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ABSTRACT: In this article, we utilize strongly convex functions to improve some upper bounds of Jensen’s gap presented
in [IEEE Access 8 (2020):98001–98008, Adv Differ Equ 2020 (2020):333]. This leads us towards the improvement of
some existing results around various divergences, the Hermite-Hadamard and Hölder inequalities. We also demonstrate
these improvements via numerical experiments. Moreover, some new results are established for the Zipf-Mandelbrot
entropy.
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INTRODUCTION

A growing interest in utilizing the mathematical in-
equalities to various areas of science with remarkable
effect has been recorded in the last couple of decades.
Mathematical inequalities for convex and generalized
convex functions have many useful applications in
analysis, specially in optimization theory. Among
them, Jensen’s inequality is most important inequal-
ity and it provides problem solving oriented tools in
various fields of science, for example, economics, engi-
neering, physics, computer science, statistics, biology,
information theory, etc. This inequality generalizes the
classical notion of convexity and states that [1]:

Theorem 1 Let ψ : [ρ1,ρ2]→ R be a convex function,
ϑk ∈ [ρ1,ρ2], pk ¾ 0 for k = 1, . . . , m with Pm =
∑m

k=1 pk > 0, then

ψ

�

1
Pm

m
∑

k=1

pkϑk

�

¶
1
Pm

m
∑

k=1

pkψ(ϑk). (1)

The integral version of Theorem 1 in Riemann sense
can be found in [2]. The inequality (1) helps to
investigate the stability of time-delayed systems [3]
and provides some sufficient conditions to achieve an
exponential tracking performance for vehicle platoon
system to improve traffic safety [4]. The Jensen’s
inequality can be utilized for estimation of various
divergences and the Zipf-Mandelbrot entropy [5–9].
The Jensen’s inequality has also been presented for
various classes of convex functions as well for exam-
ple (α, m)-convex and m-convex [10], s-convex [11],
quasi-convex [12], Q-class convex [13] and strongly

convex functions [14], and some interesting gener-
alizations of mathematical inequalities and classical
convexity can be found in [15, 16].

The difference of the right and left sides of Jensen’s
inequality is known as the Jensen gap. This gap gives
some useful estimates, which can be useful to pro-
vide some error bounds while approximating certain
parameters. This paper addresses the improvements
of some upper bounds of the Jensen gap presented in
[17, 18], by using strongly convex functions. This class
of functions was originally introduced and studied by
Polyak [19]. A strongly convex function can be defined
as:

Definition 1 ([20]) For a constant c > 0 and an inter-
val I , a functionψ : I →R is said to be strongly convex
with modulus c, if the following inequality holds

ψ(ts1+(1− t)s2)¶

tψ(s1)+ (1− t)ψ(s2)− c t(1− t)(s1− s2)
2, (2)

for all s1, s2 ∈ I and t ∈ [0, 1].

From (2), the inequality ψ(s1)−ψ(s2) ¾ ψ′+(s2)(s1 −
s2)+ c(s1 − s2)2 can be verified easily. It is noteworthy
that each strongly convex function is convex but the
converse statement is not true generally. The idea
of strong convexity actually strengthens the idea of
classical convexity.

We have the following tool to check whether a
function is strongly convex or not [20]:

Theorem 2 A function ψ : I → R is said to be strongly
convex with modulus c, if and only if a function
Ψ : I → R, defined as Ψ(x) =ψ(x)− cx2 is convex.
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To construct the main results, we need the fol-
lowing continuous and convex Green function [21],
defined on [ρ1,ρ2]× [ρ1,ρ2]:

G1(z, x) =

�

ρ1− x , ρ1 ¶ x ¶ z,
ρ1− z, z ¶ x ¶ ρ2,

(3)

and the following integral identity, which holds for a
function ψ ∈ C2[ρ1,ρ2],

ψ(z)=ψ(ρ1)+(z−ρ1)ψ
′(ρ2)+

∫ ρ2

ρ1

G1(z, x)ψ′′(x)dx . (4)

MAIN RESULTS

The following theorem gives a new bound for the
discrete Jensen’s gap. This is an improvement of the
upper bound presented in [18].

Theorem 3 Let ψ ∈ C2[ρ1,ρ2] be a function such that
the function |ψ′′| is strongly convex with modulus c. Let
ϑk ∈ [ρ1,ρ2], pk ¾ 0 for k = 1, . . . , m with

∑m
k=1 pk =

Pm > 0 and ϑ̄ = 1
Pm

∑m
k=1 pkϑk, then

�

�

�

�

1
Pm

m
∑

k=1

pkψ(ϑk)−ψ
�

ϑ̄
�

�

�

�

�

¶
ρ2|ψ′′(ρ1)| −ρ1|ψ′′(ρ2)|+ cρ1ρ2(ρ2−ρ1)

2(ρ2−ρ1)

×
�

1
Pm

m
∑

k=1

pkϑ
2
k −

�

ϑ̄
�2
�

+
|ψ′′(ρ2)|−|ψ′′(ρ1)|−c(ρ2

2−ρ
2
1)

6(ρ2−ρ1)

�

1
Pm

m
∑

k=1

pkϑ
3
k−
�

ϑ̄
�3
�

+
c

12

�

1
Pm

m
∑

k=1

pkϑ
4
k −

�

ϑ̄
�4
�

. (5)

Proof : Using (4) in 1
Pm

∑m
k=1 pkψ(ϑk) and ψ

�

ϑ̄
�

, we
get

1
Pm

m
∑

k=1

pkψ(ϑk) =
1
Pm

m
∑

k=1

pk

�

ψ(ρ1)+ (ϑk −ρ1)ψ
′(ρ2)

+

∫ ρ2

ρ1

G1(ϑk, x)ψ′′(x)dx
�

(6)

and

ψ(ϑ̄)=ψ(ρ1)+(ϑ̄−ρ1)ψ
′(ρ2)+

∫ ρ2

ρ1

G1(ϑ̄, x)ψ′′(x)dx . (7)

Subtracting (7) from (6), we get

1
Pm

m
∑

k=1

pkψ(ϑk)−ψ
�

ϑ̄
�

=ψ(ρ1)+ϑ̄ψ
′(ρ2)−ρ1ψ

′(ρ2)

+
1
Pm

m
∑

k=1

pk

∫ ρ2

ρ1

G1(ϑk, x)ψ′′(x)dx

−ψ(ρ1)− ϑ̄ψ′(ρ2)+ρ1ψ
′(ρ2)−

∫ ρ2

ρ1

G1(ϑ̄, x)ψ′′(x)dx

=

∫ ρ2

ρ1

�

1
Pm

m
∑

k=1

pkG1(ϑk, x)−G1

�

ϑ̄, x
�

�

ψ′′(x)dx . (8)

Taking the absolute value of (8), we get

�

�

�

�

1
Pm

m
∑

k=1

pkψ(ϑk)−ψ
�

ϑ̄
�

�

�

�

�

=

�

�

�

�

∫ ρ2

ρ1

�

1
Pm

m
∑

k=1

pkG1(ϑk, x)−G1

�

ϑ̄, x
�

�

ψ′′(x)dx

�

�

�

�

¶
∫ ρ2

ρ1

�

�

�

�

1
Pm

m
∑

k=1

pkG1(ϑk, x)−G1

�

ϑ̄, x
�

�

�

�

�

|ψ′′(x)|dx . (9)

Using the convexity of G1(z, x) and change of variable
x = tρ1+(1− t)ρ2, t ∈ [0, 1] in (9), we get

�

�

�

�

1
Pm

m
∑

k=1

pkψ(ϑk)−ψ
�

ϑ̄
�

�

�

�

�

¶ (ρ2−ρ1)

∫ 1

0

�

1
Pm

m
∑

k=1

pkG1(ϑk, tρ1+(1− t)ρ2)−

G1(ϑ̄, tρ1+(1−t)ρ2)

�

�

�ψ′′(tρ1+(1−t)ρ2)
�

� dt. (10)

Since |ψ′′| is a strongly convex function with modulus
c, therefore (10) becomes

�

�

�

�

1
Pm

m
∑

k=1

pkψ(ϑk)−ψ
�

ϑ̄
�

�

�

�

�

¶ (ρ2−ρ1)

∫ 1

0

�

1
Pm

m
∑

k=1

pkG1(ϑk, tρ1+(1− t)ρ2)

−G1(ϑ̄, tρ1+(1− t)ρ2)
�

×
�

t|ψ′′(ρ1)|+(1−t)|ψ′′(ρ2)|−c t(1−t)(ρ1−ρ2)
2
�

dt.

= (ρ2−ρ1)

�

|ψ′′(ρ1)|
1
Pm

m
∑

k=1

pk

∫ 1

0

tG1(ϑk, tρ1+(1−t)ρ2)dt

+|ψ′′(ρ2)|
1
Pm

m
∑

k=1

pk

∫ 1

0

G1(ϑk, tρ1+(1− t)ρ2)dt

−|ψ′′(ρ2)|
1
Pm

m
∑

k=1

pk

∫ 1

0

tG1(ϑk, tρ1+(1− t)ρ2)dt
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− |ψ′′(ρ1)|
∫ 1

0

tG1

�

ϑ̄, tρ1+(1− t)ρ2

�

dt

− |ψ′′(ρ2)|
∫ 1

0

G1

�

ϑ̄, tρ1+(1− t)ρ2

�

dt

+ |ψ′′(ρ2)|
∫ 1

0

tG1

�

ϑ̄, tρ1+(1− t)ρ2

�

dt

− c(ρ1−ρ2)
2 1
Pm

m
∑

k=1

pk

∫ 1

0

tG1 (ϑk, tρ1+(1− t)ρ2) dt

+ c(ρ1−ρ2)
2 1
Pm

m
∑

k=1

pk

∫ 1

0

t2G1 (ϑk, tρ1+(1− t)ρ2) dt

+ c(ρ1−ρ2)
2

∫ 1

0

tG1

�

ϑ̄, tρ1+(1− t)ρ2

�

dt

− c(ρ1−ρ2)
2

∫ 1

0

t2G1

�

ϑ̄, tρ1+(1− t)ρ2

�

dt

�

. (11)

Now utilizing change of the variable x = tρ1 +
(1− t)ρ2 for t ∈ [0, 1], we have t = ρ2−x

ρ2−ρ1
and dt =

− dx
ρ2−ρ1

. Also, when t→ 0 then x→ρ2 and when t→ 1
then x → ρ1. Using theses values as follows, we get

∫ 1

0
t2G1(ϑk , tρ1 +(1− t)ρ2)dt

=

∫ ρ2

ρ1

�

ρ2 − x
ρ2 −ρ1

�2

G1(ϑk , x)
dx

ρ2 −ρ1

=
1

(ρ2 −ρ1)3

∫ ρ2

ρ1

(ρ2 − x)2 G1(ϑk , x)dx

=
1

(ρ2 −ρ1)3

�∫ ϑk

ρ1

(ρ2 − x)2G1(ϑk , x)dx

+

∫ ρ2

ϑk

(ρ2 − x)2G1(ϑk , x)d x

�

. (12)

Utilizing (3) in (12), we get

∫ 1

0
t2G1(ϑk , tρ1 +(1− t)ρ2)dt

=
1

(ρ2 −ρ1)3

�

∫ ϑk

ρ1

(ρ2 − x)2(ρ1 − x)dx

+

∫ ρ2

ϑk

(ρ2 − x)2(ρ1 −ϑk)dx
�

=
1

(ρ2 −ρ1)3

�

∫ ϑk

ρ1

(ρ2
2 + x2 −2ρ2 x)(ρ1 − x)dx

+

∫ ρ2

ϑk

(ρ2
2 + x2 −2ρ2 x)(ρ1 −ϑk)dx

�

=
1

(ρ2−ρ1)3

�∫ ϑk

ρ1

(ρ1ρ
2
2−ρ

2
2 x+ρ1 x2− x3−2ρ1ρ2 x+2ρ2 x2)dx

+(ρ1 −ϑk)

∫ ρ2

ϑk

(ρ2
2 + x2 −2ρ2 x)dx

�

=
1

(ρ2−ρ1)3

�

ρ1ρ
2
2(ϑk −ρ1)−

ρ2
2

2
(ϑ2

k −ρ
2
1)+

ρ1

3
(ϑ3

k −ρ
3
1)

−
�ϑ4

k

4
−
ρ4

1

4

�

−ρ1ρ2(ϑ
2
k −ρ

2
1)+

2ρ2

3
(ϑ3

k −ρ
3
1)

+ (ρ1 −ϑk)
�

ρ2
2(ρ2 −ϑk)+

ρ3
2

3
−
ϑ3

k

3
−ρ2(ρ

2
2 −ϑ

2
k)
�

�

=
1

(ρ2 −ρ1)3

�

ρ1ρ
2
2ϑk −ρ2

1ρ
2
2 −

ρ2
2ϑ

2
k

2
+
ρ2

1ρ
2
2

2
+
ρ1ϑ

3
k

3

−
ρ4

1

3
−
ϑ4

k

4
+
ρ4

1

4
−ρ1ρ2ϑ

2
k +ρ

3
1ρ2 +

2ρ2ϑ
3
k

3
−

2ρ2ρ
3
1

3

+ρ1ρ
3
2 −ρ1ρ

2
2ϑk +

ρ1ρ
3
2

3
−
ρ1ϑ

3
k

3
−ρ1ρ

3
2 +ρ1ρ2ϑ

2
k

−ρ3
2ϑk +ρ

2
2ϑ

2
k −

ρ3
2ϑk

3
+
ϑ4

k

3
+ρ3

2ϑk −ρ2ϑ
3
k

�

=
1

(ρ2 −ρ1)3

�ρ2
2ϑ

2
k

2
−
ρ2

1ρ
2
2

2
−
ρ4

1

12
+
ϑ4

k

12
+
ρ3

1ρ2

3

−
ρ2ϑ

3
k

3
+
ρ1ρ

3
2

3
−
ρ3

2ϑk

3

�

. (13)

Replacing ϑk by ϑ̄ in (13), we get

∫ 1

0

t2G1(ϑ̄, tρ1+(1− t)ρ2)dt

=
1

(ρ2−ρ1)3

�

ρ2
2(ϑ̄)

2

2
−
ρ2

1ρ
2
2

2
−
ρ4

1

12
+
(ϑ̄)4

12

+
ρ3

1ρ2

3
−
ρ2(ϑ̄)3

3
+
ρ1ρ

3
2

3
−
ρ3

2(ϑ̄)

3

�

. (14)

Similarly

∫ 1

0

tG1(ϑk, tρ1+(1− t)ρ2)dt

=
1

(ρ2−ρ1)2

�

ρ2ϑ
2
k

2
−
ρ2

1ρ2

2
+
ρ3

1

6

−
ϑ3

k

6
+
ρ1ρ

2
2

2
−
ρ2

2ϑk

2

�

. (15)

Replacing ϑk by ϑ̄ in (15), we get

∫ 1

0

tG1(ϑ̄, tρ1+(1− t)ρ2)dt

=
1

(ρ2−ρ1)2

�

ρ2(ϑ̄)2

2
−
ρ2

1ρ2

2
+
ρ3

1

6

−
(ϑ̄)3

6
+
ρ1ρ

2
2

2
−
ρ2

2 ϑ̄

2

�

. (16)

Also,
∫ 1

0

G1(ϑk, tρ1+(1− t)ρ2)dt

=
1

ρ2−ρ1

�

ϑ2
k

2
−
ρ2

1

2
+ρ1ρ2−ρ2ϑk

�

. (17)
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Replacing ϑk by ϑ̄ in (17), we get

∫ 1

0

G1(ϑ̄, tρ1+(1− t)ρ2)dt

=
1

ρ2−ρ1

�

(ϑ̄)2

2
−
ρ2

1

2
+ρ1ρ2−ρ2ϑ̄

�

. (18)

Substituting the values from (13)–(18) in (11), we get
(5). 2

Remark 1 If we use the Green functions mentioned by
equation numbers 1, 3, 4, and 5 in [21], instead of G1
in Theorem 3, we obtain the same result (5).

As an application of Theorem 3, we derive a
converse of the Hölder inequality.

Proposition 1 Let [ρ1,ρ2] be a positive interval and
(a1, . . . , am), (b1, . . . , bm) be two positive m-tuples, then

(i) for q > 1, p ∈ (1,2)∪ (3,4) with 1/p+1/q = 1
and

�∑m
k=1 ak bk

�

/
�∑m

k=1 bq
k

�

, ak b−q/p
k ∈ [ρ1,ρ2] for

k = 1, . . . , m, we have

� m
∑

k=1

ap
k

�1/p� m
∑

k=1

bq
k

�1/q
−

m
∑

k=1

ak bk

¶
�

p(p−1)ρ1

4ρ3
2(ρ2 −ρ1)

�

2ρ4
2ρ

p−3
1 −2ρp+1

2 +(p−2)(p−3)ρp
2 (ρ2−ρ1)

�

×
�

∑m
k=1 a2

k b1−q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�2�

+
p(p−1)

12ρ3
2(ρ2−ρ1)

�

2ρp+1
2 −2ρp−2

1 ρ3
2−(p−2)(p−3)ρp−1

2 (ρ2
2−ρ

2
1)
�

×
�

∑m
k=1 a3

k b1−2q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�3�

+
p(p−1)(p−2)(p−3)ρp−4

2

24

×
�

∑m
k=1 a4

k b1−3q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�4��1/p m
∑

k=1

bq
k . (19)

(ii) For q > 1, p > 4 with 1/p + 1/q = 1 and
�∑m

k=1 ak bk

�

/
�∑m

k=1 bq
k

�

, ak b−q/p
k ∈ [ρ1,ρ2] for k =

1, . . . , m, we have

� m
∑

k=1

ap
k

�1/p� m
∑

k=1

bq
k

�1/q
−

m
∑

k=1

ak bk

¶
�

p(p−1)ρ2

4ρ3
1(ρ2−ρ1)

�

2ρp+1
1 −2ρ4

1ρ
p−3
2 +(p−2)(p−3)ρp

1 (ρ2−ρ1)
�

×
�

∑m
k=1 a2

k b1−q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�2�

+
p(p−1)

12ρ3
1(ρ2−ρ1)

�

2ρ3
1ρ

p−2
2 −2ρp+1

1 −(p−2)(p−3)ρp−1
1 (ρ2

2−ρ
2
1)
�

×
�

∑m
k=1 a3

k b1−2q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�3�

+
p(p−1)(p−2)(p−3)ρp−4

1

24

×
�

∑m
k=1 a4

k b1−3q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�4��1/p m
∑

k=1

bq
k . (20)

Proof : (i) Let ψ(x) = x p, x ∈ [ρ1,ρ2], then ψ′′(x) =
p(p − 1)x p−2 > 0, which shows that the function ψ
is convex. Also, ψ′′′′(x) = |ψ′′|′′(x) = p(p − 1)(p −
2) (p−3)x p−4, which is a decreasing function for

given values of p, andψ′′′′(x)¾ 2
� p(p−1)(p−2)(p−3)ρp−4

2
2

�

.
Therefore |ψ′′| is strongly convex function with modu-

lus c = p(p−1)(p−2)(p−3)ρp−4
2

2 , hence using (5) for ψ(x) =

x p, pk = bq
k and ϑk = ak b

− q
p

k , we derive

 

� m
∑

k=1

ap
k

�� m
∑

k=1

bq
k

�p−1

−

� m
∑

k=1

ak bk

�p!1/p

¶
�

p(p−1)ρ1

4ρ3
2(ρ2−ρ1)

�

2ρ4
2ρ

p−3
1 −2ρp+1

2 +(p−2)(p−3)ρp
2 (ρ2−ρ1)

�

×
�

∑m
k=1 a2

k b1−q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�2�

+
p(p−1)

12ρ3
2(ρ2−ρ1)

�

2ρp+1
2 −2ρp−2

1 ρ3
2−(p−2)(p−3)ρp−1

2 (ρ2
2−ρ

2
1)
�

×
�

∑m
k=1 a3

k b1−2q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�3�

+
p(p−1)(p−2)(p−3)ρp−4

2

24

×
�

∑m
k=1 a4

k b1−3q/p
k

∑m
k=1 bq

k

−
�

∑m
k=1 ak bk
∑m

k=1 bq
k

�4��1/p m
∑

k=1

bq
k . (21)

Utilizing the inequality x` − y` ¶ (x − y)`, 0¶ y ¶ x ,
` ∈ [0, 1] for x =

�∑m
k=1 ap

k

� �∑m
k=1 bq

k

�p−1
, y =

�∑m
k=1 ak bk

�p
and `= 1/p, we obtain

� m
∑

k=1

ap
k

�1/p� m
∑

k=1

bq
k

�1/q

−
m
∑

k=1

ak bk

¶
�

� m
∑

k=1

ap
k

�� m
∑

k=1

bq
k

�p−1

−
� m
∑

k=1

ak bk

�p
�1/p

. (22)
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From (21) and (22), we get (19).
(ii) Adopting the procedure of part (i), where

ψ′′′′ = |ψ′′|′′ becomes an increasing function for given

values of p and thus acquiring c = p(p−1)(p−2)(p−3)ρp−4
1

2
and we conclude the result (20). 2

The following theorem is the integral version of
Theorem 3. This provides an improvement of the
bound for Jensen’s gap given in [17].

Theorem 4 Let ψ ∈ C2[ρ1,ρ2] be such that |ψ′′| is
strongly convex function with modulus c. Let η1,η2 :
[γ1,γ2] → R be two integrable functions such that
η1(y) ∈ [ρ1,ρ2] and η2(y) ¾ 0 for all y ∈ [γ1,γ2]
with D :=

∫ γ2

γ1
η2(y)dy > 0, η̄= 1

D

∫ γ2

γ1
η1(y)η2(y)dy.

Then we have

�

�

�

�

1
D

∫ γ2

γ1

(ψ ◦η1)(y)η2(y)dy −ψ (η̄)
�

�

�

�

¶
ρ2|ψ′′(ρ1)| −ρ1|ψ′′(ρ2)|+ cρ1ρ2(ρ2−ρ1)

2(ρ2−ρ1)

×
�

1
D

∫ γ2

γ1

η2
1(y)η2(y)dy − (η̄)2

�

+
|ψ′′(ρ2)| − |ψ′′(ρ1)| − c(ρ2

2 −ρ
2
1)

6(ρ2−ρ1)

×
�

1
D

∫ γ2

γ1

η3
1(y)η2(y)dy − (η̄)3

�

+
c

12

�

1
D

∫ γ2

γ1

η4
1(y)η2(y)dy − (η̄)4

�

. (23)

Proof : The proof is analogous to the proof of Theo-
rem 3. 2

As an application of Theorem 4, we give a new
bound for the Hermite-Hadamard gap.

Corollary 1 Let φ ∈ C2[γ1,γ2] be a function such that
|φ′′| is strongly convex function with modulus c, then

�

�

�

�

1
γ2−γ1

∫ γ2

γ1

φ(y)dy −φ
�γ1+γ2

2

�

�

�

�

�

¶
(|φ′′(γ1)|+ |φ′′(γ2)|)(γ2−γ1)2

48

+
3c

320

�

4γ1γ
3
2+4γ3

1γ2−6γ2
1γ

2
2−γ

4
1−γ

4
2

�

. (24)

Proof : Using (23) for ψ = φ, [ρ1,ρ2] = [γ1,γ2],
η2(y) = 1 and η1(y) = y for all y ∈ [γ1,γ2], we get
(24). 2

We demonstrate the following two numerical ex-
periments to show that the newly obtained bounds
for Jensen’s gap are some improvements of the earlier
bounds given in [17, 18]. This leads to the conclusion
that for better results strongly convex functions may be
preferred on convex functions.

Example 1 Let ψ(y) = y4, η1(y) = y , η2(y) = 1
for all y ∈ [0,1] then ψ′′(y) = 12y2 > 0, ψ′′′′(y) =
|ψ′′|′′(y) = 24 = 2(12) for all y ∈ [0, 1]. Which
shows that ψ is convex function and |ψ′′| is strongly
convex function on [0,1] with modulus c = 12. Also,
η1(y) ∈ [0,1] for all y ∈ [0, 1], therefore using in-
equality (23) for these facts with [ρ1,ρ2] = [γ1,γ2] =
[0,1], we obtain

∫ 1

0 ψ(η1(y))dy −ψ
�∫ 1

0 η1(y)dy
�

=
0.2−0.0625= 0.1375 and also its corresponding right
hand side gives 0.1375. Thus from inequality (23) we
conclude that

0.1375¶ 0.1375. (25)

Now with aforementioned parameters of this example,
but considering |ψ′′| as a convex function, the estimate
calculated in [17] for the Jensen gap 0.1375 is 0.25, i.e.

0.1375< 0.25. (26)

From (25) and (26) we conclude that using strongly
convex functions gives better estimates for the Jensen
gap instead of using convex functions.

Example 2 Let ψ(y) = e y , η1(y) = y2, η2(y) = 1
for all y ∈ [0, 1] then ψ′′(y) = e y > 0, ψ′′′′(y) =
|ψ′′|′′(y) = ey ¾ 2

�

e0/2
�

= 2(0.5) for all y ∈
[0,1]. Which shows that ψ is a convex func-
tion and the function |ψ′′| is strongly convex with
modulus c = 0.5. Also, η1(y) ∈ [0,1] for all
y ∈ [0,1], therefore using inequality (23) for the
above facts with [ρ1,ρ2] = [γ1,γ2] = [0, 1], we ob-
tain

∫ 1

0 ψ(η1(y))dy − ψ
�∫ 1

0 η1(y)dy
�

= 1.4627 −
1.3956= 0.0671 and right hand side of inequality (23)
gives 0.0701. Thus from inequality (23), we deduce
the following result

0.0671< 0.0701. (27)

Now for aforementioned parameters, but instead pro-
viding |ψ′′| as a convex function, the bound for the
Jensen gap 0.0671 is 0.0748 [17], i.e.

0.0671< 0.0748. (28)

From (27) and (28) we conclude that using strongly
convex functions gives better estimates for the Jensen
gap instead of using convex functions.

APPLICATIONS IN INFORMATION THEORY

Information theory is a useful mathematical tool, not
limited to communication, but more technically as an
important part of probability theory. It emerged from
Shannon [22] by considering stochastic process as a
source of information. Information theory has deep
connections with diverse topics as statistical inference,
artificial intelligence, statistical mechanics and biolog-
ical evolution. For a probability space U(S, B(S), U),
the information content I(E) of an event E ∈ B(S)
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is defined to be negative log of U(E), that is I(E) =
− logb U(E). The base of log represent the unit of
information. The key concept of information theory
is entropy, the measure of uncertainty of random vari-
able. For a discrete random variable X with possible
outcomes {x1, . . . , xm} with corresponding probabil-
ities {w1, . . . , wm}, and information content I(X ) =
{I(w1), . . . , I(wm)}, the Shannon entropy, Zs(w) is the
expected value of I(X ).

Zs(w) = E(I(X )) =
m
∑

k=1

wk log
1

wk
, wk 6= 0 (29)

with the convention that Zs(w) = 0, when wk = 0
for all k ∈ {1, . . . , m}. Zs(w) is the only function
satisfying three natural properties: (i) Zs(w) is positive
or null; (ii) uniform distribution maximizes Zs(w);
and (iii) Zs(w) has additive property of successive
information.

A commonly used information criteria to deter-
mine model discrepancy is Kullback-Leibler divergence
or KL-divergence. It is a non-symmetric measure of
variation between two probability distributions, one
being the fitted model and the other being the refer-
ence model. Let rk and wk for k = 1, . . . , m, be two
probability distributions on the same random variable
X . The KL-divergence is the expectation of the log ratio
of rk and wk,

Zkl(r,w) =
m
∑

k=1

rk log
rk

wk
,

where Zkl(r,w) = 0, implies that the two distributions
are identical. The KL-divergence is a special case
of Csiszár f -divergence with diverse applications in
applied statistics, fluid mechanics, neuroscience and
machine learning.

Information theory is also involved in analysis of
human language. Words in a human language occur
systematically in such a way that very few frequently
used words account for most of the tokens in the text.
The distribution of words in human corpus roughly
follow a power law known as Zipf’s law. Zipf [23]
observed that if words are ranked according to their
frequency f , in decreasing order, frequency is a non-
linear decreasing function of rank k, that is, fk = C/ks

with positive parameters, C and s, to be estimated from
given data. Due to lack of fit in the low and high
rank regions, Mandelbrot [24] generalized Zipf’s law
by adding a nonnegative parameter θ as follows,

fk =
C

(k+θ )s
,

which tends to Zipf’s law for θ = 0. The probability
mass function for the k-th word in corpus of m words
is:

f (k, m,θ , s) =
1

(k+θ )s Mm,θ ,s
,

for k = 1, . . . , m. Mm,θ ,s =
∑m

k=1
1

(k+θ )s is generalized
harmonic number. Apart from linguistics, Zipf distri-
bution is used in city population, web site traffic, earth-
quake magnitude and in economics it gives best fit to
affluent people in the community. In connection to the
attitude of information theory, entropies are utilized
to compute the amount of information in written text.
The Zipf-Mandelbrot entropy mentioned in [6] is given
by:

Z(M ,θ , s) =
s

Mm,θ ,s

m
∑

k=1

log(k+θ )
(k+θ )s

+ log Mm,θ ,s.

Results for Csiszár divergence and its special cases

This subsection addresses the improvements of some
earlier estimates given for various divergences in
[17, 18].

Definition 2 [Csiszár divergence] Let f : [ρ1,ρ2] ⊂
R → R be a function, then Csiszár divergence for
r = (r1, . . . , rm) ∈ Rn and w = (w1, . . . , wm) ∈ Rn

+ with
rk/wk ∈ [ρ1,ρ2] (k = 1, . . . , m), is defined as

Zc(r,w) =
m
∑

k=1

wk f
� rk

wk

�

.

Theorem 5 Let f ∈ C2[ρ1,ρ2] be a function such that
the function | f ′′| is strongly convex with modulus c. Let
r = (r1, . . . , rm) ∈ Rn and w = (w1, . . . , wm) ∈ Rn

+ be
such that

�∑m
k=1 rk

� �∑m
k=1 wk

�

, rk/wk ∈ [ρ1,ρ2] for
k = 1, . . . , m, then
�

�

�

�

1
∑m

k=1 wk
Zc(r,w)− f

�
∑m

k=1 rk
∑m

k=1 wk

��

�

�

�

¶
ρ2|ψ′′(ρ1)| −ρ1|ψ′′(ρ2)|+ cρ1ρ2(ρ2−ρ1)

2(ρ2−ρ1)

×
�

1
∑m

k=1 wk

m
∑

k=1

r2
k

wk
−
�

∑m
k=1 rk

∑m
k=1 wk

�2
�

+
|ψ′′(ρ2)| − |ψ′′(ρ1)| − c(ρ2

2 −ρ
2
1)

6(ρ2−ρ1)

×
�

1
∑m

k=1 wk

m
∑

k=1

r3
k

w2
k

−
�

∑m
k=1 rk

∑m
k=1 wk

�3
�

+
c

12

�

1
∑m

k=1 wk

m
∑

k=1

r4
k

w3
k

−
�

∑m
k=1 rk

∑m
k=1 wk

�4
�

. (30)

Proof : Utilizing ψ = f , ϑk = rk/wk and pk =
wk/

∑m
k=1 wk in (5), we obtain (30). 2

Definition 3 [Rényi-divergence] For a nonnegative
real number τ 6= 1 and two positive probability dis-
tributions r = (r1, . . . , rm) and w = (w1, . . . , wm), the
Rényi-divergence is defined as

Zre(r,w) =
1

τ−1
log

� m
∑

k=1

rτk w1−τ
k

�

.
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Corollary 2 Let [ρ1,ρ2] be a positive interval and
r = (r1, . . . , rm), w = (w1, . . . , wm) be positive probabil-
ity distributions with

∑m
k=1 wk (rk/wk)

τ, (rk/wk)
τ−1 ∈

[ρ1,ρ2] for k = 1, . . . , m, provided τ > 1, then

Zre(r,w)−
1

τ−1

m
∑

k=1

rk log
� rk

wk

�τ−1

¶
ρ5

2 +2ρ3
1ρ

3
2 −3ρ4

1ρ2

2(τ−1)ρ2
1ρ

4
2(ρ2−ρ1)

×
� m
∑

k=1

rk

� rk

wk

�2(τ−1)
−
� m
∑

k=1

rτk w1−τ
k

�2
�

+
3ρ4

1 −ρ
4
2 −2ρ2

1ρ
2
2

6(τ−1)ρ2
1ρ

4
2(ρ2−ρ1)

×
� m
∑

k=1

rk

� rk

wk

�3(τ−1)
−
� m
∑

k=1

rτk w1−τ
k

�3
�

+
1

4(τ−1)ρ4
2

� m
∑

k=1

rk

� rk

wk

�4(τ−1)
−
� m
∑

k=1

rτk w1−τ
k

�4
�

. (31)

Proof : Let ψ(x) = − (log x)/ (τ−1), x ∈ [ρ1,ρ2],
then ψ′′(x) = 1/(τ−1)x2 > 0, which shows that the
function ψ is convex. Also, ψ′′′′(x) = |ψ′′|′′(x) =
6/(τ−1)x4 ¾ 2

�

3/(τ−1)ρ4
2

�

, which implies that
the function |ψ′′| is strongly convex with modulus
c = 3/(τ−1)ρ4

2 , therefore we obtain (31) by using
(5) for ψ(x) = − (log x)/ (τ−1), pk = rk and ϑk =
(rk/wk)

τ−1. 2
In the following corollary, we present an improved

estimate for Shannon entropy in discrete form.

Corollary 3 Let w = (w1, . . . , wm) be a positive proba-
bility distribution with 1/wk ∈ [ρ1,ρ2] ⊆ R+ for k =
1, . . . , m, then we have

log m− Zs(w)

¶
ρ2

2

�

ρ2
2 +ρ1ρ2+ρ2

1

�

+3ρ3
1ρ2

2ρ2
1ρ

4
2

� m
∑

k=1

1
wk
−m2

�

−
(ρ1+ρ2)

�

ρ2
2 +3ρ2

1

�

6ρ2
1ρ

4
2

� m
∑

k=1

1
w2

k

−m3
�

+
1

4ρ4
2

� m
∑

k=1

1
w3

k

−m4
�

. (32)

Proof : Let f (x) = − log x , x ∈ [ρ1,ρ2], then f ′′(x) =
1/x2 > 0, which shows that the function f is convex.
Also, we know from Theorem 2 that a function f is
strongly convex with modulus c if f ′′(x)¾ 2c for all x
in its domain. Now, here we have f ′′′′(x) = | f ′′|′′(x) =
6/x4 ¾ 2

�

3/ρ4
2

�

, which shows that | f ′′| is a strongly
convex function with c = 3/ρ4

2 > 0. Therefore, using
(30) for f (x) = − log x , (r1, . . . , rm) = (1, . . . , 1) and
c = 3/ρ4

2 , we obtain (32). 2

The integral form of (29), for a positive probability
density function ξ(y) defined on [γ1,γ2] is given by

Zs(ξ) = −
∫ γ2

γ1

ξ(y) logξ(y)dy.

Following is the integral version of Corollary 3.

Corollary 4 Let ξ(y) be a positive probability density
function defined on [γ1,γ2] with 1/ξ(y) ∈ [ρ1,ρ2] ⊆
R+ for all y ∈ [γ1,γ2], then

log(γ2 −γ1)− Zs(ξ)

¶
ρ2

2

�

ρ2
2+ρ1ρ2+ρ2

1

�

+3ρ3
1ρ2

2ρ2
1ρ

4
2

�

∫ γ2

γ1

1
ξ(y)

dy − (γ2 −γ1)
2
�

−
(ρ1 +ρ2)

�

ρ2
2 +3ρ2

1

�

6ρ2
1ρ

4
2

�

∫ γ2

γ1

1
ξ2(y)

dy − (γ2 −γ1)
3
�

+
1

4ρ4
2

�

∫ γ2

γ1

1
ξ3(y)

dy − (γ2 −γ1)
4
�

.

(33)

Proof : The proof is analogous to the proof of Corol-
lary 3. 2

Example 3 Let ξ(y) = 1/y ln2 for all y ∈ [1, 2] =
[γ1,γ2] be a reciprocal distribution, then 1/ξ(y) ∈
[1/2, 3/2] = [ρ1,ρ2] for all y ∈ [1,2]. Using (33) for
these values we obtain

0.0199< 0.0401. (34)

Now for the given values, the corresponding estimate
in [17] has been calculated as

0.0199< 0.0429. (35)

From (34) and (35), we conclude that the bound given
by (33) is better than the bound provided in [17].

Corollary 5 If r = (r1, . . . , rm) and w = (w1, . . . , wm)
are positive probability distributions with rk/wk ∈
[ρ1,ρ2] ⊆ R+ for k = 1, . . . , m, then

Zkl(r,w)¶
ρ2

1 +ρ1ρ2 +ρ2
2

2ρ1ρ
2
2

� m
∑

k=1

r2
k

wk
−1
�

−
ρ2

1+ρ1ρ2+ρ2
2

6ρ1ρ
3
2

� m
∑

k=1

r3
k

w2
k

−1
�

+
1

12ρ3
2

� m
∑

k=1

r4
k

w3
k

−1
�

. (36)

Proof : Let f (x) = x log x , x ∈ [ρ1,ρ2], then f ′′(x) =
1/x > 0, which shows that the function f is convex.
Also, f ′′′′(x) = | f ′′|′′(x) = 2/x3 ¾ 2

�

1/ρ3
2

�

, which
presents that the function | f ′′| is strongly convex with
modulus c = 1/ρ3

2 > 0. Thus we get (36) by using (30)
for f (x) = x log x . 2
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Definition 4 [Bhattacharyya coefficient]
Bhattacharyya coefficient for two positive probability
distributions r = (r1, . . . , rm) and w = (w1, . . . , wm) is
defined by

Zb(r,w) =
m
∑

k=1

p
rkwk.

Corollary 6 Let r = (r1, . . . , rm) and w = (w1, . . . , wm)
be positive probability distributions such that rk/wk ∈
[ρ1,ρ2] ⊆ R+ for k = 1, . . . , m, then

1−Zb(r,w)¶
8ρ2

�

ρ
5
2
2 −ρ

5
2
1

�

+15ρ
5
2
1 (ρ2−ρ1)

64ρ
3
2
1 ρ

5
2
2 (ρ2 −ρ1)

� m
∑

k=1

r2
k

wk
−1
�

−
8ρ2

2

�

ρ
3
2
2 −ρ

3
2
1

�

+15ρ
3
2
1 (ρ

2
2 −ρ

2
1)

192ρ
3
2
1 ρ

7
2
2 (ρ2 −ρ1)

� m
∑

k=1

r3
k

w2
k

−1
�

+
5

128ρ
7
2
2

� m
∑

k=1

r4
k

w3
k

−1
�

. (37)

Proof : Let f (x) = −
p

x for x ∈ [ρ1,ρ2], then f ′′(x) =
1/4x3/2 > 0 and f ′′′′(x) = | f ′′|′′(x) = 15/16x7/2 ¾
2
�

15/32ρ7/2
2

�

. Which presents that f is convex func-
tion while the function | f ′′| is strongly convex with
modulus c = 15/32ρ7/2

2 . Therefore, we obtain (37) by
using (30) for f (x) = −

p
x . 2

Definition 5 [Hellinger distance] For two posi-
tive probability distributions r = (r1, . . . , rm), w =
(w1, . . . , wm) the Hellinger distance is defined as

Zh(r,w) =
1
2

m
∑

k=1

(
p

rk −
p

wk)
2.

Corollary 7 If [ρ1,ρ2] is a positive interval and r =
(r1, . . . , rm), w = (w1, . . . , wm) are positive probabil-
ity distributions such that rk/wk ∈ [ρ1,ρ2] for k =
1, . . . , m, then

Zh(r,w)¶
8ρ2

�

ρ
5
2
2 −ρ

5
2
1

�

+15ρ
5
2
1 (ρ2−ρ1)

64ρ
3
2
1 ρ

5
2
2 (ρ2−ρ1)

� m
∑

k=1

r2
k

wk
−1
�

−
8ρ2

2

�

ρ
3
2
2 −ρ

3
2
1

�

+15ρ
3
2
1 (ρ

2
2 −ρ

2
1)

192ρ
3
2
1 ρ

7
2
2 (ρ2−ρ1)

� m
∑

k=1

r3
k

w2
k

−1
�

+
5

128ρ
7
2
2

� m
∑

k=1

r4
k

w3
k

−1
�

. (38)

Proof : Let f (x) = (1 −
p

x)2/2, x ∈ [ρ1,ρ2], then
f ′′(x) = 1/4x3/2 > 0 and f ′′′′(x) = | f ′′|′′(x) =
15/16x7/2 ¾ 2

�

15/32ρ7/2
2

�

. This shows that the
function f is convex and the function | f ′′| is strongly
convex with modulus c = 15/32ρ7/2

2 . Hence using
(30) for f (x) = (1−

p
x)2/2, we obtain (38). 2

Definition 6 [Triangular discrimination] For two
positive probability distributions r = (r1, . . . , rm), w =
(w1, . . . , wm), the triangular discrimination is defined
as

Z4(r,w) =
m
∑

k=1

(rk −wk)2

rk +wk
.

Corollary 8 Let [ρ1,ρ2] ⊆ R+ and r = (r1, . . . , rm),
w = (w1, . . . , wm) be positive probability distributions
with rk/wk ∈ [ρ1,ρ2] for k = 1, . . . , m, then

Z4(r,w)

¶
8ρ2(ρ2+1)5−8ρ1(ρ1+1)3(ρ2+1)2+48ρ1ρ2(ρ2−ρ1)(ρ1+1)3

2(ρ1 +1)3(ρ2 +1)5(ρ2 −ρ1)

×
� m
∑

k=1

r2
k

wk
−1
�

+
8(ρ1 +1)3(ρ2 +1)2 −8(ρ2 +1)5 −48(ρ2

2 −ρ
2
1)(ρ1 +1)3

6(ρ1 +1)3(ρ2 +1)5(ρ2 −ρ1)

×
� m
∑

k=1

r3
k

w2
k

−1
�

+
4

(ρ2 +1)5

� m
∑

k=1

r4
k

w3
k

−1
�

. (39)

Proof : Let f (x) = (x −1)2/(x +1) for x ∈ [ρ1,ρ2],
then f ′′(x) = 8/(x +1)3 > 0 and f ′′′′(x) = | f ′′|′′(x) =
96/(x +1)5 ¾ 2

�

48/(ρ2+1)5
�

. This shows that f
is a convex function while | f ′′| is a strongly convex
function with modulus c = 48/(ρ2+1)5. Thus using
(30) for f (x) = (x −1)2/(x +1), we get (39). 2

Results for the Zipf-Mandelbrot entropy

This subsection is devoted to some new results around
the Zipf-Mandelbrot entropy.

Corollary 9 Let θ ¾ 0, s > 0 and wk ¾ 0 for k =
1, . . . , m with

∑m
k=1 wk = 1 and 1/wk(k+θ )s Mm,θ ,s ∈

[ρ1,ρ2] ⊆ R+ (k = 1, . . . , m), then

− Z(M ,θ , s)−
1

Mm,θ ,s

m
∑

k=1

log wk

(k+θ )s

¶
ρ2

1 +ρ1ρ2+ρ2
2

2ρ1ρ
2
2

� m
∑

k=1

1
wk(k+θ )2s M2

m,θ ,s

−1
�

−
ρ2

1 +ρ1ρ2+ρ2
2

6ρ1ρ
3
2

� m
∑

k=1

1
w2

k(k+θ )
3s M3

m,θ ,s

−1
�

+
1

12ρ3
2

� m
∑

k=1

1

w3
k(k+θ )

4s M4
m,θ ,s

−1
�

. (40)
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Proof : For rk = 1/(k+θ )s Mm,θ ,s, k= 1, . . . , m, we have

m
∑

k=1

rk log
rk

wk

=
m
∑

k=1

1
(k+θ )s Mm,θ ,s

�

−s log(k+θ )−log Mm,θ ,s−log wk

�

= −Z(M ,θ , s)−
1

Mm,θ ,s

m
∑

k=1

log wk

(k+θ )s
. (41)

Also,

ρ2
1 +ρ1ρ2+ρ2

2

2ρ1ρ
2
2

� m
∑

k=1

r2
k

wk
−1
�

−
ρ2

1 +ρ1ρ2+ρ2
2

6ρ1ρ
3
2

� m
∑

k=1

r3
k

w2
k

−1
�

+
1

12ρ3
2

� m
∑

k=1

r4
k

w3
k

−1
�

=
ρ2

1 +ρ1ρ2+ρ2
2

2ρ1ρ
2
2

� m
∑

k=1

1
wk(k+θ )2s M2

m,θ ,s

−1
�

−
ρ2

1 +ρ1ρ2+ρ2
2

6ρ1ρ
3
2

� m
∑

k=1

1
w2

k(k+θ )
3s M3

m,θ ,s

−1
�

+
1

12ρ3
2

� m
∑

k=1

1

w3
k(k+θ )

4s M4
m,θ ,s

−1
�

. (42)

Now using (41) and (42) in (36), we get (40). 2

Corollary 10 Let 0 < ρ1 < ρ2, θ1,θ2 ¾ 0, s1, s2 > 0
with (k+θ2)s2 Mm,θ2,s2

/(k+θ1)s1 Mm,θ1,s1
∈ [ρ1,ρ2] for

k = 1, . . . , m, then

− Z(M ,θ1, s1)+
m
∑

k=1

log(k+θ2)s2 Mm,θ2,s2

(k+θ1)s1 Mm,θ1,s1

¶
ρ2

1 +ρ1ρ2+ρ2
2

2ρ1ρ
2
2

� m
∑

k=1

(k+θ2)s2 Mm,θ2,s2

(k+θ1)2s1 M2
m,θ1,s1

−1
�

−
ρ2

1 +ρ1ρ2+ρ2
2

6ρ1ρ
3
2

� m
∑

k=1

(k+θ2)2s2 M2
m,θ2,s2

(k+θ1)3s1 M3
m,θ1,s1

−1
�

+
1

12ρ3
2

� m
∑

k=1

(k+θ2)3s2 M3
m,θ2,s2

(k+θ1)4s1 M4
m,θ1,s1

−1
�

. (43)

Proof : For rk = 1/(k+θ1)s1 Mm,θ1,s1
,

wk = 1/(k+θ2)s2 Mm,θ2,s2
, k = 1, . . . , m, we have

m
∑

k=1

rk log
rk

wk
=

m
∑

k=1

1
(k+θ1)s1 Mm,θ1,s1

×
�

log(k+θ2)
s2 Mm,θ2,s2

− log(k+θ1)
s1 Mm,θ1,s1

�

= −Z(M ,θ1, s1)+
m
∑

k=1

log(k+θ2)s2 Mm,θ2,s2

(k+θ1)s1 Mm,θ1,s1

. (44)

Also,

ρ2
1 +ρ1ρ2+ρ2

2

2ρ1ρ
2
2

� m
∑

k=1

r2
k

wk
−1
�

−
ρ2

1 +ρ1ρ2+ρ2
2

6ρ1ρ
3
2

� m
∑

k=1

r3
k

w2
k

−1
�

+
1

12ρ3
2

� m
∑

k=1

r4
k

w3
k

−1
�

=
ρ2

1 +ρ1ρ2+ρ2
2

2ρ1ρ
2
2

� m
∑

k=1

(k+θ2)s2 Mm,θ2,s2

(k+θ1)2s1 M2
m,θ1,s1

−1
�

−
ρ2

1 +ρ1ρ2+ρ2
2

6ρ1ρ
3
2

� m
∑

k=1

(k+θ2)2s2 M2
m,θ2,s2

(k+θ1)3s1 M3
m,θ1,s1

−1
�

+
1

12ρ3
2

� m
∑

k=1

(k+θ2)3s2 M3
m,θ2,s2

(k+θ1)4s1 M4
m,θ1,s1

−1
�

. (45)

Now utilizing (44) and (45) in (36), we get (43). 2

CONCLUSION

In this paper, we have utilized strongly convex func-
tions and improved an earlier bound for Jensen’s gap
in its discrete form which is presented in [18]. Also, we
have presented the improvement of an earlier bound
for Jensen’s gap of its integral form which is introduced
in [17]. As consequences of these improved results,
we have achieved some improvements of the earlier re-
sults presented in [17, 18] around various divergences,
the Hermite-Hadamard and Hölder inequalities. We
have demonstrated these improvements through nu-
merical experiments. Finally, we have provided some
new results around the Zipf-Mandelbrot entropy. The
idea of the paper may strengthens some other existing
results based on the notion of classical convexity.
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inequalities to Jensen’s inequality for m-convex and
(α, m)-convex functions. J Inequal Pure Appl Math 7,
194.

11. Dragomir SS, Fitzpatrick S (2000) The Jensen inequality
for s-breckner convex functions in linear spaces. Demon-
stratio Math 33, 43–49.

12. Mihai MV, Niculescu CP (2016) A simple proof of the
Jensen-type inequality of Fink and Jodeit. Mediterr J
Math 13, 119–126.

13. Moslehian MS, Kian M (2012) Jensen type inequalities
for Q-class functions. Bull Aust Math Soc 85, 128–142.

14. Moradi HR, Omidvar ME, Adil Khan M, Nikodem K
(2018) Around Jensen’s inequality for strongly convex
functions. Aequat Math 92, 25–37.

15. Noor MA (2004) Some developments in general varia-
tional inequalities. Appl Math Comput 152, 199–277.

16. Youness EA (1999) E-convex sets, E-convex functions,
and E-convex programming. J Optim Theory Appl 102,
439–450.

17. Adil Khan M, Khan S, Chu YM (2020) A new bound for
the Jensen gap with applications in information theory.
IEEE Access 8, 98001–98008.

18. Khan S, Adil Khan M, Butt SI, Chu YM (2020) A new
bound for the Jensen gap pertaining twice differentiable
functions with applications. Adv Differ Equ 2020, 333.

19. Polyak BT (1966) Existence theorems and convergence
of minimizing sequences in extremum problems with
restrictions. Soviet Math Dokl 7, 72–75.

20. Merentes N, Nikodem K (2010) Remarks on strongly
convex functions. Aequat Math 80, 193–199.
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