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ABSTRACT: We describe the entire solutions for Fermat type functional equations with functional coefficients in Cn,
i.e., hf p+kgq = 1, where p, q¾ 2 are two integers. We then apply the result to obtain that entire function solutions f , g
of f 2+ g2 = 1 in Cn are constant if D f −1(0) ⊆ Dg−1(0) with ignoring multiplicities, where D :=

∑n
j=1 z j

∂
∂ z j

is the Euler

operator. Meromorphic function solutions of f 3 + g3 = 1 in Cn and applications to nonlinear (ordinary and partial)
differential equations are also discussed.
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INTRODUCTION

The well-known “Fermat’s Last Theorem”, which was
proved by Wiles [1] and Taylor and Wiles [2], states
that there do not exist non-zero rational numbers x
and y and an integer m > 2, such that xm+ ym = 1.
Analogous to this result of number theory, there have
been similar function theory investigations. For exam-
ple, it has been determined for which positive integers
m, the Fermat type functional equation

f m+ gm = 1 (1)

has non-constant entire or meromorphic solutions f , g.
It is known that Eq. (1) does not admit nonconstant
global entire solutions in the complex plane when m¾
3 and does not admit nonconstant meromorphic solu-
tions when m ¾ 4. But it does admit entire solutions
when m = 2 and admit nonconstant meromorphic
solutions when m = 3. For m = 2, Eq. (1) obviously
has non-constant entire solutions f = sin h, g = cos h,
where h is a non-constant entire function. For m= 3,
Eq. (1) obviously has non-constant meromorphic solu-
tions

f (z) =
¦1

2
+
℘′(z)
p

12

©

/℘(z),

g(z) =
¦1

2
−
℘′(z)
p

12

©

/℘(z),
(2)

where ℘ is the Weierstrass elliptic function satisfying
(℘′)2 = 4℘−1 after appropriately choosing its periods
(see [3–6] and references therein).

On the other hand, studies of the functional equa-
tions in several complex variables is natural. Through-
out this paper we use the basic results and notation
of Nevanlinna theory, such as T (r, f ), m(r, f ), N(r, f ),
N(r, f ), etc. (cf. [7, 8]). In 2005, Li [9] proved the

following characterization for entire solutions of func-
tional equations in C2 with functional coefficients in
C.

Theorem A Let h and k be two non-zero meromorphic
functions inC, and p, q¾ 2 two integers. Then any entire
solutions f and g of the functional equation

h(z1) f p + k(z2) gq = 1

in C2 must satisfy that

T (r, f )+ T (r, g) = O{T (r, h)+ T (r, k)}

outside a set of r of finite Lebesgue measure, provided
that fz2

and gz1
have the same zeros (counting multiplic-

ities).

In the same paper [9], as an application of Theo-
rem A, the author determined when entire solutions
of the functional equation f 2 + g2 = 1 in C2, or
equivalently, holomorphic maps ( f , g) to the surface
x2+ y2 = 1, reduce to constant.

Theorem B Entire function solutions f , g of f 2+g2 = 1
inC2 are constant if and only if fz2

and gz1
have the same

zeros (counting multiplicities).

Later, Li and Ye [10] considered the similar prob-
lem for the functional equation f 3+ g3 = 1 in C2 with
different method.

Theorem C Meromorphic function solutions f , g of
f 3 + g3 = 1 in C2 are constant if and only if fz2

and
gz1

have the same zeros (counting multiplicities).

Recently, Lü and Li [11] strengthened Theorem C
by improving the condition so that fz2

and gz1
have the

same zeros with ignoring multiplicities.
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Theorem D Meromorphic function solutions f , g of
f 3 + g3 = 1 in C2 are constant if and only if fz2

and
gz1

have the same zeros (ignoring multiplicities).

More recently, Li and Lü [12] improved the func-
tional coefficients h(z1) and k(z2) to meromorphic
functions h(z1, z2) and k(z1, z2) in C2.

Theorem E Let h and k be two non-zero meromorphic
functions inC2, and f and g be non-zero entire solutions
of the functional equation

h(z1, z2) f
2+ k(z1, z2)g

2 = 1

in C2. Suppose that a zero of
�

hf 2
�

z2
/(hf ) is also a zero

of
�

kg2
�

z1
/(kg) (ignoring multiplicities) and

�

kg2
�

z1
6≡

0. Then f , g must be constant if h, k are constant and
f , g must be polynomials if h, k are rational functions.

We point out that the conclusion in Theorem A
holds also for Theorem E (see [12]). In addition,
Theorem E immediately yields Theorem B with the
condition “counting multiplicities ” removed.

Theorem F Entire function solutions f , g of f 2+g2 = 1
inC2 are constant if and only if fz2

and gz1
have the same

zeros (ignoring multiplicities).

Furthermore, Li [13] studied the functional equation
f 2+ g2 = 1 in C and derived the following conclusion.

Theorem G Entire function solutions f , g of f 2+g2 = 1
in C are constant if and only if ( f ′)−1(0) ⊆ (g ′)−1(0)
(ignoring multiplicities).

MAIN RESULTS

As we saw, all of the results mentioned in previous
section are related to Fermat type functional equations
in C or C2. It is natural to ask the following question:
how to describe entire/meromorphic solutions for the
above Fermat type functional equations in Cn? In this
paper, we first describe entire solutions for the Fermat
type functional equations with functional coefficients
hf p + kgq = 1 in Cn. Our basic tool is the Euler
operator on meromorphic functions of several complex
variables. We refer to [14] for some applications of
Euler operator.

Definition 1 Let f be a meromorphic function on Cn,
the Euler operator on f is defined by

D f (z) =
n
∑

j=1

z j fz j
(z), (3)

where z = (z1, z2, . . . , zn) ∈ Cn, and fz j
is the partial

derivative of f with respect to z j ( j = 1,2, . . . , n). For
any positive integer k, the k-th order total derivative
Dk f of f is defined inductively by Dk+1 f = D(Dk f ).

We note that the Euler operator on f is also called
the total derivatives (see [15] and [16]) and the radial
derivative of f (see for example [17] and [18]).

Our first result is stated as follows.

Theorem 1 Let h and k be two nonzero meromorphic
functions in Cn, and p, q ¾ 2 two integers. If a zero of
D (hf p)/

�

hf p−1
�

is also a zero of D (kgq)/
�

kgq−1
�

(ig-
noring multiplicities) and D (kgq) 6≡ 0, then any entire
solutions f and g of the functional equation

h f p + kgq = 1 (4)

in Cn must satisfy that

T (r, f )+ T (r, g) = O{T (r, h)+ T (r, k)+ log r}

outside a set of r of finite Lebesgue measure.

In order to prove Theorem 1, we require the log-
arithmic derivative lemma concerning Euler operator.
Since the Euler operator is a linear combination of
partial derivatives with polynomial coefficients, the
following lemma is a direct consequence of the well-
known logarithmic derivative lemma in several com-
plex variables due to Vitter [19].

Lemma 1 ([20], Lemma 2.2) Let f be a transcenden-
tal meromorphic function in Cn. Then for any positive
integer k,

m
�

r, Dk f
f

�

= O{log rT (r, f )}.

holds for all r > 0 outside a set E with finite Lebesgue
measure.

Inspired by some ideas used in [9, 11, 12], we next
give the proof of our main results, i.e., Theorem 1.
Proof : Suppose that f and g are entire solutions of
the given functional equation (4) in Theorem 1. Let
F = hf p and G = kgq. Then

F +G = 1. (5)

Taking total derivatives on both sides of (5) we have

DF + DG = 0. (6)

It is easily seen that

DF = f p−1F∗, DG = gq−1G∗, (7)

where F∗ = (Dh) f +ph(D f ) and G∗ = (Dk)g+qk(Dg).
Set

ψ=
(F∗)p(G∗)q

FG
. (8)

Thus (7) gives

ψ=
(DF)p(DG)q

f p(p−1)gq(q−1)FG

= hp−1kq−1
�DF

F

�p�DG
G

�q
(9)
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If ψ ≡ 0, it follows from (9) that DF or DG must be
identically zero. Combing this fact with (6) shows
DF ≡ 0 and DG ≡ 0, which is a contradiction with the
assumption that D (kgq) 6≡ 0. Therefore, we may now
assume that ψ 6≡ 0.

Note that, for any rational function R in Cn, we
have m(r, R) = O(log r). Hence, by (9) and Lemma 1,
we deduce

m(r,ψ)¶ (p−1)T (r, h)+ (q−1)T (r, k)
+O{log rT (r, f )T (r, g)}

= O{T (r, h)+T (r, k)}+O{log rT (r, f )T (r, g)}. (10)

Claim 1 The function ψ is holomorphic at each zero of
f or g which is not a zero or pole of h, k.

To see this, suppose that z0 in Cn such that f (z0) = 0
with div f (z0) = τ and h(z0), k(z0) 6= 0,∞. Here, we
will use div f (z0) to denote the multiplicity of a zero
z0 of f , which is the degree of the first homogeneous
polynomial in the Taylor series expansion of f at z0.
Then, we have divF (z0) = pτ. It follows from (6) that
divDF (z0) = divDG(z0) ¾ pτ− 1. Note that g(z0) 6= 0,
we get divG∗(z0)¾ pτ−1 and divF∗(z0)¾ pτ−1−(p−
1)τ= τ−1 in view of (7). Hence, the above discussion,
together with (8), yields that

divψ(z0)¾ pdivF∗(z0)+ qdivG∗(z0)−divF (z0)

¾ p(τ−1)+ q(pτ−1)− pτ

= pqτ− p− q

¾ pq− p− q

¾ 2max (p, q)− p− q

¾ 0.

This means that the function ψ is holomorphic at z0.
By symmetry, ψ is also holomorphic at each zero of g
which is not a zero or pole of h, k. Thus, Claim 1 is
proved.

Therefore, we have by Claim 1.

N(r,ψ) = O
�

N(r, h)+N
�

r, 1
h

�

+N(r, k)+N
�

r, 1
k

�	

= O{T (r, h)+ T (r, k)}. (11)

By combining with (10) and (11), it yields

T (r,ψ) =O{T (r, h)+T (r, k)+log rT (r, f )T (r, g)}. (12)

On the other hand, we deduce from (9) that

ψ

G
= hp−1kq−1

�

DF
F

�p−1 �DG
G

�q � DF
F −1

−
DF
F

�

This, together with Lemma 1 and (12), implies that

m
�

r, 1
g

�

=
1
q

m
�

r, 1
gq

�

¶
1
q

�

m
�

r, 1
G

�

+m(r, k)
�

¶
1
q

�

m
�

r, ψG
�

+m
�

r, 1
ψ

�

+m(r, k)
�

¶
1
q

�

m
�

r, ψG
�

+ T (r,ψ)+ T (r, k)
�

= O{T (r, h)+T (r, k)+log rT (r, f )T (r, g)}. (13)

Claim 2 The function ψ vanishes at each zero of g
which is not a zero or pole of h, k with a higher mul-
tiplicity.

Suppose that w0 in Cn such that g(w0) = 0 with
divg(w0) = υ and h(w0), k(w0) 6= 0,∞. Use the same
argument as in the proof of Claim 1, we have

divψ(w0)¾ pdivF∗(w0)+ qdivG∗(w0)−divG(w0)

¾ p(qυ−1)+ q(υ−1)− qυ

= pqυ− p− q.

Since p, q¾ 2, p+q
pq−1 ¶ 2. Hence we have that υ¾ p+q

pq−1 ,
provide υ ¾ 2. Then pqυ− p − q ¾ υ holds for υ ¾
2. What is left is to consider the case of υ = 1. By
(8), we have DG(w0) = 0. Then it follows from (7)
that DF(w0) = 0. Note the hypotheses that a zero of
D (hf p)/

�

hf p−1
�

is also a zero of D (kgq)/
�

kgq−1
�

, we
have D (kgq)/

�

kgq−1
�

(w0) = 0. So (8) gives G∗(w0) =
0. By the above discussion, we have

divψ(w0)¾ pdivF∗(w0)+ qdivG∗(w0)−divG(w0)

¾ p+ q− q = p > υ.

Thus, we always have divψ(w0) ¾ divg(w0) for each
positive integer number υ. This completes the proof of
Claim 2.

From Claim 2 and (12), we have that

N
�

r, 1
g

�

¶ N
�

r, 1
ψ

�

+O
�

N(r, h)+N
�

r, 1
h

�

+N(r, k)+N
�

r, 1
k

�	

¶ T (r,ψ)+O{T (r, h)+ T (r, k)}
= O{T (r, h)+ T (r, k)+ log rT (r, f )T (r, g)}. (14)

Using Nevanlinna first fundamental theorem, (13)
and (14), we deduce that

T (r, g) = T
�

r, 1
g

�

+O(1)

= O{T (r, h)+ T (r, k)+ log rT (r, f )T (r, g)}.
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This, together with the hypotheses that hf p +
kgq = 1, implies T (r, g) = O{T (r, h) + T (r, k) + log r}
and T (r, f ) = O{T (r, h) + T (r, k) + log r}. Hence, we
have T (r, f )+T (r, g) =O{T (r, h)+T (r, k)+log r}. This
completes the proof of the theorem. 2

Under the conditions of Theorem 1, the following
holds.

Corollary 1 Any entire solutions f and g of (4) must
be polynomials, provided that h and k are rational
functions.

Proof : Note that, for any rational function R in Cn,
we have T (r, R) = O(log r). Hence, by Theorem 1, we
have T (r, f ) + T (r, g) = O{T (r, h) + T (r, k) + log r} =
O(log r). Therefore, we have f and g are polynomi-
als. 2

APPLICATIONS

As applications of our main result, we shall de-
scribe entire/meromorphic solutions in Cn to func-
tional equations of the form f 2 + g2 = 1, the
form f 3 + g3 = 1, and nonlinear partial differ-
ential equations f 2 + ϕ2

�

z1 fz1
+ · · ·+ zn fzn

�2p
= 1,

f 3+ϕ3
�

z1 fz1
+ · · ·+ zn fzn

�3q
= 1, where ϕ is an arbi-

trary entire function in Cn and p, q ¾ 2 are integers.

Entire function solutions of f 2 + g 2 = 1 in Cn

We shall apply Theorem 1 to obtain the condition such
that entire function solutions f , g of f 2+ g2 = 1 in Cn

are constant.

Theorem 2 Entire solutions f , g of f 2 + g2 = 1 in Cn

are constant if and only if D f −1(0)⊆ Dg−1(0) (ignoring
multiplicities).

Proof : First,we have by Theorem 1 that T (r, f ) +
T (r, g) = O(log r) which means that f and g are
polynomials. Suppose, to the contrary, that f and g
are non-constant polynomials in Cn. Set

f = P0+ P1+ · · ·+ Pk, g =Q0+Q1+ · · ·+Q l ,

where Pj , Q j are either identically zero or homoge-
neous polynomials of degree j. If f = P0 or g =Q0, we
immediately have the entire solutions f , g of f 2+ g2 =
1 in Cn are constant. This is a contradiction. Since
f 2+ g2 = 1, we have k = l. If we write

R f = P1+ · · ·+ Pk, Rg =Q1+ · · ·+Q l ,

then (P0+R f )2+(Q0+Rg)2 = 1 which gives

P2
0 +Q2

0 = 1, (15)

P0R f +Q0Rg = 0, (16)

and
R2

f +R2
g = 0. (17)

Via (17), we have R f = ±iRg . Then, by (16), one
has P0/Q0 = −R f /Rg = ∓i. So P2

0 + Q2
0 = 0 which

contradicts (15). Thus we finish the proof. 2
If we take n = 1 in Theorem 2, we are able to ob-

tain Theorem G directly. To compare with Theorem B
and Theorem F, we give the following result which is
the particular case of Theorem 2 with n= 2.

Corollary 2 Entire solutions f , g of f 2 + g2 = 1 in C2

are constant if and only if z1 fz1
+z2 fz2

= 0 implies z1 gz1
+

z2 gz2
= 0 (ignoring multiplicities).

Meromorphic function solutions of f 3+g 3=1 in Cn

In view of Theorem 2, it is natural to ask whether
this theorem is valid for meromorphic solutions of
f 3 + g3 = 1 in Cn. The following example shows
that the answer is negative. Let f (z) and g(z) be
the same as in (2). Then f (z1/z2) and g(z1/z2) are
meromorphic solutions of f 3 + g3 = 1 in C2. Since
D f ≡ 0 and Dg ≡ 0, the condition D f −1(0) ⊆ Dg−1(0)
is satisfied. But f (z1/z2) and g(z1/z2) are not constant.
For meromorphic solutions of f 3 + g3 = 1 in Cn, we
have the following result.

Theorem 3 Let f and g be nonzero meromorphic so-
lutions of f 3 + g3 = 1 in Cn. If D f −1(0) ⊆ Dg−1(0)
(ignoring multiplicities), then D f ≡ 0 and Dg ≡ 0.

Proof : Suppose that f and g are meromorphic solu-
tions of the given functional equation in Theorem 3.
That is

f 3+ g3 = 1 (18)

in Cn. Next we discuss two cases.
Case 1: f is a rational function in Cn. Then g is a
rational function by (18) and we can assume that f =
P/H, g = Q/H, where P,Q, H are three polynomials
in Cn. In view of [3, Theorem 4.1(b)], we have that
P,Q, H are three constant numbers. Then, f and g are
constant.
Case 2: f is a transcendental meromorphic function in
Cn. Taking total derivative in (18), we obtain that

f 2D f + g2Dg = 0. (19)

Suppose that D f 6≡ 0, by (19), Dg 6≡ 0.
Let ω j = e

2π j
3 i, j = 0,1, 2, then ω1, ω2 and ω3 are

the three complex unitary roots of the equation z3 = 1.
Suppose that f (z0) = ω j . Then (18) yields g(z0) = 0.
It follows from (19) that D f (z0) = 0. Further, by the
hypothesis of the Theorem 3, we have that Dg(z0) = 0
and divD f (z0)¾ 3. Then, for any z ∈ Cn

divD f (z)¾ 3
3
∑

j=1

min{div f −ω j
(z), 1},

which implies

N
�

r,
1

D f

�

¾ 3
3
∑

j=1

N

�

r,
1

f −ω j

�

. (20)
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Furthermore, by Nevanlinna second fundamental the-
orem and Lemma 1, we deduce that

T (r, f )¶
3
∑

j=1

N
�

r, 1
f −ω j

�

+O(log rT (r, f ))

¶ 1
3 N

�

r, 1
D f

�

+O(log rT (r, f ))

¶ 1
3 T (r, D f )+O(log rT (r, f ))

= 1
3 {m (r, D f )+N (r, D f )}+O(log rT (r, f ))

¶ 1
3

¦

m
�

r, D f
f

�

+m(r, f )+2N(r, f )
©

+O(log rT (r, f ))

¶ 1
3 {m(r, f )+2N(r, f )}+O(log rT (r, f ))

¶ 2
3 T (r, f )+O(log rT (r, f )).

Hence, T (r, f ) = O(log rT (r, f )), a contradiction.
Thus, D f ≡ 0, and by (19), Dg ≡ 0. This completes
the proof of Theorem 3. 2

In the particular case of n = 1, by Theorem 3, we
have

Corollary 3 Meromorphic solutions f , g of f 3+ g3 = 1
in C are constant if and only if ( f ′)−1(0) ⊆ (g ′)−1(0)
(ignoring multiplicities).

Nonlinear differential equations in Cn

Using our results above, we shall character complex
analytic solutions of some nonlinear (ordinary and
partial) differential equations in Cn.

Theorem 4
(i) Entire solutions of

f 2+ϕ2
�

z1 fz1
+ · · ·+ zn fzn

�2p
= 1 (21)

in Cn are exactly f = ±1, where ϕ is an arbitrary
entire function in Cn and p ¾ 2 is an integer.

(ii) Meromorphic solutions of

f 3+ϕ3
�

z1 fz1
+ · · ·+ zn fzn

�3q
= 1 (22)

in Cn are exactly f = e
2kπ

3 i, k = 0, 1,2, where ϕ is
an arbitrary entire function in Cn and q ¾ 2 is an
integer.

Proof : (i): If we set g = ϕ
�

z1 fz1
+ · · ·+ zn fzn

�p
=

ϕ(D f )p, then Dg =
�

DϕD f + pϕD2 f
�

(D f )p−1. Ob-
viously, Theorem 2 implies f is constant and the con-
clusion is valid.

(ii): Similarly, if we put g = ϕ(D f )q, then Dg =
�

DϕD f + qϕD2 f
�

(D f )q−1. Thus, we get D f ≡ 0 by
Theorem 3, which implies from (22) that f 3 ≡ 1. This
completes the proof. 2

In the particular case n = 1, Theorem 4 (i) was
obtained in [13, Corollary 3.1] and Theorem 4 (ii)
implies the following corollary.

Corollary 4 Meromorphic solutions of f 3+ϕ3 ( f ′)3q =
1 in C are exactly f = e

2kπ
3 i, k = 0, 1,2, where ϕ is an

arbitrary entire function in C and q ¾ 2 is an integer.

In the above corollary, the function ϕ cannot be
assumed to be a meromorphic function with q = 1.
Here is a counterexample. Let f (z) be the same as
in (2) and ϕ(z) =

¦

℘(z)
2 −

℘(z)℘′(z)p
12

©

/
¦

℘(z)℘′′(z)p
12
− ℘′(z)

2 −
(℘′(z))2p

12

©

. Then, by (2), we have f 3 + ϕ3( f ′)3 = 1.
But it is clear that f is a transcendental meromorphic
solution of the equation.
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