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ABSTRACT: Our basic objective is to introduce a new methodology using the localization function to compute the
conditional expectation E(Vt(X t)|(X s)) for s ¶ t, where the asset price is generated by the multi-dimensional J-process.
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INTRODUCTION AND PRELIMINARY

Over the last years, numerous papers have proven the
importance of applying Malliavin calculus in financial
engineering, see e.g., [1–4]. The results developed in
[5] correspond to the background basis for the ones
which were published later. Malliavin calculus is an im-
portant tool for calculating the conditional expectation
to resolve multiple financial engineering problems. For
instance, it is was used by Bally et al [2], Abbas and
Lapeyre [1] and lastly by Kharrat [4]. Using Malliavin
calculus to assess the American option problem, these
authors have elaborated formulas for the conditional
expectation, under both cases, constant and stochastic
volatility.

At any time s where s ¶ t, the value of the Ameri-
can put option is equal to

Vs(Xs) =max
�

(K − Xs)
+, e−r(t−s)E(Vt(X t)|(Xs))

�

(1)

where Xs, X t are respectively the asset price at times
s and t, K is the strike price at the maturity and r
is the interest rate. In this study, our contribution
resides in elaborating a method, with localization func-
tion, in order to compute this conditional expectation
E(Vt(X t)|(Xs)) for all s ¶ t where X t follows the J-
process [6] using the Malliavin calculus. In the pa-
per [7], Jerbi and Kharrat reduced the problem of pric-
ing American option under two stochastic processes
into an equivalent stochastic process. They identified a
model for pricing American option using Malliavin cal-
culus without considering the effect of the localization
function. As an extension of [7], Kharrat [8] developed
a new formula for pricing American options generated
by the multidimensional J-process. Using the J-process
instead of a Brownian motion for the underlying asset
process, Jerbi and Kharrat provided as far as the work
of Bally et al [2], to be considered with the kurtosis and
the skewness effects. The above referred to effects are
displayed in the distribution density of J-law, thus, in

the J-process. In his study [6], Jerbi has proven that the
parameter θ influences the kurtosis and the skewness.
As far as our work is concerned, we display the prob-
lem and the hypothesis under the multidimensional
J-process, we elaborate and compute the Malliavin
weights through considering the localization function
in order to establish the already mentioned conditional
expectation [3, 8].

In the following, we introduce the J-law as well as
the J-process [6, 9].

Definition 1 Consider Y a random variable which fol-
lows the standard J-law:

Y ∼ J(µ,θ ),

where its distribution is written in the following form:

h(v,µ,θ ) =
1

Jer(µ,θ )
p

2π
e−

1
2 v2

N(µv+θ ), (2)

with θ and µ are two constants and N(·) is the cumula-
tive function of the Gaussian distribution, and Jer(µ,θ )
is written as:

Jer(µ,θ ) =
1
p

2π

∫ +∞

−∞
e−

1
2 v2

N(µv+θ )dv. (3)

When µ = 0, the J-law becomes the Gaussian
distribution.

Jerbi defined a new method as an extension of
the Brownian motion relying on the J-law [6]. Sub-
sequently, Kharrat rectified Jerbi’s definition (see [9]).

Definition 2 Consider (Ω,F , P, (Ft)) a filtered prob-
ability space. A stochastic process (X t)t¾0 follows a
J-process, if:

• the continuous stochastic process X t is Ft -
adapted,
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• for s < t, X t − Xs follows Q t−s,

• dX t = m(X t , t)dt + n(X t , t)dQ t ,

where m and n are two functions of X t and the
time t. Q t is a random variable, which can be in-
dicated as Q t = U

p
t, where U follows the J-law:

U = (Y − E(Y ))/σ(Y ), where Y ∼ J(µ,θ ), E(Y ) =
µZ(µ,θ ), σ2

Y = 1− µ2θ
1+µ2 Z(µ,θ )−µ2Z2(µ,θ ), and

Z(µ,θ ) =
e−

θ2

2(1−µ2)

Jer(µ,θ )
p

2π(1−µ2)
.

Remark 1 Proceeding in this way, we express the J-
process by the following process:

dX t = m(X t , t)dt + n(X t , t)U
p

dt. (4)

Definition 3 Consider (Ω,F , V, (Ft)) a filtered prob-
ability space. A multi-dimensional J-process X =
(X t)t∈[0,∞) in Rm is written as follows:

• The continuous stochastic process X is Ft -
adapted;

• for s < t, X i
t − X i

s follows J-law, i.e. follows Q t−s,
and is independent of Fs.

Following a multi-dimensional J-process, X is denoted
as follows:

dX t = r X t dt +σX tQ t (5)

X0 = x , (6)

where denotes the element-wise product, x ∈ Rm
+ ,

r ∈ Rm
+ , with ri = r0 for all i = 1, . . . , m, and r0 is the

interest rate at t0 supposed to be constant, σ is the
m×m volatility matrix supposed to be non-degenerate
and a sub-triangle matrix, and Q is an m-dimensional
J-process.

All components of X t can be defined, for i = 1, . . . , m,

X i
t = x i exp

�

t
�

ri −
1
2

i
∑

j=1

σ2
i j

�

+
i
∑

j=1

σi jQ
j
t

�

. (7)

To assess the American option, we shall compute this
conditional expectation

E (Vt(X t)|Xs = α) ,

where 0¶ s¶ t, α ∈Rm
+ , and Vt is the American option

price at the time t which stands for an Rm measurable
function.

THEORETICAL FRAMEWORK

Let lt = (l1
t , . . . , lm

t ) be a fixed C1 function. In addition,
let us specify, for i = 1, . . . , m,

eX i
t = x i exp

�

t
�

ri −
1
2

i
∑

j=1

σ2
i j

�

+ l i
t +σiiQ

i
t

�

. (8)

Now, we shall examine the alteration so as to change
process eX instead of X .

Proposition 1 For any time t ¾ 0, there exists a func-
tion Pt(·) : Rm

+ → R
m
+ where Pt is invertible, and

X t = Pt(eX t) (9)

eX t = P−1
t (X t). (10)

The proof of the proposition is detailed in [8].
Since eσ is a triangular matrix, it’s easy to deter-

mine eσ−1. Likewise, eσ−1 is triangular and (eσ−1)ii = 1
for any i. From this perspective, the function Pt and
its inverse Gt = P−1

t (thit is why we have X t = Pt(eX t)
and eX t = Gt(X t)) are, respectively, expressed by, for
i = 1, . . . , m and y, z ∈ Rm

+ ,

P i
t (y) = yi

�

exp
�

−
i
∑

j=1

eσi j l
j
t

�

� i−1
∏

j=1

�

yi e−(r j−
1
2
∑i

j=1 σ
2
j j )t

x j

�

eσi j

, (11)

and

G i
t(z) = zi exp(l i

t)
i−1
∏

j=1

�

zie
−(r j−

1
2

∑i
j=1σ

2
j j)t

x j

�
eσ−1

i j

. (12)

Owing to the fact that all components of the
process eX are independent, it is straightforward to
obtain the one-dimensional value for the conditional
expectation, using the results found in [7].

Now, we can draw and establish the following
result.

Theorem 1 Let X t = XsB where 0 ¶ s ¶ t, with B =
e(r−

1
2σ

2)(t−s)+σ(Q t−Qs). Let B be independent of Xs and
let its distribution function be Γ (γ(B)). Let g : R→ R
with polynomial growth. Let α > 0 be fixed and let
(X t)t¾0 follows the J-process. Let Ψ ∈ C1

b (R) such that
Ψ |Dε(α)=(α−ε,α+ε)= 1 with ε > 0. For anyRm-measurable
function Vt , and for α ∈ Rm

+ , we get:

E (Vt(X t)|Xs = α) =
E (Ξs[Vt](X t)H(Xs −α))
E (Ξs[1](X t)H(Xs −α))

, (13)

where

Ξs[g](X t) =
d
∏

i=1

σYs
Ψ(Xs)g(X t)

σXs
p

t − s

�

Ys +
σ
p

t − s
σYs

−µ
N ′(µYs+θ )
N(µYs+θ )

+
σ

σYs

�

1+B
γ′(B)Γ ′(γ(B))
Γ (γ(B))

�

�

. (14)

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 48 (2022) 825

Notice that N(·) is the cumulative function distribution of
the standard Gaussian, and for all x ∈ R, H(x) = 1x¾0,
with eXs = Gs(Xs) and eα= Gs(α).

Proof : In Dε(w), we have ϕ′Ψ = ϕ′. Therefore,

E
�

ϕ′(Xs)g(X t)
�

= E
�

ϕ′(Xs)Ψ(Xs)g(X t)
�

(15)

Let us set eVt(y) = Vt ◦ Pt(y); y ∈ Rm
+ ; Pt being defined

in (11). Since X t Pt(eX t) for any t, then

E (Vt(X t)|Xs = α) = E
�

eVt(eX t)|eXs = Gs(α)
�

. (16)

Hence, by defining eα = Gs(α), it is sufficient to prove
that

E
�

eVt(eX t)|eXs = eα
�

=
E
�

eΞs[ eVt](eX t)H(eXs − eα)
�

E
�

eΞs[1](eX t)H(eXs − eα)
� . (17)

Let eVt(eX t) = eVt
1
(eX 1

t )· eVt
2
(eX 2

t ) · · · eVt
m
(eX m

t ), i.e. eVt can be
represented in terms of the product of m-measurable
functions. In such case, we obviously have:

E
�

eVt(eX t)|eXs = eα
�

=
m
∏

i=1

E
�

eV i
t (eX

i
t)|eX

i
s = eαi

�

. (18)

At this stage of analysis, it is quite easy to confirm
that, for each eX i

t , we can invest the result recorded
by Kharrat in [8]. Therefore, the following result is
obtained:

E
�

eVt(eX t)|eXs = eα
�

=
m
∏

i=1

E
�

eVt
i
(eX i

t)|eX
i
s = eαi

�

=
m
∏

i=1

E
�

Ξi
s[eV

i
t ](eX

i
t)H(eX

i
s − eα

i)
�

E
�

Ξi
s[1](eX

i
t)H(eX i

s − eαi)
� , (19)

where

Ξi
s[eV

i
t ](eX

i
t) =

Ψ(X s)σYs
eV i

t (eX
i
t)

σX s
p

t − s

�

σ

σYs

�

B
Γ ′(γ(B))γ′(B)
Γ (γ(B))

+1
�

+ Ys −µ
N ′(µYs +θ )
N(µYs +θ )

+
σ
p

t − s
σYs

�

, (20)

and

Ξi
s[1](eX

i
t) =

Ψ(Xs)σYs

σXs
p

t − s

�

σ

σYs

�

B
Γ ′(γ(B))γ′(B)
Γ (γ(B))

+1
�

+ Ys −µ
N ′(µYs +θ )
N(µYs +θ )

+
σ
p

t − s
σYs

�

. (21)

We deduce

eΞs[eVt](eX t) =
m
∏

i=1

Ξi
s[eV

i
t ](eX

i
t), (22)

and

eΞs[1](eX t) =
m
∏

i=1

Ξi
s[1](eX

i
t). (23)

2

Remark 2 In the previous theorem, we computed the
conditional expectation related to pricing American
option with localization function. Therefore, we can
deduce:

• when d = 1, we obtain exactly the same result
established in [10].

• For θ = 0 and λ = 1, we rely upon the results
from [2] for the multidimensional case.

NUMERICAL SIMULATIONS

In this part, as an application of the obtained results,
we provide the price of the American put options on
the geometric mean of three and five assets using the
Monte Carlo simulation with 1000 iterations.

At first, we compute the American put option on
the geometric mean of three assets with a payoff equal
to max

�

(K −
∏3

i=1 X i
s)

1/3, 0
�

. We assume that the

initial values are equal, i.e. X 1
0 = X 2

0 = X 3
0 , K = 10, the

volatility is equal to 0.15 and the interest rate r = 0.05.
Afterwards, we compute the obtained results

for five price assets with a payoff that is equal to
max

�

(K −
∏5

i=1 X i
s)

1/5, 0
�

.
In Table 1, the numerical results are displayed.

Our obtained results are compared to the binomial
model with 1000 steps, which will considered as a
âĂŸâĂŸtrue” reference price, as well as the Malliavin
calculus without localization function which are ob-
tained in [8]. All results go in good accordance with
the American option’s theory.

Table 1 Pricing American put option with localization func-
tion for three and five price assets, respectively, compared to
the classical binomial model (1000 time-steps), and the price
without localization function (K = 10, σ = 0.15, r = 0.05,
and T = 1).

Three assets Five assets

Binomial 1000 0.625 0.297
Without localization function 0.869 0.451
With localization function 0.673 0.329

CONCLUSION

In this study, we extended the results of [2] through
considering the skewness and the kurtosis effects for
pricing American options. Additionally, we built upon
Kharrat’s results in [8] taking into consideration the
localization function. Eventually, we set forward an
application of the obtained results respectively for
three and five assets, which go in good agrement with
the theory. As future perspectives, we will compute
and investigate the Greeks of the American options
in different cases (for the one- and multi-dimensional
cases, under both cases with and without localization
function).
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