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ABSTRACT: We describe the entire solutions for Fermat type functional equations with functional coefficients in C",
i.e., hf?P+kg?=1, where p,q > 2 are two integers. We then apply the result to obtain that entire function solutions f, g

of f2+g%=1in C" are constant if Df ~*(0) € Dg~'(0) with ignoring multiplicities, where D := Y.

n a .
j=1%i73z 18 the Euler

operator. Meromorphic function solutions of f3+ g3 =1 in C" and applications to nonlinear (ordinary and partial)

differential equations are also discussed.
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INTRODUCTION

The well-known “Fermat’s Last Theorem”, which was
proved by Wiles [1] and Taylor and Wiles [2], states
that there do not exist non-zero rational numbers x
and y and an integer m > 2, such that x™ +y™ = 1.
Analogous to this result of number theory, there have
been similar function theory investigations. For exam-
ple, it has been determined for which positive integers
m, the Fermat type functional equation

ff+gh=1 D

has non-constant entire or meromorphic solutions f, g.
It is known that Eq. (1) does not admit nonconstant
global entire solutions in the complex plane when m =
3 and does not admit nonconstant meromorphic solu-
tions when m = 4. But it does admit entire solutions
when m = 2 and admit nonconstant meromorphic
solutions when m = 3. For m = 2, Eq. (1) obviously
has non-constant entire solutions f = sinh, g = cosh,
where h is a non-constant entire function. For m = 3,
Eq. (1) obviously has non-constant meromorphic solu-
tions

1 9'(2)
f@={5+ = Vo), N
s = {5- 22} /0w,

where p is the Weierstrass elliptic function satisfying
(9’)* = 4p —1 after appropriately choosing its periods
(see [3-6] and references therein).

On the other hand, studies of the functional equa-
tions in several complex variables is natural. Through-
out this paper we use the basic results and notation
of Nevanlinna theory, such as T(r, f), m(r, f), N(r, ),
N(r,f), etc. (cf. [7,8]). In 2005, Li [9] proved the

following characterization for entire solutions of func-
tional equations in C? with functional coefficients in
C.

Theorem A Let h and k be two non-zero meromorphic
functions in C, and p, q = 2 two integers. Then any entire
solutions f and g of the functional equation

h(z) fP + k(z;) g?=1
in C2 must satisfy that
T(r,f)+T(r,g) =0{T(r,h)+ T(r,k)}

outside a set of r of finite Lebesgue measure, provided
that f,, and g, have the same zeros (counting multiplic-
ities).

In the same paper [9], as an application of Theo-
rem A, the author determined when entire solutions
of the functional equation f2+ g2 =1 in C2?, or
equivalently, holomorphic maps (f, g) to the surface
x? 4+ y2 =1, reduce to constant.

Theorem B Entire function solutions f, g of f2+g% =1
in C? are constant if and only if f,, and g, have the same
zeros (counting multiplicities).

Later, Li and Ye [10] considered the similar prob-
lem for the functional equation £+ g% =1 in C2 with
different method.

Theorem C Meromorphic function solutions f,g of
f?+¢%=1in C? are constant if and only if f, and
8., have the same zeros (counting multiplicities).

Recently, Lii and Li [11] strengthened Theorem C
by improving the condition so that f, and g, have the
same zeros with ignoring multiplicities.
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Theorem D Meromorphic function solutions f,g of
f?+¢*=1in C? are constant if and only if f, and
g, have the same zeros (ignoring multiplicities).

More recently, Li and Lii [12] improved the func-
tional coefficients h(z;) and k(z,) to meromorphic
functions h(z;,2,) and k(z;,2,) in C2.

Theorem E Let h and k be two non-zero meromorphic
functions in C2, and f and g be non-zero entire solutions
of the functional equation

h(zl,zz)fz +k(zl,zz)g2 =1

in C2. Suppose that a zero of (hfz)zz/(hf) is also a zero

of (kgz)Z /(kg) (ignoring multiplicities) and (kgz)Z Z
1 1

0. Then f,g must be constant if h,k are constant and

f, g must be polynomials if h, k are rational functions.

We point out that the conclusion in Theorem A
holds also for Theorem E (see [12]). In addition,
Theorem E immediately yields Theorem B with the
condition “counting multiplicities ” removed.

Theorem F Entire function solutions f, g of f2+g%=1
in C? are constant if and only if fz, and g, have the same
geros (ignoring multiplicities).

Furthermore, Li [13] studied the functional equation
f2?+g%=11in C and derived the following conclusion.

Theorem G Entire function solutions f, g of f2+g%=1
in C are constant if and only if (f')7(0) € (g')7*(0)
(ignoring multiplicities).

MAIN RESULTS

As we saw, all of the results mentioned in previous
section are related to Fermat type functional equations
in C or C?. It is natural to ask the following question:
how to describe entire/meromorphic solutions for the
above Fermat type functional equations in C"? In this
paper, we first describe entire solutions for the Fermat
type functional equations with functional coefficients
hfP +kg? =1 in C". Our basic tool is the Euler
operator on meromorphic functions of several complex
variables. We refer to [14] for some applications of
Euler operator.

Definition 1 Let f be a meromorphic function on C",
the Euler operator on f is defined by

n

Df(z)= Y 5, (), ®)

j=1

where 2 = (24,2,...,2%,) € C", and fs, is the partial
derivative of f with respect to z; (j =1,2,...,n). For
any positive integer k, the k-th order total derivative

D*f of f is defined inductively by D**1f = D(D*f).
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We note that the Euler operator on f is also called
the total derivatives (see [15] and [16]) and the radial
derivative of f (see for example [17] and [18]).

Our first result is stated as follows.

Theorem 1 Let h and k be two nonzero meromorphic
functions in C", and p,q = 2 two integers. If a zero of
D (hf?)/(hfP71)is also a zero of D (kg?) / (kg™ (ig-
noring multiplicities) and D (kg?) # 0, then any entire
solutions f and g of the functional equation

hfP+kgl=1 @
in C" must satisfy that
T(r,f)+T(r,g)=0{T(r,h)+ T(r,k)+logr}
outside a set of r of finite Lebesgue measure.

In order to prove Theorem 1, we require the log-
arithmic derivative lemma concerning Euler operator.
Since the Euler operator is a linear combination of
partial derivatives with polynomial coefficients, the
following lemma is a direct consequence of the well-
known logarithmic derivative lemma in several com-
plex variables due to Vitter [19].

Lemma 1 ([20], Lemma 2.2) Let f be a transcenden-
tal meromorphic function in C". Then for any positive
integer k,

m (r, Dfﬁ) = O{logrT(r,f)}.

holds for all r > 0 outside a set E with finite Lebesgue
measure.

Inspired by some ideas used in [9, 11, 12], we next
give the proof of our main results, i.e., Theorem 1.
Proof: Suppose that f and g are entire solutions of
the given functional equation (4) in Theorem 1. Let
F =hf? and G = kg?. Then

F+G=1. )
Taking total derivatives on both sides of (5) we have
DF +DG =0. (6)

It is easily seen that

DF = fP7IF* DG = gT1G*, @)
where F* = (Dh)f +ph(Df) and G* = (Dk)g+qk(Dg).
Set

_ (F)PGT)
Y= T Fc (8)
Thus (7) gives
_ (DFY(DG)!
Y= fre-Dgaa-DFG
1. ._1(DF\prDG\a
=w ke () () 2
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If ¢ = 0, it follows from (9) that DF or DG must be
identically zero. Combing this fact with (6) shows
DF =0 and DG = 0, which is a contradiction with the
assumption that D (kg?) # 0. Therefore, we may now
assume that ¢ # 0.

Note that, for any rational function R in C", we
have m(r,R) = O(logr). Hence, by (9) and Lemma 1,
we deduce

m(r,) < (p—1)T(r,h)+(q—1)T(r, k)
+O{logrT(r,f)T(r,2)}
=O0{T(r,h)+T(r,k)}+O0{logrT(r, f)T(r,g)}. (10)

Claim 1 The function v is holomorphic at each zero of
f or g which is not a zero or pole of h, k.

To see this, suppose that z, in C" such that f(z,) =0
with div,(zy) = 7 and h(z), k(zo) # 0,00. Here, we
will use div(z,) to denote the multiplicity of a zero
2, of f, which is the degree of the first homogeneous
polynomial in the Taylor series expansion of f at z,.
Then, we have divg(z,) = p7. It follows from (6) that
divpp(z9) = divpg(z,) = pt — 1. Note that g(z,) # 0,
we get divg.(20) = pt—1 and divg.(z9) = pr—1—(p—
1)t = 7—1 in view of (7). Hence, the above discussion,
together with (8), yields that

divy, (29) 2 pdivp(2) + qdive.(20) — divp(z)
Zp(t—D+q(pr—1)—pt
=pqT—p—q
Zpq—p—4q
> 2max(p,q)—p—q
= 0.

This means that the function v is holomorphic at z,.
By symmetry, v is also holomorphic at each zero of g
which is not a zero or pole of h,k. Thus, Claim 1 is
proved.

Therefore, we have by Claim 1.

N(r,y)=0{N(r,h)+N(r,+)+N(r,k)+N(r, 1)}
=O{T(r,h) + T(r,k)}. (1D

By combining with (10) and (11), it yields

T(r,y)=0{T(r,hHT(r,kYHogrT(r,f)T(r,g)}. (12)

On the other hand, we deduce from (9) that

Y _ et (25)7 (DS (22 o)
G F G F—1 F
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This, together with Lemma 1 and (12), implies that

3
N

>
%=
N—

N

(m(r,
(m(r,

< 6—1 (m(r, %) +T(r, )+ T(r,k))
= O{T(r,h)+T(r,k)+logrT(r,f)T(r,g)}.

Q=
~—

+m(r, k))

N
QR Q|RQ|-

Q<
—

+m(r, $)+m(r, k))

(13)

Claim 2 The function ) vanishes at each zero of g
which is not a zero or pole of h,k with a higher mul-

tiplicity.
Suppose that w, in C" such that g(w,) = 0 with
div,(wo) = v and h(w,), k(w,) # 0, 0. Use the same
argument as in the proof of Claim 1, we have
divy, (wo) = pdivg. (wo) + qdivg. (wo) —divg(w)
Zpqu—1+qv—1)—qu

=pqu—p—q.
Since p,q = 2, % < 2. Hence we have that v = 1%,

provide v = 2. Then pqu —p —q = v holds for v =
2. What is left is to consider the case of v = 1. By
(8), we have DG(wy) = 0. Then it follows from (7)
that DF(w,) = 0. Note the hypotheses that a zero of
D (hfP)/ (hfp’l) is also a zero of D (kg?) / (kgq’l), we
have D (kg?) / (kg?™!) (wo) =0. So (8) gives G*(w,) =
0. By the above discussion, we have
divy, (wo) 2 pdivp.(wo) + qdivg.(wo) — divg (wg)
Zp+q—q=p>v.

Thus, we always have div,,(w,) = div,(w,) for each
positive integer number v. This completes the proof of

Claim 2.
From Claim 2 and (12), we have that

N(n3)
<N (r, $)+O {N(r,h)+N (r, %)+N(r, K+N (r, %)}
< T(r,)+O{T(r,h) + T(r, k)}

=0{T(r,h)+ T(r,k)+1logrT(r,f)T(r,g)}. (14)

Using Nevanlinna first fundamental theorem, (13)
and (14), we deduce that

T(r,g)=T (r, %) +0(1)
=O{T(r,h)+ T(r,k)+1logrT(r,f)T(r,g)}.

www.scienceasia.org
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This, together with the hypotheses that hf? +
kg? =1, implies T (r,g) = O{T(r,h) + T(r, k) +logr}
and T (r,f) = O{T(r,h) + T(r,k) +logr}. Hence, we
have T (r, f)+T (r, g) = O{T(r,h)+T(r,k)+logr}. This
completes the proof of the theorem. m]

Under the conditions of Theorem 1, the following
holds.

Corollary 1 Any entire solutions f and g of (4) must
be polynomials, provided that h and k are rational
functions.

Proof: Note that, for any rational function R in C",
we have T(r,R) = O(logr). Hence, by Theorem 1, we
have T (r,f)+ T (r,g) =0{T(r,h)+ T(r,k)+1logr} =
O(logr). Therefore, we have f and g are polynomi-
als. m]

APPLICATIONS

As applications of our main result, we shall de-
scribe entire/meromorphic solutions in C" to func-
tional equations of the form f2 + g2 = 1, the
form f3 + g®> = 1, and nonlinear partial differ-

. . 2
ential equations f2 + (2 (zlle +"'+anzn) b=,

3 . .
i+e® (zlle +---+znfzn) Y =1, where ¢ is an arbi-
trary entire function in C" and p,q = 2 are integers.

Entire function solutions of f2+ g2 =1 in C"

We shall apply Theorem 1 to obtain the condition such
that entire function solutions f, g of f2+g2=1in C"
are constant.

Theorem 2 Entire solutions f,g of f2+g2=1in C"
are constant if and only if Df ~1(0) € Dg~(0) (ignoring
multiplicities).

Proof: First,we have by Theorem 1 that T (r,f) +
T (r,g) = O(logr) which means that f and g are
polynomials. Suppose, to the contrary, that f and g
are non-constant polynomials in C". Set
f:PO+Pl+”'+Pk’ g:QO+Q1+’”+Ql’

where P;, Q; are either identically zero or homoge-
neous polynomials of degree j. If f = Py or g =Q,, we
immediately have the entire solutions f, g of f2+g2 =
1 in C" are constant. This is a contradiction. Since
f?+g%=1, we have k = . If we write

Rf:P1+"'+Pk, Rg:Q1+"‘+Ql,

then (P, +R;)* + (Q +R,)* = 1 which gives

Pi+Qi=1, (15)
PyR; +QqR, =0, (16)
and
2 2 _
R; +R, =0. a7
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Via (17), we have R; = +iR,. Then, by (16), one
has P,/Q, = —R;/R, = Fi. So P+ Q3 = 0 which
contradicts (15). Thus we finish the proof. m|

If we take n = 1 in Theorem 2, we are able to ob-
tain Theorem G directly. To compare with Theorem B
and Theorem F, we give the following result which is
the particular case of Theorem 2 with n = 2.

Corollary 2 Entire solutions f,g of f2+ g% =1in C?
are constant if and only if 2, f, +2,f,, = 0 implies 2, g, +
2,8, = 0 (ignoring multiplicities).

Meromorphic function solutions of f3+g3=1in C"

In view of Theorem 2, it is natural to ask whether
this theorem is valid for meromorphic solutions of
f3+g3>=11in C" The following example shows
that the answer is negative. Let f(z) and g(z) be
the same as in (2). Then f(z;/2,) and g(z,/2,) are
meromorphic solutions of f3+ g3 =1 in C2. Since
Df =0and Dg =0, the condition Df ~1(0) € Dg~1(0)
is satisfied. But f (2, /2,) and g(z,/2,) are not constant.
For meromorphic solutions of f3+ g2 =1 in C", we
have the following result.

Theorem 3 Let f and g be nongero meromorphic so-
Iutions of f3+g®>=1in C*. If Df 1(0) C Dg1(0)
(ignoring multiplicities), then Df =0 and Dg = 0.

Proof: Suppose that f and g are meromorphic solu-
tions of the given functional equation in Theorem 3.
That is

fPrg’=1
in C". Next we discuss two cases.
Case 1: f is a rational function in C". Then g is a
rational function by (18) and we can assume that f =
P/H, g = Q/H, where PQ,H are three polynomials
in C". In view of [3, Theorem 4.1(b)], we have that
P,Q,H are three constant numbers. Then, f and g are
constant.
Case 2: f is a transcendental meromorphic function in
C". Taking total derivative in (18), we obtain that

f2Df +g%Dg =0. 19

Suppose that Df # 0, by (19), Dg # 0.

Let w; = e F j=0,1,2, then w;, w, and w4 are
the three complex unitary roots of the equation z° = 1.
Suppose that f(zy) = w;. Then (18) yields g(z,) = 0.
It follows from (19) that Df (z,) = 0. Further, by the
hypothesis of the Theorem 3, we have that Dg(z,) =0
and divy () = 3. Then, for any z € C"

(18)

3
divp(z) = SZ min{divf,wj (2),1},
=1

which implies

N(r,%)>3iﬁ(r,f_lw).

j=1 J

(20)
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Furthermore, by Nevanlinna second fundamental the-
orem and Lemma 1, we deduce that

T(r,f) < Zgjﬁ(r, 75 ) +0llogrT(r, £))

j=1
iN (r, %) +O(logrT(r,f))

3T (r,Df)+0(logrT(r, f))

% {m(r,Df)+N (r,Df)}+0O(logrT(r,f))
H{m(r, 2 )+m(r, £)+2N(r, f)}+0(log rT(r, £))
3 {m(r, £)+2N(r, )} +0(log rT(r, £))

%T(r,f) +O(logrT(r,f)).

N

N

N

NN

Hence, T(r,f) = O(logrT(r,f)), a contradiction.
Thus, Df =0, and by (19), Dg = 0. This completes
the proof of Theorem 3. O

In the particular case of n = 1, by Theorem 3, we
have

Corollary 3 Meromorphic solutions f,g of f2+g° =1
in C are constant if and only if (f')71(0) € (g’)71(0)
(ignoring multiplicities).

Nonlinear differential equations in C"

Using our results above, we shall character complex
analytic solutions of some nonlinear (ordinary and
partial) differential equations in C".

Theorem 4
(i) Entire solutions of

2

fz+(p2(zlle+"'+znfzn)p=1 @n
in C" are exactly f = £1, where ¢ is an arbitrary
entire function in C" and p = 2 is an integer.

(ii) Meromorphic solutions of

3
f3+(p3(zlle+"'+znfzn) ‘1:1 (22)
in C" are exactly f = eZani, k=0,1,2, where g is
an arbitrary entire function in C" and q = 2 is an
integer.

Proof: (i): If we set g = cp(zlle +~-+znfzn)p =
@(Df)P, then Dg = (D(pr +p<pD2f) (Df)P~L. Ob-
viously, Theorem 2 implies f is constant and the con-
clusion is valid.

(iD): Similarly, if we put g = ¢(Df)?, then Dg =
(DyDf +qpD*f)(Df)?L. Thus, we get Df =0 by
Theorem 3, which implies from (22) that f 3 =1. This
completes the proof. O

In the particular case n = 1, Theorem 4 (i) was
obtained in [13, Corollary 3.1] and Theorem 4 (ii)
implies the following corollary.
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Corollary 4 Meromorphic solutions of 3+ > (FH =

. B i
1in C are exactly f =e™s ', k=0,1,2, where ¢ is an
arbitrary entire function in C and q = 2 is an integer.

In the above corollary, the function ¢ cannot be
assumed to be a meromorphic function with g = 1.
Here is a counterexample. Let f(z) be the same as

in () and p(s) = { 28 — 2OEI} (o0 _ o)

%}. Then, by (2), we have f3 + @3(f')® = 1.
But it is clear that f is a transcendental meromorphic
solution of the equation.
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