since the index of M is k, we
have
�

M d
�2

M k+2 = M k and PM k = PM l+2 , where l is
a positive integer and is greater than or equal to k.
Therefore, we get Theorem 3.

Theorem 3 Let M ∈ Cn,n, Ind(M) = k and
rank
�

M k
�

= r. Then

M W⃝ =
�

M d
�2

PR(M k)M (23)

= M l
�

M l+2
�†

M , (24)

where l is greater than or equal to k.

Example 1 Let

M =





0 4 −1
−1 3 −1
−2 −2 0



 .

Then Ind(M) = 2, rank
�

M2
�

= 1, and

M2 =

�−2 14 −4
−1 7 −2
2 −14 4

�

, M4 =

�−18 126 −36
−9 63 −18
18 −126 36

�

,

�

M4
�†
=





−1/2187 −1/4374 1/2187
7/2187 7/4374 −7/2187
−2/2187 −1/2187 2/2187



 ,

M d =





−2/27 14/27 −4/27
−1/27 7/27 −2/27
2/27 −14/27 4/27



 ,
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and

PR(M2) =





4/9 2/9 −4/9
2/9 1/9 −2/9
−4/9 −2/9 4/9



 .

By applying (21) and (23), we get

M W⃝ =





2/27 10/27 −2/27
1/27 5/27 −1/27
−2/27 −10/27 2/27





= M2
�

M4
�†

M =
�

M d
�2

PR(M2)M .

Furthermore, let

D =





1 2
−1 3
0 −1



 .

Then

M D =





−4 13
−4 8
0 −10



 .

By applying Theorem 1, we get the least-squares solu-
tion of

M2X = M D with respect to R (X ) ⊆R
�

M2
�

as

X =





−8/27 4/3
−4/27 2/3
8/27 −4/3



 .

CHARACTERIZATION AND ALGORITHM OF WG
INVERSE

In this section, we deduce several characterizations of
the WG inverse by using matrix decompositions, matrix
equations and rank equalities.

The matrix equation plays an important role in
characterizing generalized inverses. In Theorem 4, we
will derive a characterization of WG inverse by using
matrix equations.

Theorem 4 Let M ∈ Cn,n with Ind(M) = k,
rank
�

M k
�

= r. Then the WG inverse of M is the
unique matrix X ∈ Cn,n satisfying the following
equations:

�

(1)
�

M k
�∗

M2X =
�

M k
�∗

M ,
(2) R(X ) ⊆R
�

M k
�

.
(25)

Proof : Let M ∈Cn,n be as given in (1) and (2). Suppose
that X satisfies the above equations, and is denoted by

X = U
�

X11 X12
X21 X22

�

U∗,

in which X11 ∈ Cr,r . Since R(X ) ⊆ R(M k), we obtain
X = M kY . Denote

Y = U
�

Y11 Y12
Y21 Y22

�

U∗,

in which Y11 ∈ Cr,r . Then, by applying (10), we get

U
�

X11 X12
X21 X22

�

U∗ = U
�

T k
bT

0 0

�

U∗U
�

Y11 Y12
Y21 Y22

�

U∗

= U
�

T kY11+ bT Y21 T kY12+ bT Y22
0 0

�

U∗.

Therefore, we obtain

X21 = 0 and X22 = 0. (26)

By applying (10) and (26) we have

(M k)∗M2X = U

�

(T k)∗ 0
bT ∗ 0

�

�

T S
0 N

�2 �X11 X12
0 0

�

U∗

= U

�

(T k)∗T 2X11 (T k)∗T 2X12
bT ∗T 2X11 bT

∗T 2X12

�

U∗,

(M k)∗M = U

�

(T k)∗ 0
bT ∗ 0

�

�

T S
0 N

�

U∗

= U

�

(T k)∗T (T k)∗S
bT ∗T bT ∗S

�

U∗. (27)

Since (M k)∗M2X = (M k)∗M and T is invertible, we
obtain that both X11 and X12 are unique, and X11 = T−1

and X12 = T−2S. Thus, it follows from (26) that

X = U
�

T−1 T−2S
0 0

�

U∗.

Therefore, by using (5), the WG inverse of M is the
unique solution of (25). 2

In [22], by applying the full-rank decomposition
and elementary matrix operation, Sheng and Xin pre-
sented one Gauss-Jordan elimination method for core
inverse. In [20] Ji and Wei generalized the algorithm
and gave an algorithm for core-EP inverse. In the
following discussion, by applying the full-rank decom-
position, we give a characterization of WG inverse, and
consider one Gauss-Jordan elimination method for WG
inverse. More details of the Gauss-Jordan elimination
method for generalized inverses can be seen in [20, 22–
25].

Theorem 5 Let M ∈ Cn,n, Ind(M) = k and
rank
�

M k
�

= r, and let M k = PQ be a full-rank
decomposition of M k. Then

M W⃝ = P
�

P∗M2P
�−1

P∗M . (28)
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Proof : Let M k = PQ be a full-rank decomposition
of M k, where P is a full column matrix, and Q is
a full row matrix. Since the index of M is k, we
have rank
�

M k
�

= rank
�

�

M k
�2�

, that is, M k is group
invertible. Therefore, QP is an r-by-r invertible matrix.

Let the core-EP decomposition of M be of the same
form as (1). Then M1 and M2 are of the forms as in (2).
By applying (10), we obtain a decomposition of M k:

M k =
�

U
�

T k

0

��

��

Ir T−k
bT
�

U∗
�

. (29)

It is obvious that the above decomposition is a
full-rank decomposition of M k, too. Write L =
��

Ir T−k
bT
�

U∗
�

P ∈ Cr,r . Since M k is group invert-
ible, we have

r = rank
�

M k
�

= rank
�

�

M k
�2�

= rank
��

U
�

T k

0

��

LQ
�

⩽ rank (L)⩽ r.

It follows that L is invertible. Therefore, there exists Y
which satisfies

P = U
�

T k

0

�

Y = U
�

T kY
0

�

, (30)

where Y=L(QP)−1=
��

Ir T−k
bT
�

U∗
�

P(QP)−1 ∈Cr,r .
Since L and QP are invertible, Y is invertible.

By applying (30), we have

P∗M2P =
�

Y ∗(T k)∗ 0
�

U∗U
�

T 2 TS+SN
0 N 2

�

U∗U
�

T kY
0

�

= Y ∗(T k)∗T 2T kY, (31)

and

P∗M =
�

Y ∗(T k)∗ 0
�

�

T S
0 N

�

U∗

=
�

Y ∗(T k)∗T Y ∗(T k)∗S
�

U∗.

Since Y and T are invertible, from (31), we con-
clude that

P∗M2P is invertible. (32)

Therefore, we get

P
�

P∗M2P
�−1

P∗M

= U
�

T kY
0

�

�

Y ∗
�

T k
�∗

T2T kY
�−1 �

Y ∗(T k)∗T Y ∗(T k)∗S
�

U∗

= U
�

Ir
0

�

(T2)−1
�

T S
�

U∗ = U
�

T−1 T−2S
0 0

�

U∗.

It follows that we get (28). 2

Example 1′ Let M be as in Example 1. We choose

P =





−2
−1
2



 .

By applying Theorem 5, we get

P∗M2P = 81, P∗M =
�

3 −15 3
�

,

and

M W⃝ = P
�

P∗M2P
�−1

P∗M

=





2/27 10/27 −2/27
1/27 5/27 −1/27
−2/27 −10/27 2/27



 .

Based on Theorem 5, by applying elementary
transformation, we give an algorithm for the WG in-
verse. By elementary column operation on M k, we get
�

P 0
�

. Then write

M =
�

P∗M2P P∗M
P 0

�

.

By elementary row operation onM , we getM1:

M =
�

P∗M2P P∗M
P 0

�

→M1 =

�

Ir

�

P∗M2P
�−1

P∗M
P 0

�

.

Furthermore, by elementary row operation onM1,
we getM2:

M1 =

�

Ir

�

P∗M2P
�−1

P∗M
P 0

�

↓

M2 =

�

Ir

�

P∗M2P
�−1

P∗M
0 −P
�

P∗M2P
�−1

P∗M

�

.

Therefore, we have M W⃝ = P
�

P∗M2P
�−1

P∗M .
In summary, we have the Gauss-Jordan elimina-

tion method for WG inverse:

Algorithm 1
Step 1: Input M , k = Ind(M) and r = rank(M k);
Step 2: Perform elementary column operations on M k

to get [P |0], where P ∈ Cn,r and rank(P) = r;
Step 3: Compute P∗M and P∗M2P, form the block

matrixM , perform elementary row operations on
the first s rows and convert it toM1;

Step 4: Perform elementary row operations on the
block matrix in M1 to getrid of all the entries
below the identity matrix Ir :M2’

Step 5: Output the WG inverse M W⃝=P
�

P∗M2P
�−1

P∗M .

Example 2 ([3, 20]) Compute the WG inverse M W⃝

for M , where

M =





1 1 −1
1 0 2
2 1 1



 .
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Then Ind(M) = 2 and rank
�

M2
�

= 1. Perform elemen-
tary column operations on

M2 =





0 0 0
5 3 1
5 3 1



 ,

then we get

P =





0
5
5



 .

Compute P∗M2P = 200 and P∗M =
�

15 5 15
�

,
then

M =
�

P∗M2P P∗M
P 0

�

=







200 15 5 15
0 0 0 0
5 0 0 0
5 0 0 0






.

In the blockmatrixM , multiply the first row by 1/200:

M =







1 3/40 1/40 3/40
0 0 0 0
5 0 0 0
5 0 0 0






.

Add the first row multiplied by −5 to the third row and
fourth row, respectively:

M =







1 3/40 1/40 3/40
0 0 0 0
0 −3/8 −1/8 −3/8
0 −3/8 −1/8 −3/8






.

Therefore, we get

M W⃝ =





0 0 0
3/8 1/8 3/8
3/8 1/8 3/8



 .

In the following Example 3, based on Theorem 5
and the above algorithm, we give an example to ex-
plain how to calculate the least-squares solution of
the constrained matrix equation (12) by applying the
Gauss-Jordan elimination method for WG inverse.

Example 3 Let

M =







0 −1 2 −2
−1 2 0 1
1 −3 3 −4
1 −3 2 −3






and D =







1 2
0 2
1 0
2 1






.

Then Ind(M) = 2, rank (M) = 3, rank
�

M2
�

= 2,

M2 =







1 −2 2 −3
−1 2 0 1
2 −4 3 −5
2 −4 2 −4






and M D =







−2 −4
1 3
−4 −8
−3 −7






.

Perform elementary column operations on M2, we
get

P =







1 2
−1 0
2 3
2 2






.

Compute P∗M2P =
�

10 12
12 17

�

and P∗M D =
�

−17 −37
−22 −46

�

, then

M =
�

P∗M2P P∗M b
P 0

�

=















10 12 −17 −37
12 17 −22 −46
1 2 0 0
−1 0 0 0
2 3 0 0
2 2 0 0















.

In the blockmatrixM , multiply the first block row by
the inverse of P∗M2P,

�

P∗M2P
�−1
=
�

17/26 −6/13
−6/13 5/13

�

we get

M1 =















1 0 −25/26 −77/26
0 1 −8/13 −8/13
1 2 0 0
−1 0 0 0
2 3 0 0
2 2 0 0















.

Add the first block row multiplied by −P to the second
block row:

M2 =















1 0 −25/26 −77/26
0 1 −8/13 −8/13
0 0 57/26 109/26
0 0 −25/26 −77/26
0 0 49/13 101/13
0 0 41/13 93/13















.

Therefore, we get

X =







−57/26 −109/26
25/26 77/26
−49/13 −101/13
−41/13 −93/13






.

On the other hand, by applying Theorem 1 and
Theorem 2, we also get

M W⃝ = M k
�

M k+2
�†

M

=







5/26 −31/26 2 −57/26
−25/26 51/26 0 25/26
10/13 −36/13 3 −49/13
15/13 −41/13 2 −41/13
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and

X = M W⃝D =







−57/26 −109/26
25/26 77/26
−49/13 −101/13
−41/13 −93/13






.

In Theorem 5, we see that the characterization
(28) of WG inverse is based on the full-rank decompo-
sition. But the interesting bit is that only the column
part is used in the characterization (28). Based on
those results, we give a new characterization in the
following theorem.

Theorem 6 Let M ∈ Cn,n, Ind(M) = k and
rank
�

M k
�

= r. Then

M W⃝ = T
�

T ∗M2T
�†

T ∗M , (33)

where T is an n× n matrix with R(M k) =R(T ).

Proof : Let M k = PQ and T = T1T2 be full-rank decom-
positions of M k and T , respectively. Since R(M k) =
R(T ), there exists Y satisfying T1 = PY , in which Y is
invertible. Therefore, we get a full-rank decomposition
of T :

T = P (Y T2) . (34)

It follows that

T ∗M2T = (P (Y T2))
∗M2 (P (Y T2))

=
�

T ∗2 Y ∗P∗M2P
�

Y T2. (35)

Since Y is invertible, by applying (32), we conclude
that (35) is a full-rank decomposition of T ∗M2T . By
applying (32), (34), and (35), we obtain

T
�

T ∗M2T
�†

T ∗M

= P (Y T2)
��

T ∗2 Y ∗P∗M2P
�

Y T2

�†
T ∗2 Y ∗P∗M

= P (Y T2) (Y T2)
∗ ((Y T2) (Y T2)

∗)−1

×
��

T ∗2 Y ∗P∗M2P
�∗ �

T ∗2 Y ∗P∗M2P
��−1

×
�

T ∗2 Y ∗P∗M2P
�∗

T ∗2 Y ∗
�

P∗M2P
� �

P∗M2P
�−1

P∗M

= P
�

P∗M2P
�−1

P∗M .

By applying Theorem 5, it follows that we deduce
(33). 2

Example 3′ Let M and D be as given in Example 3,
Ind(M) = 2, and

T =







−5 0 −10 2
1 2 14 2
−8 −1 −22 2
−6 −2 −24 0






.

It is obvious that R(M2) = R(T ). By applying
Theorem 2, we get

M W⃝ = M2
�

M4
�†

M

=







5/26 −31/26 2 −57/26
−25/26 51/26 0 25/26
10/13 −36/13 3 −49/13
15/13 −41/13 2 −41/13






. (36)

On the other hand, by applying Theorem 6, we
have

�

T ∗M2T
�†

=







152/8599 −27/4031 −236/48805 −143/9465
−27/4031 62/24235 19/9726 129/22438
−236/48805 19/9726 5/2439 59/13790
−143/9465 129/22438 59/13790 79/6104







and

T
�

T ∗M2T
�†

T ∗M =







5/26 −31/26 2 −57/26
−25/26 51/26 0 25/26
10/13 −36/13 3 −49/13
15/13 −41/13 2 −41/13






.

By applying (36), it follows that M W⃝ =
T
�

T ∗M2T
�†

T ∗M .
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